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Abstract: In this paper a novel frequency domain Reduced Order Model (ROM) to
compute the dynamic response to atmospheric disturbances of a free aircraft flying in the
transonic regime including CFD aerodynamics is presented. It is based on correction of the
unsteady Aerodynamic Influence Coefficient (AIC) matrices. First, the ROM is applied
within the aerodynamic linear region where effects can be superposed using a minimum
number of unsteady CFD computations and validated against results obtained by direct
coupled CFD-CSM simulation. Additionally, the ROM is extended into a nonlinear region
linearizing around a dynamic state instead of the usual steady state linearization. Again,
results are validated against direct coupled nonlinear time domain simulations.

NOMENCLATURE

f , ω, k Frequency, circular frequency and reduced frequency
Lref Reference length, half of the Mean Aerodynamic Chord (MAC)
q, U∞ Dynamic pressure and freestream velocity
Q, Qc AIC matrixand corrected AIC matrix at a particular reduced frequency
4Q Incremental AIC matrix,
w Downwash matrix
4cp Incremental (between upper and lower surface) pressure coefficient distribution
A Left hand side matrix in the frequency domain least squares problem
x̃ Solution vector to the frequency domain least squares problem
b Righ hand side vector in the frequency domain least squares problem
P Matrix containing the CFD predicted quantities
P0 Matrix containing the DLM predicted quantities
x0 Vector with normalized elements of the original AIC matrix

Ã Matrix to obtain quantites from incremental pressure coefficient distribution
N , Nr Total number of DLM panels, subset of panels used for correction
Nc, Ns, M Number of constraints, aerodynamic strips and correction modes
L, M Matrix to compute local lift and local pitch moment coefficients
Cli, Cmi Lift and pitch moment coefficient of aerodynamic strip i
Φgη Modal matrix to transform from physical dof to modal dof
Hkg Spline matrix to spline displacements from structural grid to aerodynamic grid
Skj Summation matrix from pressure coefficient to force and moment
GAFηm Generalized Aerodynamic Force, correction mode m and vibration mode η
Fim Total aerodynamic load at structural node g, dof i
wε Downwash tolerance
w (x , t) Vertical velocity imposed at coordinate x and instant t
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w0 Gust amplitude
Lg , H Gust length, gust gradient (half of the gust length)
x0, t0 Gust initial position and time
η (t) Generalized coordinate time history
tmax Exponential pulse duration
D1jk, D2jk Substantial derivative matrices
Mηη Generalized mass matrix
Bηη Generalized damping matrix
Kηη Generalized stiffness matrix
Qηη Generalized AIC matrix

1 INTRODUCTION

Dynamic loads due to atmospheric disturbances are of capital importance when designing
and sizing an aircraft. There are very well established linear methods to compute the
aerodynamic loads, both in frequency and time domain, which properly represents the
physics for subsonic cases, where the aerodynamic remains linear. Probably the best kown
is the Doublet-Lattice Method (DLM) in frequency domain, which solves the unsteady
compressible potential equation.

In this work the nonlinearities refer to the aerodynamic contribution. In the transonic
regime, where nonlinear aerodynamic effects such as recompression shocks, viscosity and
separation become important, the classical methods differ from reality and additional
conservatism is considered in the design. High fidelity methods, which are able to better
capture the aerodynamic nonlinear effects involved in the transonic regime, are key in
order to potentially reduce this conservatism. However, high fidelity methods cannot be
used as such in a realistic design process, where thousands of cases must be considered.
Thus, processes allowing the robustness and efficiency of the classical methods but in-
cluding a better physical description of the phenomena involved in the transonic regime
are sought. This kind of approach is referred to as model reduction.

In this paper a novel ROM to compute the dynamic response of a free aircraft to an
atmospheric disturbance is presented. The focus is on the free response to a discrete gust,
in particular vertical gusts of the form 1-cos, but can be applied to any kind of external
perturbation, such as gust, turbulence or wake vortex encounter.

The topic has been adressed by several authors. Two different approaches are available
for model reduction, both applicable in time and frequency domain.

One approach includes the projection methods, where the full model is manipulated to
reduce the overall computational cost. An application to gust computations has been
done by Da Ronch [1]. There, cases for discrete and continuous gust of small amplitudes
over a rigid profile and a cantilevered wing are considered. Timme [2] applies it to a
flexible aircraft, showing the limitation of the method for realistic configurations. A
Proper Orthogonal Decomposition (POD) method combined with a convolution scheme
is generated for a Truss Braced Wing (TBW) aircraft by Bartels [3]. Rigid gust (aircraft
motion is not allowed) results for moderate gust amplitudes (up to 4% of the freestream
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velocity) are shown. Wales [4] presents an Eigensystem Realisation Algorithm (ERA)
ROM for a rigid wing including some nonlinear effects from steady computations.

The other approach is referred to as sytem identification methods, where a low order model
is developed based on known responses to particular inputs. A time domain based Auto
Regressive-Moving-Average (ARMA) model and a Generalized Aerodynamic Force (GAF)
convolution based frequency domain ROM are presented by Raveh [5]. An application
to a bidimensional case for gust cases is done by Zaide and Raveh [6] and by Raveh [7]
for a rigid wing. Application to a free elastic aircraft is done by Raveh [8]. There the
ROM application cases are focused on the linear aerodynamic region, where the different
aerodynamic effects can be superposed. Results within the aerodynamic nonlinear region
are presented by Raveh [9], where the limitation of the ROM is pointed out. A method
based on a Taylor expansion around frequency zero for a diagonal modification of the
AIC matrices, as proposed by Chen [10] and extended by Thormann [11], is applied to
gust encounters by Dimitrov [12]. There, results of several gust profiles over a rigid wing
are shown. The method is valid for cases where the main difference with respect to
higher fidelity results are caused by an offset difference in magnitude and not in phase in
frequency domain, thus limiting the method to very small gust amplitudes.

In the current work a system identification ROM method is developed in frequency do-
main which tries to overcome limitations present in other methods. It is based on the
modification of the unsteady AIC matrices, allowing the identification of the system for
some particular correction modes and its extension to different modes. This ROM aims to
match not only the aircraft response but also the loads distribution as provided by higher
fidelity methods, and using a number of CFD unsteady computations lower than the to-
tal number of external perturbation and vibration modes. It uses CFD data obtained
in time domain, and thus aerodynamic effects as resonance peaks in frequency domain
can be reproduced, provided they are included in the frequency domain description of the
reference computations. Additionally, the correction modes used as reference may have a
physical meaning, being easier to identify the driving modes for particular cases.

2 LEAST SQUARES IN FREQUENCY DOMAIN

2.1 Optimization problem

As it has been stated, the ROM is based on the modification of the AIC matrices in
frequency domain. Thus a Doublet-Lattice grid and a set of AIC matrices are assumed
to be available. In the present work they are computed by the commercial software
MSCNastran. Additionally, the required unsteady CFD computations are assumed to be
available in time domain.

The Mach number for the DLM reference model and the CFD computations is set to be
the same. Additionally, the initial steady angle of attack for the CFD computations is
fixed, but different values can be easily considered. The CFD data provides the reference
data to be matched by the modified (or corrected) AIC, and it is defined by a set of input
correction modes together with the corresponding time domain results. One or several
correction modes can be considered simultaneously, and any flow disturbance, such as a
gust profile, a structural motion, or a combination is allowed. For the ROM generation, a
correction mode is defined by its downwash distribution over the Doublet-Lattice panels,
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being the downwash the local disturbance velocity perpendicular to the panel, as imposed
by the no-penetration boundary condition. For a particular correction mode, the position
and grid velocity over the cells on the CFD surface grid (needed for the time domain
CFD computation) together with the downwash distribution (needed for the modified
AIC generation) are required.

Now the problem is stated. The AIC matrices are to be modified so that the CFD time
domain reference results when applying the corresponding downwash over the Doublet-
Lattice grid, comprising N panels. This can be expressed as shown in Eq. 1 for each
frequency value, where Qc denotes the corrected AIC matrix, w the dimensionless (with
the freestream velocity U∞) downwash distribution vector and 4cp the incremental (dif-
ference between lower and upper panel surface) pressure coefficient, as obtained from
CFD. It is usual to specify the frequency f (Hz) in a dimensionless reduced frequency
k as specified in Eq. 2, where Lref is the reference longitude (usually half of the mean

aerodynamic chord value). Premultiplying by a matrix Ã Eq. 1 can be written in more
general terms as Eq. 3, see Eq. 4. By doing so, a number Nc of different quantities other
than the pressure coefficient may be considered, such as local aerodynamic coefficients,
nodal load, etc. Note that an additional scheme is required in order to interpolate the
incremental pressure coefficient from the CFD surface grid into the Doublet-Lattice grid,
see Thormann [11]. In Eq. 1 a number M of downwash and incremental pressure coef-
ficient distributions can be considered (correction modes), provided they are specified in
different columns in the matrices w and P, see Eq. 5 and 6, where wmp is the downwash
over panel p for mode m, being p = 1, ..., N and m = 1, ...,M . In general, the vector
containing the values to be matched P can be obtained by experimental or computational
methods. In this work computational values obtained from CFD time simulations are
imposed.

Qcw = 4cp (1)

k =
2πfLref

U∞
(2)

ÃQcw = P (3)

P = Ã4cp (4)

w =


w11 ... wm1 ... wM1

... ... ... ... ...
w1p ... wmp ... wMp

... ... ... ... ...
w1N ... wmN ... wMN


N×M

(5)
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vec (P) =


P1

...
Pm

...
PM


(Nc·M)×1

(6)

There are N ·M known values (or equations) and N2 unknowns (the corrected matrix Qc

is a full matrix). In practical cases there are less than N number of CFD computations
available and thus there are more unknowns than equations. This leads to the solution
of an underdetermined problem. This means there is an infinite number of solutions
satisfying Eq. 1, from which a minimum norm solution can be chosen in order to specifiy
an unique one. In general, the data over all panels do not need to be available, but only
for a number of panels Nr ≤ N , resulting in the modification of the rows corresponding
only to this subset of panels in Qc. However, the downwash distribution must be specified
over all panels, being the number of unknowns Nr ·N . The minimum norm solution x̃ of
the optimization problem defined by Eq. 7 and 8 is sought.

min

(
i=Nr·N∑
i=0

‖x̃‖2
)

(7)

Ax̃ = b (8)

The problem defined in Eq. 1 must now be rewritten in the form specified by Eq. 8. In
order to do so, the Kronecker product ⊗ and the vec operator as defined in Henderson [13]
are used, see 9. The unknown vector x̃ = vec (x) does not include directly the elements of
Qc but has been redefined instead, see Eq. 10, where4Q denotes the additional corrected
AIC matrix as shown in Eq. 11, Qc the modified AIC and Q the original one. Note that
the dependency with the reduced frequency k has been explicitely pointed out in Eq. 10.
Using this definition of the unknown vector, the corrected matrix Qc at this particular
frequency is in a least squares sense the closest possible (in magnitude) to the original
AIC matrix Q and AIC elements with a higher magnitude value are stronger modified.
Additionally, the quantity values as predicted by the original Q must be substracted in
the right hand side, see Eq. 12, 13 and 14.

(
wT ⊗ Ã

)
vec (x) = b (9)

vec(x) = [
4Q11(k)√
|Q11(k)|

...
4QNr1(k)√
|QNr1(k)|

4Q12(k)√
|Q12(k)|

...

4QNr2(k)√
|QNr2(k)|

...
4Q1Np (k)√
|Q1Np (k)|

...
4QNrNp (k)√
|QNrNp (k)| ]T(Nr·N)×1 (10)

Qc = Q +4Q (11)
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b = vec (P)− vec (P0) (12)

vec (P0) =
(
wT ⊗ Ã

)
vec (x0) (13)

vec(x0) = [
Q11(k)√
|Q11(k)|

...
QNr1(k)√
|QNr1(k)|

Q12(k)√
|Q12(k)|

...

QNr2(k)√
|QNr2(k)|

...
Q1Np (k)√
|Q1Np (k)|

...
QNrNp (k)√
|QNrNp (k)| ]T(Nr·N)×1 (14)

Matrix dimensions are shown in Eq. 15, 16 and 17. In a general case the number of
quantities or constraints Nc ≤ Nr ·N depends on the quantities chosen to be matched.

A =
(
wT ⊗ Ã

)
(Nc·M)×(Nr·N)

(15)

x̃ = vec (x)(Nr·N)×1 (16)

b = vec (P)(Nr·N)×1 (17)

Once the problem has been stated, the solution is equivalent to applying the Lagrange
multiplier method to the constrained optimization problem, in which the vector x̃ subject
to the equality constraint Ax = b minimizes the (squared) norm ‖x̃2‖, see Eq. 18, whose
solution is given in Eq. 19, see Yang [14]. Once the problem has been solved for x̂, its
elements are rearranged and by means of Eq. 11 the corrected matrix Qc is found.

Min(x̃, λ) =
1

2
‖x̃‖2 − λT (Ax̃− b) =

1

2
x̃T x̃− λT (Ax̃− b) (18)

x̃ = ATλ = AT
[
AAT

]−1
b (19)

This problem has been solved at frequency zero by Bruns and Brink-Sparlink [14]. It is
also pointed out the possibility to apply the correction at particular frequencies higher
than zero. In that case the matrices A, x and b become in general complex and thus the
Hermitian adjoint A′ instead of the tranpose AT is to be considered, see Miller [16].

The matrix Ã will be specified now. This matrix contains the same submatrix Ãm for each
correction mode repeated M times, see Eq. 20. In this work three different possibilities
have been implemented.
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Ã =


Ã1

...

Ãm

...

ÃM


(Nc·M)×Nr

(20)

• Matrix Ã to extract the local lift and pitch moment coefficient at different aero-
dynamic strips, see Eq. 21. It is assumed that the coefficients are known in fre-
quency domain at a number Ns of aerodynamic strips. The number of constraints
is Nc = 2Ns. In this case summation matrices L for lift coefficient computation and
M for pitch moment computation are created. Their matrix elements Lsp and Msp

are given in Eq. 22 and 23, where s = 1, ..., Ns and p = 1, ..., Nr .

Ãm =

[
L
M

]
Nc×Nr

(21)

Lsp =

{
Ap, if the panel belongs to this strip, pεs,

0, otherwise.
(22)

Msp =

{
Ap

[[
xp − x(c/4)s 0 0

]T × np

]
·
[
[1 0 0]T × np

]
, if pεs,

0, otherwise.
(23)

, where Ap is the area of the panel p, xp its x coordinate and np its normal vector. The
coordinate x(c/4)s represents the c/4 chord point of the strip s, which is the convention
adopted for the local moment. The pitch moment is positive if produces a nose up moment
over the strip. In this case vec (P) is given in Eq. 24.

vec (P) =
[
Cl1 ... Cli ... Cls Cm1 ... Cmi ... Cms

]T
2Ns×1

(24)

, being Cli and Cmi the local lift and local pitch moment coefficient at the strip i = 1, ..., Ns.

• Matrix Ã to extract the GAF (Generalized Aerodynamic Forces). In this case

additional matrices to build Ã are required, which is given by Eq. 25, where φgη is
the modal matrix including the specific subset η of modal coordinates to be matched,
Hkg is the spline matrix which transfers structural displacements to aerodynamic
displacements (its transpose transfers aerodynamic loads to structural loads) and
Skj is the summation matrix which converts pressure distribution over the subset of
panels to nodal forces and moments. The vec (P) term is obtained taking the vec
operator to the element GAFηm. The number of constraints is then Nc = θ ·M ,
where η = 1, ..., θ, being θ the number of modal coordinates chosen to be matched.

Ã = φT
gηH

T
kgSkj (25)
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• Matrix Ã to extract the nodal loads due to the aerodynamic effects, that is, due
to the external air perturbation and the aircraft motion, see Eq. 26. The nodal
force (due to aerodynamic effects) at the structural node for the correction mode m
is denoted by Fxim, Fyim and Fzim for the nodal force in the x, y and z directions
respectively, where i = 1, ..., NG, being NG the total number of structural nodes.
The number of constraints is Nc = 3NG ·M . Again, a subset among all structural
nodes can be selected. Also, the force along only some direction can be matched.

Ã = HT
kgSkj (26)

These three possibilities can be combined and quantities involving local aerodynamic
coefficients, GAF and aerodynamic nodal loads can be matched simultaneously.

2.2 Numerical implementation

As stated above, a correction mode may be defined by a gust profile of a specific length (or
frequency), a vibration mode, a synthetic mode describing a particular structural motion
or a combination of those. However the correction modes must be linearly independent
in order for the LSQ problem not to become singular.

The reference values to be matched are obtained after applying the Fast Fourier Transform
(FFT) transformation as defined in Eq. 27 to each of the quantity time histories obtained
by CFD. The discrete signal in time is defined by the yj values in the time interval
[0, N4t]. With the time signal y sampled with a constant time interval 4t its frequency
domain representation is given by the signal Yk in the frequency interval [0, 1/24t] (Hz).
For a more detailed description see Karpel [17].

Yk = 4t
N−1∑
j=0

yje
−i2πjk/N , k = 0, ..., N − 1 (27)

The FFT values of the quantities chosen to be matched (see Eq. 24) form the right hand
side of the LSQ problem at each reduced frequency, see Eq. 6.

For all quantities in P from different correction modes to have the same frequency domain
discretization, the signals in time domain are interpolated to a common time discretization
with proper time step and time end values.

In order to generate numerically stable corrected AIC matrices, the problem defined by
Eq. 7 cannot be solved for all correction modes at every reduced frequency. If for a
particular correction mode a specific reduced frequency is practically not excited, this
mode is excluded from the LSQ problem. A correction mode m is included in the LSQ
problem at a reduced frequency k if the condition defined in Eq. 28 is fulfilled, where
wm(k) is the downwash distribution corresponding to mode m and k∗ denotes all reduced
frequency values smaller than the particular one under consideration. Note that now the
dependency with the reduced frequency has been explicitly pointed out. The first k value
at which the mode m does not fulfill this condition is the maximum allowed reduced
frequency for that mode. In general each correction mode possesses a different maximum
allowed reduced frequency. The tolerance value has been set in this work to wε = 10−3.
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max (|wm (k)|)
max (|w (k∗ ≤ k)|)

≥ wε, m = 1, ...,M (28)

The LSQ problem is solved at each reduced frequency k with QR decomposition of the
matrix A.

2.3 Methodology

The presented ROM allows a subset of quantities to be matched. For example, only
the aerodynamic strips belonging to a certain component may be corrected, keeping the
aerodynamic description of other components as predicted by the original DLM. Also,
being the modified AIC matrix full, interference effects can be included.

2.3.1 CFD

The CFD results are obtained with the TAU-Code [18]. For the flux discretization a
central scheme is used. The temporal discretization includes a local time stepping scheme
for steady calculations and a dual time stepping algorithm for unsteady computations.
Results obtained for an Euler grid are shown in the present work. In order to model the
gust effect, the Field Velocity Method (FVM) is implemented, where the gust velocity is
prescribed at every grid node and the effect of the aircraft on the gust is neglected [19,20].
The Split Velocity Method (SVM) includes this effect, see Wales [21], who has developed
it for the Euler equations and where it is shown that the use of the FVM is justified for
practical cases.

In order to demonstrate the ROM unsteady capabilities, the influence of the steady trim
has been neglected in the coupled CFD-CSM computation. Thus, the initial dynamic
shape of the model does not include static deformation and only incremental unsteady
forces are considered for the aircraft response. The generalized coordinates are set to
zero at the beginning of the simulation and only the incremental dynamic response is
considered.

2.3.2 Corrected AIC generation

As already stated, a Doublet-Lattice grid together with AIC matrices is required for the
corrected AIC matrices generation. They are assumed to be available.

In this work both a quasi-steady and a full unsteady correction are considered. The quasi-
steady correction has been implemented as done in [12]. In this case the corrected AIC
matrix at any reduced frequency is computed as function of the corrected and original
AIC matrix at frequency zero, see Eq. 29. This quasi-steady correction is referred to
as an offset correction, as a shift is applied to the real part of the AIC matrix elements.
The full unsteady correction is applied as described in section 2.2. The vector vec (P)
in Eq. 12 contains the finite difference values generated by two steady computations,
one corresponding to the initial steady angle of attack and the other setting the angle of
attack to the steady value plus an incremental value of 0.1 (deg).

Qc(k) = Q(k) +Qc(k = 0 )−Q(k = 0 ) (29)
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Results obtained with the matrix Ã as given in Eq. 21 are shown. For this case there is no
need of mapping the complete pressure coefficient surface field over the Doublet-Lattice
panels. Instead, the local aerodynamic coefficients are computed at each strip from the
CFD surface pressure values. Thus the matrix Ã is not used in Eq. 4, being the P values
computed directly from the available CFD results. In order to avoid numerical instability,
the integration has been carried out over the initial undeformed mesh but considering
the current pressure values. Once the time histories of the aerodynamic coefficients are
available for the strips of interest, their values are converted into frequency domain using
Eq. 27 for each aerodynamic strip coefficient. When focusing on vertical discrete gusts,
the aerodynamic strips belonging to the wing and horizontal tail plane are considered,
neglecting the vertical tail plane.

For the full unsteady correction, in order to generate the time domain CFD results cor-
responding to the correction modes the input to the computation has to be defined. It
is known that for Linear Time Invariant (LTI) systems the transfer functions which de-
scribe their behavior in frequency domain do not depend on the input signal. It is then
sufficient to excite the system with an input signal and compute the transfer function
once the output is known. The ideal input is the impulse, which in theory excites all
frequencies. As we are dealing with discrete systems though, the impulse is approximated
by a discrete pulse signal. For numerical stability a smooth signal is preferred rather
than a discrete value acting at an unique time value. The shorter the pulse, the wider
the frequency spectrum excited. Note that the pulse shape does not modify the system
properties, provided the reduced frequency range of interest is excited by the input.

Three types of pulse input shapes are used.

• (1− cos) pulse. This shape is used when the correction mode is a discrete gust
profile. In this case the velocity field (over surface panels for the LSQ problem
and over the cells grid in CFD) is specified as given in Eq. 30, where w0 is the
pulse amplitude, Lg the pulse length and t∗ (x) as given in Eq. 31 stands for the
penetration effect caused by the gust translating at velocity U∞, being t0 and x0
respectively an initial time and distance (in x direction) offsets between the gust
and the aircraft nose. The pulse reduced frequency kg is defined by its length Lg or
gradient H, defined to be the half of its length, Lg = 2H, and given in Eq. 32.

w (x, t) =

{
w0

2

(
1− cos2πU∞(t−t∗(x))

Lg

)
, t∗ (x) ≤ t ≤ t∗ (x) + Lg

U∞
,

0, else
(30)

t∗ (x) = t0 +
(x− x0)
U∞

(31)

kg = π

(
Lref
H

)
(32)

• Exponential shape of duration tmax as used by Marques [22]. In this case the time
histoy of a generalized coordinate η is specified as given in Eq. 33.

10



IFASD-2015-141

η (t) =

4
(

t
tmax

)2
exp

(
2− 1

1− t
tmax

)
, 0 ≤ t ≤ tmax,

0, t ≥ tmax
(33)

• General shape. Used when the correction mode is a combination of a gust and a
general structural motion, which can be a combination of predefined time histories in
the generalized coordinates. This type of input shape is only used when generating
the ROM in the nonlinear aerodynamic region.

2.3.3 Linear aerodynamic region

In this region the aerodynamic effects may be superposed. This is justified when con-
sidering small gust amplitudes. Actually the boundary between the linear and nonlinear
aerodynamic region is a combination of gust amplitude and frequency [23]. In order to de-
crease the time spent for the ROM generation, a minimum number of CFD computations
is convenient. Additionally, the time for the generation of the corrected AIC increases with
the number of correction modes taken into account. The ROM performance is analyzed
by adding correction modes systematically. In particular, two cases are considered.

1. ROM including one correction mode, a high frequency gust in order to produce a
wide range of reduced frequency available as provided by Eq. 28. For flutter-free
aeroelastic applications is enough to consider the gust frequency corresponding to
the shortest gust specified by the regulations, Hmin = 50 (ft). In this case only
one CFD computation is required, the corresponding to the velocity field specified
by Eq. 30 with Lg = 2Hmin. It is expected that the gust correction mode is able
to represent the heave and pitch aerodynamic properties at low frequency, as their
downwash distributions tend to the same one at zero frequency for an equivalent
amplitude.

2. ROM including two correction modes, adding the first flexible mode (usually the
first wing bending). Now an additional CFD computation is carried out by imposing
the time history from Eq. 33 in the generalized coordinate corresponding to the first
flexible mode.

Note that in the proposed method there is no need to run a CFD computation for each
vibration mode and rigid body mode, as the frequency properties included in the corrected
AIC are transferred between modes by means of the downwash vector. This allows for
the number of CFD computations to be drastically reduced, usually at least in an order
of magintude.

2.3.4 Nonlinear aerodynamic region

In this region the aerodynamic effects due to gust and structural motion may not be
superposed as for example in the case of a particular combination of high amplitude and
low frequency gust. The exact boundary as a combination of gust amplitude and frequency
values depends on the particular case and is not the focus on this work. Both aerodynamic
effects, due to the gust and the structural motion, are to be considered simultaneously.
A direct coupled CFD-CSM simulation can provide the complete solution. However, the
aim of the ROM in the nonlinear region is to provide a feasible description without having
to run the CFD-CSM each time. A previous work can be found in [23].
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Note that even though the problem in time domain is nonlinear, a frequency domain
description of the problem as shown in Eq. 34 is possible by defining a set of modified
AIC matrix is defined in vec (x) (see Eq. 10) such that the nonlinear aerodynamics as
predicted by the CFD-CSM computation is matched.

A constant frequency domain description is considered within the linear aerodynamic
region by linearizing around the nonlinear steady state. Unlike for the linear region,
in the nonlinear region the frequency domain description depends on the system input,
defined by the gust and the aircraft response, which is unknown unless the direct coupled
problem is solved. Instead, the frequency domain description is approximated by assuming
the aircraft response to be as predicted by the DLM, which is equivalent to linearizing the
problem around a given trajectory by assuming the aircraft response. The same idea is
applied in the theory of describing functions for nonlinear control design, see [24], where
a nonlinear system is quasi -linearized by assuming the input shape to the nonlinearity.
In other words, the problem defined by Eq. 34 is aproximated by Eq. 35. The downwash
matrix ŵ in Eq. 35 includes two correction modes.

1. Downwash vector ŵ1=wg + w1 resulting from the superposition of the particular
gust of interest with downwash vector wg and the structural motion as predicted by
DLM with downwash vector w1, given in Eq. 36, 37 and 38 in frequency domain.
Note that the generation of w1 is computationally very cheap. Note that the (non-
linear) interaction between the gust and the structural motion is considered by the
CFD results corresponding to this mode.

2. Downwash vector ŵ2 due to a linear gust (by linear gust an amplitude and frequency
combination within the aerodynamic linear region is meant). The shortest gust
gradient Hmin is considered in order to get a wider reduced frequency range.(

wT ⊗ Ã
)
vec (x) = vec (P)− vec (P0) (34)

(
ŵT ⊗ Ã

)
vec (x̂) = vec

(
P̂
)
− vec (P0) (35)

w1 = (D1jk + ikD2jk)
[
−ω2Mηη + iωBηη + Kηη − qQηη (k)

]−1
qQηj (k)wg (36)

Qηj (k) = φT
gηH

T
kgSkjQ (k) (37)

Qηη (k) = Qηj (k) (D1jk + ikD2jk)Hkgφgη (38)

These two correction modes are included in ŵ and their corresponding aerodynamic strip
coefficients in frequency domain as provided by the time domain CFD computations are
included in P. Then the LSQ problem defined in Eq. 35 is solved for x̂, which provides
an approximation to the frequency domain representation of the direct coupled nonlinear
CFD-CSM problem. After rearranging terms and using Eq. 11 a corrected AIC is found.

12
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Figure 1: Doublet-Lattice grid.

Property Wing Horizontal Tail Plane Vertical Tail Plane
Span (m) 57.80 18.00 11.75

Aspect ratio 8.7 4.1 1.7
Root chord (m) 13.02 6.49 10.2

Sweep angle at leading edge (deg) 35.9 47.7 41.4
Taper ratio 0.591 0.354 0.317

Table 1: Geometrical properties.

3 RESULTS

The developed ROM is applied here to a generic wing-empennage model. The Double-
Lattice grid is shown in Fig. 1.

Euler results generated with a grid containing approximately 1.5 · 105 nodes are used as
reference. The selected transonic flightpoint is Mach number 0.84 and steady angle of
attack 2 (deg) and its corresponding steady pressure coefficient distribution as predicted
by CFD is shown in Fig. 2.

Geometrical and mass properties together with the first natural frequencies of the struc-
ture are shown in Tables 1, 2 and 3.

Results corresponding to a vertical discrete gust of gradient H = 350 (ft), the longest
gust as specifed by the regulations, within the linear aerodynamic region (gust amplitude
1 % of the freestream velocity) are shown in Fig. 3, 4 and 5. The full unsteady correction
shows always a better agreement with the full CFD-CSM results than the quasi-steady
offset correction. Integrated loads as obtained by the quasi-steady offset correction are
included in order to get a fair comparison against a realistic design loads level.

Property Value
Mass (kg) 134337

Moment of inertia Ixx(kg·m2) 1.522·107

Moment of inertia Iyy(kg·m2) 1.862·107

Moment of inertia Izz(kg·m2) 3.342·107

Center of gravity x (m) 9.9215
Center of gravity y (m) 0
Center of gravity z (m) 0.3032

Table 2: Mass properties.
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Mode Frequency (Hz) Configuration
7 0.74 Wing bending (symmetric)
8 1.64 Wing bending (asymmetric)
9 3.10 Wing torsion (symmetric)

10 4.11 Wing bending (asymmetric)
11 6.04 Empennage bending (asymmetric)
12 6.62 Wing torsion (symmetric)

Table 3: Vibration mode frequencies.

Figure 2: M=0.84, AoA=2 (deg). Euler results.

A very good agreement between the ROM and CFD-CSM values is achieved for the
GAF and the aerodynamic coefficients with two correction modes (two pulse CFD com-
putations). Additional gust lengths have been considered but are not shown here. In
particular, discrete gusts with frequencies matching the second and third symmetric nat-
ural modes have been considered, obtaining also a very good agreement. As expected, the
ROM prediction using only one correction mode improves with increasing gust frequency,
as the nonlinearities mainly occur in the low frequency region. The bending moment dis-
tribution changes when considering the full unsteady correction, unlike for the torsional
moment, which distribution is very well predicted by the quasi-steady offset correction
within the linear aerodynamic region.

Results corresponding to a discrete gust of gradient H = 350 (ft) within the nonlinear
aerodynamic region (gust amplitude 5 % of the freestream velocity) are shown in Fig. 6,
7 and 8.

Again, a very good agreement of GAF and aerodynamic coefficients with two correction
modes is observed. Only small differences appear for the local pitch moment at the wing
tip. The main drawback is that the correction in the nonlinear region now depends on the
gust length under consideration. Unlike for the linear aerodynamic region the torsional
moment distribution is not accurately predicted by the quasi-steady nor by the linear
full unsteady correction. As expected, the quasi-steady correction lacks of the amplitude
nonlinear effects, as an incremental angle of attack of 0.1 (deg) as defined in section 2.3.2.

14
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4 CONCLUSION

A ROM in frequency domain has been presented. It has been shown that only two
correction modes (two unsteady CFD computations and the required steady state) are
required for a satisfactory aerodynamics and dynamic loads prediction. The results have
been compared with direct CFD-CSM computations showing an excellent agreement.

The ROM presented not only substantially improves the aircraft response prediction but
also the dynamic loads distribution.

Its properties make it suitable for further applications like wake vortex encounter. Also,
a state-space system generation for closed loop applications can be developed from the
generated frequency domain description.
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(a) Heave. (b) Pitch.

(c) First bending. (d) Second bending.

Figure 3: M=0.84, AoA=2 (deg) in linear region. GAF.
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(a) Local lift and local moment at the wing root. (b) Local lift and local moment at the wing tip.

Figure 4: M=0.84, AoA=2 (deg) in linear region. Local aerodynamic coefficients.

(a) Bending moment. (b) Torsional moment.

Figure 5: M=0.84, AoA=2 (deg) in linear region. Wing integrated loads envelope.
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(a) Heave. (b) Pitch.

(c) First bending. (d) Second bending.

Figure 6: M=0.84, AoA=2 (deg) in nonlinear region. GAF.
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(a) Local lift and local moment at the wing root. (b) Local lift and local moment at the wing tip.

Figure 7: M=0.84, AoA=2 (deg) in nonlinear region. Local aerodynamic coefficients.

(a) Bending moment. (b) Torsional moment.

Figure 8: M=0.84, AoA=2 (deg) in nonlinear region. Wing integrated loads envelope.
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