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Abstract. This paper explores the bifurcation behaviour of the aeroelastic galloping system
through an input-output parametric modelling. The models are trained with periodic output data
and parametrised with respect to flow velocity and initial condition. Comparisons to numerical
integration find that while the system identification routine can accurately predict limit cycle
amplitudes, a divergence in long term simulation error persists.

1 INTRODUCTION

The past two decades have seen a substantial increase in the interest of non-linear problems
within the aeroelastic research community. This research has been primarily focused on the
development of full unsteady coupled Computational Fluid Dynamic-Finite Element (CFD-FE)
solutions of complex aeroelastic problems. Much less attention has been given to fundamental
solutions of simple, non-linear aeroelastic systems. However, owing to the large computational
cost of coupled CFD-FE simulations, the work in this field has been mainly focused on obtain-
ing system responses, with little research on the classification of complex non-linear behaviour.
Conversely, fundamental investigations of simple aeroelastic systems have seen significant de-
velopments regarding stability prediction, bifurcation analysis and low cost approximate solu-
tions. As such, there exists a need of extending the methodologies developed for conducting
stability analysis on fundamental aeroelastic systems to more complex configurations without
the prohibitive computational overhead.

The aeroelastic cross-wind galloping problem, described by the steady flow over a square cylin-
der spring-mass-damper, provides an example of a fundamental aeroelastic system that presents
complex nonlinear behaviour. The quasi-steady theory for this system was first developed by
Parkinson and Brooks [1], where a fifth order polynomial damping nonlinearity was introduced
to describe the aerodynamic force. This formulation was extended by Parkinson and Smith [2],
where seventh order polynomial damping was included to permit the presence of hysteresis.
Experimental validation of the analytic expression was provided by Norberg [3], where a de-
pendency between Reynolds number and hysteresis was observed. Vio et. al. [4] have consid-
ered a variety of techniques in exploring the bifurcation behaviour of the aeroelastic galloping
system. The methods of Harmonic Balance, Cell Mapping, Higher Order Harmonic Balance,
Centre Manifold linearisation, Normal Form and numerical continuation were examined, with
varying success in predicting the full response spectrum. Nonetheless, no attempt has been
made at identifying the non-linear system from either simulation or experimental data.

Common practise in aeroelastic system identification dictates the use of Proper Orthogonal De-
composition (POD) in the development of Reduced Order Models (ROMs) [5]. Whilst these
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ROMs typically perform well within the sample space from which they have been constructed,
extensions to conditions outside of this space are not robust. Input-output parametric mod-
els developed under a Nonlinear AutoRegressive Moving Average with eXogenous variables
(NARMAX) methodology have also seen applicability in aeroelastic systems [6]. The identi-
fied models are, however, prone to divergence from the true system as the technique offers no
constraint on long term simulation error.

Several recent publications [7-9] have explored the use of Expectation Maximisation and Parti-
cle Filter techniques as a means of identifying non-linear systems exhibiting autonomous oscil-
lations. Whilst promising results are seen in predicting complex neuron spiking dynamics, the
technique appears to suffer a similar divergence in long term simulation error. A recently devel-
oped method for non-linear system identification that explicitly addresses the simulation error
bounds has been proposed by Manchester et. al. [10]. The Transverse Robust Identification Er-
ror (TRIE) formulates the system identification routine as a convex optimisation problem, and
has seen excellent results in the prediction of Limit Cycle Oscillations (LCOs) in the dynamics
of live rat neuron membranes.

In this paper, we present preliminary findings in the applicability of the NARMAX methodol-
ogy in predicting LCO behaviour of the aeroelastic galloping system. The mathematical model
describing the true system representation is provided under variable damping levels. The NAR-
MAX formulation is presented and with the applicable aspects of the algorithm given in detail.
A description of the numerical integration procedure for the galloping problem is then provided,
along with classification of the bifurcation characteristics across various velocities and initial
conditions. The identified model is employed to predict the LCO and bifurcation behaviour of
the system and performance is evaluated against the predictions of the numerical integration. A
future study will evaluate the efficacy of the Particle Filter and TRIE techniques in identification
of the aeroelastic galloping system.

2 MATHEMATICAL MODEL

The aeroelastic galloping system considered here is modelled as a mass with linear stiffness and
non-linear damping as shown in Figure 1. The model is a prism of length [/, mass m, square
cross-section of height & and is suspended from a linear spring of stiffness £ and a linear damper
with a damping coefficient of c.

Figure 1: Aeroelastic Galloping Model
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The aerodynamic force provides the non-linear damping, as given by:

1
ma” + cx' + kx = EpUQC’F(T)hl (1)

where p is the air density, U is the airspeed, (') denotes differentiation with respect to time, 7,
and the aerodynamic force coefficient, C'r(7), is expressed as a polynomial function of velocity:
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In this expression A = 2.69, B = 168, C' = 6270 and D = 59900 were obtained empirically by

Parkinson and Smith [2] through curvefitting experimental results. After non-dimensionalising,
Equation 1 becomes:
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erena(v- ) (&) (- GR)) o

where y = x/h, n = ph?l/(2m), V is the non-dimensional airspeed givenby V = U/(wh), 8 =
¢/(2mw), w = /k/m and (") represents differentiation with respect to the non-dimensional
time ¢ = w7. This provide the complete aeroelastic galloping equation of motion, which when
expressed in compact form becomes:

j+y=1r®) “)

f(y>=nA<(V—%)y— (%) y3+(ACV3)y5— (AZ;E))J) 5)

In this study two cases will be considered

where

e Case 1: Low damping. 3 = 1.07 x 1073 yields a critical velocity V, = 1.85. This value
of 3 was used in an experimental investigation by [2].

e Case 2: High damping. 5 = 0.5, which corresponds to ¢ = mw, yields a critical velocity
V. = 864.53

The critical velocity is obtained by equating the linear damping term in Eq. (3) to zero.

_2
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(6)
The response of the system at non-dimensional airspeeds below V. is decaying. At supercrit-
ical speeds the system undergoes LCOs, with amplitudes that depend on airspeed and initial
conditions.
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3 NARMAX FORMULATION
3.1 Power-Form Polynomial Representation

Identification of the aeroelastic galloping system is performed under the NARMAX method-
ology developed by Leontartis and Billings [11], with the relevant aspects of the algorithm
provided below. The model is defined by:

Yk = F(l)(ykfla oy Yk Wk— 15 ooy Uk—ry 5 Ch—1s oy Chom, ) T Ck (7

where y(k), u(k) and e(k) are the system output, input and noise signals respectively; n,, n,, and
n. are the maximum regressions for the system output, input and noise; F'(+) is some non-linear
function and [ is the degree of non-linearity. The identification problem of the galloping system
inherently reduces to determining a non-linear function, F'(-), from a set of basis functions
that is able to capture the varying amplitude autonomous oscillations. The basis functions
considered here are power-form polynomials, such that Equation 7 may be represented as the
sum of each of the model terms:

y(k) = Z O;pi(k) + e(k) (8)

where p;(k) are the model terms or regressors, 6; are the model coefficients and ny is the to-
tal number of terms. The system identification routine is integrated in two concurrent steps,
namely, the selection of significant model terms and parameter estimation. A Forward Regres-
sion (FR) is employed for model order selection and an Orthogonal Least Squares (OLS) is
used for parameter estimation, comprising the FROLS algorithm of Billings et. al. [12].

For the basic OLS estimator, the factorisation of Equation 8 is transformed into a regression
model with orthogonal model terms, such that:

y(k) = giwi(k) + e(k) ©)

where w; (k) are orthogonal over the training data sets and g; are the corresponding coefficients.
The FR algorithm begins by considering all possible process terms p;(k) (dictated by the im-
posed maximum lags n,, n,, and n.) as candidates for the first model term. Each process term
is considered orthogonal in this initial term selection, such that:

wl) =p, (10)

m
where wy is the m™ candidate for the first orthogonal model term, p,, is the m™ regressor
inclusive of all data samples and m = 1,2,..., M where M is the total number of candidate
model terms. The estimated coefficients of these first model terms, g%) are then determined

through the OLS estimator:

= (1)
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where the training set, y is taken to be the final 1000 points of simulation data calculated through
numerical integration at each condition. The significance of each candidate term is to the model
output is then evaluated through computation of the Error Reduction Ratio (ERR):
2wl w,,

y'y

ERRY(m) = (¢V)

m (12)
where ERR(Y)(m) represents the incremental increase in explained variance of the output y
introduced by the inclusion of the orthogonal vector w,, to the model. The first model term [,
is selected such that it provides the highest degree of explanatory significance:

I = argl%%%{ERR(l)(m)} (13)

For selection of the subsequent model terms, the first base is removed from the candidate dic-
tionary of regressors and an orthogonal transformation is applied to the remaining candidates
according to:

s—1 T
wl) =p,, — > Pmlry, (14)
wlw,

The calculations proceed as per Equations 11-13 for the s significant model terms. The al-
gorithm terminates once the sum of incrementally explanatory variance exceeds a predefined
threshold value Cjy (set to 99.99% for the computations in this paper):

Y ERR(s) > Cy (15)

where M is the number of model terms yielding an explanatory variance of Cj. It is important
to note that as the NARMAX methodology is being employed to identify a system exhibiting
autonomous oscillations, the system inputs are non-existent, and as such will not appear in the
identified models. Further, in this preliminary study, true simulation data is employed for model
selection and parameter estimation. A noise model will be integrated in a future study, where
experimental validation will be sought.

3.2 Common Model Structure Selection

The algorithm outlined in Section 3.1 will potentially identify a different model structure for
each of the conditions considered. Ideally, a common model structure will be determined to
describe the LCO behaviour of the galloping system, with the model coefficients parametrised
by velocity and initial condition. Derived from the standard FROLS algorithm, Wei et. al. [13]
have developed a Common Model Structure Selection (CMSS) algorithm for such a purpose. In
this model the fidelity of each individual fit is sacrificed such that a common model may capture
the LCO behaviour across a range of conditions.

The procedure for CMSS essentially follows that of the preceding section, however, the algo-
rithm is now run over all the output data sets across the range of non-dimensional velocities and
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initial conditions considered. Let ¢, ,, denote the m™ basis vector of the j test condition. The
ERR selection criteria is applied across the total number of test conditions L, such that:

(yT¢GmJ2
(yTy) (¢?:m¢j,m)

The significant terms in the model are then selected according to the average ERR across all
test conditions:

ERRW(j,m) =

(16)

L

1

_ - W5

[ arglgr?%)% {L ZlERR (j,m)} (17)
j:

The computations proceed according to Equation 14 and 15, with modification to the basis

vectors such that each test condition is considered.

In this study, the CMSS algorithm is applied to the low damping galloping case to parametrise
the NARMAX coefficients as a function of non-dimensional velocity and initial condition. The
functions are curve-fit from the NARMAX coefficients and take the form:

f(V;)  for Initial Amplitude < 0.5
i = (18)

h(V;) otherwise

where g; is a vector of length equal to the number of significant terms identified by the CMSS
algorithm and f(-) and h(-) are vector polynomial functions of non-dimensional velocity V'
with degree 7. Although this factorisation will invariably degrade the fidelity of the NARMAX
fit for each individual test condition, it permits a compact representation of the complex system
behaviour across the entire test space.

4 NUMERICAL INTEGRATION

To determine the true behaviour of the galloping system and provide training data sets for the
system identification routine, numerical integration of Equation 3 is performed. In this work,
the non-linear equation of motion is realised in MATLAB and Simulink, with the native ODES
routine performing integration through the explicit fixed-step Runge-Kutta (4,5) scheme, the
Dormand-Prince pair [14].

Due to the low damping forces present in Case 1, significant simulation time is required before
steady state, autonomous oscillations are observed. This computational effort is reduced by
seeding the first test point at IV = 1.86 with an initial condition of similar order to the LCO
amplitude determined by Vio et. al. [4]. Subsequent test points are seeded with the LCO
amplitude of the preceding condition. A physical time step of At = 0.1 seconds with 21
simulation points is found to be sufficient to observe steady state oscillations. An analogous
procedure is employed for numerical integration of the high damping condition, with At = 0.03
seconds and 2'® simulation points required to observe LCOs across all test points.

The extensive analysis of the aeroelastic galloping system conducted by Vio et. al. [4] found
that regardless of the damping level or non-dimensional velocity, the system exhibits symmetric
Period-1 LCOs. This greatly simplifies the computation of the LCO amplitude and period,
where the amplitude is simply the maximum response once the system has achieved steady
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state and the period is obtained from the time-lapse between two consecutive zero crossings of
the displacement y(¢) in the positive y direction.

For representation of the global stability behaviour of the galloping system across a range of
airspeeds and initial conditions, time responses provide limited insight. Rather, bifurcation dia-
grams, which give the LCO amplitude as a function of non-dimensional velocity, are considered.
In Figure 2, the bifurcation plots are provided for both the low and high damping cases.
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Figure 2: Bifurcation Diagrams for the Aeroelastic Galloping System

In the low damping case of Figure 2(a), at non-dimensional airspeeds below V, = 1.85, the
response of the system is decaying and the limit cycle amplitude is zero. At speeds between
1.85 and 2.4 the system undergoes LCOs with increasing amplitude. At speeds between 2.4 and
3.5 two LCO amplitudes coexist. The system may approach either of these LCOs depending on
the initial conditions. This indicates the presence of an unstable limit cycle between these two
solutions. At speeds higher than 3.5 there is again only one possible limit cycle. In the high
damping case of Figure 2(b), at non-dimensional airspeeds below V, = 864.53 the response of
the system is decaying and the limit cycle amplitude is zero. At speeds between V. and 1090
the system undergoes LCOs with increasing amplitude. At speeds between 1090 and 1560 two
LCO amplitudes exist. At speeds higher than 1560 there is again only one possible limit cycle.

The presence of two coexisting limit cycles within a range of airspeeds indicates a hysteric
loop in the bifurcation behaviour of the aeroelastic galloping system. This sensitivity to initial
conditions necessitates multiple simulations at equivalent airspeeds to completely capture the
hysteretic loop within the system. This complex bifurcation behaviour complicates the system
identification routine, as the identified model must be capable of capturing both bifurcation
branches.

S RESULTS

NARMAX identification of the low damping galloping system in autonomous oscillation yields
a very simplistic model across all non-dimensional velocities and initial conditions. A linear
auto-regressive model is determined in each case, with the model terms represented by the first
and second lag of displacement y. This simple model structure is expected from the galloping
system, where symmetric Period-1 limit cycles are present at all conditions. The corresponding
bifurcation diagram for the low damping case is given in Figure 3. When an individual NAR-
MAX fit is applied to each data set, an excellent prediction of the LCO amplitude is observed.
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Conversely, the CMSS results exhibit discrepancies relative to the numerical integration, par-
ticularly towards the extremities of non-dimensional velocity. The polynomial fit of the coef-
ficients diverges near the first fold point and drifts from the true response amplitude at higher
velocities. Nonetheless, the polynomial fit performs well near the second fold point where the
bifurcation plot is predominantly linear, and the parametrised model is able to predict the LCO
amplitude with a fair degree of accuracy for the majority of the conditions considered.
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Figure 3: Bifurcation Diagram - Low Damping

Although the amplitudes of the autonomous oscillations are well predicted for the low damping
case, NARMAX models are prone to divergence in long-period simulation error. This attribute
of the NARMAX method presents itself in the current work, where the predicted LCO frequency
diverges from the true response. In Figure 4(a), the initial tracking of the NARMAX model for
the lower bifurcation branch at V' = 2.5 is given. Excellent correlation is observed relative to
the numerical integration. However, as simulation time progresses a phase shift in the response
develops, as evident in the phase change observed in Figure 4(b).

0.3 -7 0 e

P 4 ¥ A A Y. ® R
ol-—-—-¢--% ¢ % - & - 0.4HR------ g--B----- g

Amplitude
=
Amplitude

/)] -
0 )]
-0 4 1 % 4 L AR Vp 02--REF - Ry e

o Numerical Integratior—NARMAX merical Integratior—NARMAX \
0 50 100 150 200 1800 1850 1900 1950 2000

Non-Dimensional Time Non-Dimensional Time
(a) Initial Tracking (b) Long-Period Tracking

Figure 4: Time Responses for NARMAX Model - V = 2.5

The inaccuracy in LCO frequency prediction is exacerbated in the CMSS model response of
Figure 5(a). Seeded with initial conditions drawn directly from the numerical integration, the
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model predicted LCO diverges in phase from the outset, whilst the amplitude remains well
captured. This long term divergence in simulation error is a pertinent issue in identification
of non-linear systems exhibiting autonomous oscillations. A possible means of alleviation is
by use of the TRIE technique of Manchester ef. al. [10], where the model is derived directly
through minimisation of simulation error.
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Figure 5: Time Response for CMSS Model - V = 2.5

The resultant bifurcation diagram for the high damping case is given in Figure 6. The lower
branch amplitudes are well captured by the NARMAX models, where again a linear auto-
regressive model structure is selected comprising of two lagged output terms. This is to be
expected as the lower branch exhibits near constant frequency LCOs, with similar behaviour
to the low damping case. Application of the NARMAX method to the upper branch, however,
yields diverging results in the predicted LCO amplitudes. At velocities above V' = 1900, higher
order terms are included in the identified model, which result in unstable oscillations. The upper
branch of the high damping case represents a more complex identification problem, as the LCO
frequency varies near quadratically with velocity. Accurate representation of this upper branch
through a NARMAX routine may necessitate an extension of the basis functions considered
during the model selection.
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Figure 6: Bifurcation Diagram - High Damping
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6 CONCLUSIONS

In this paper, a NARMAX system identification routine has been shown to be effective at pre-
dicting LCO amplitudes and bifurcation behaviour in the lightly damped aeroelastic galloping
system. Parametrisation of the model coefficients to obtain a common model structure yielded
fair amplitude predictions across the range of velocities and initial conditions considered. Sim-
ple, linear auto-regressive parametric models were identified as sufficient in determining the low
damping magnitudes of autonomous oscillation. However, the routine did highlight a shortcom-
ing in the use of such parametric models, namely, divergence in the long term simulation error.
Further, the method employed in this study did not completely capture the bifurcation behaviour
of the high damping case. A continuation of this work will consider extensions of the NAR-
MAX modelling, as well as comparisons of the NARMAX identified models against Particle
Filter and the TRIE techniques.
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