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Abstract: A brief background on Frequency Response Functions (FRFs) measurement 

technology applied to mechanical systems on the basis of imposed motion method (kinematic 

excitation method) is presented herein. Shown is the possibility to use analysis to evaluate an 

effect of adding extra concentrated mass, stiffness and damping, in the points of application of 

driving forces, on the FRFs of a tested article with use of experimental FRFs of initial 

unmodified structure as a reference. The capabilities of the technology for flutter research are 

demonstrated by the example of GVT of a dynamically-scaled model of an all-movable 

stabilizer intended for flutter wind tunnel tests, with an electro hydraulic actuator used to 

impose model displacement in the driving point. The test techniques, as well as details of 

measuring FRFs under wind tunnel flow conditions with the use of specific multi-sine test 

signal for structure excitation are described. Presented are examples of measured in-flow 

model FRFs, and identified modal data as a function of flow parameters, including 

eigenfrequencies, eigendamping and eigenmodes recovered for unmodified model (free of the 

links imposed by the actuator) at flow speed beyond flutter boundary. 

1 INTRODUCTION 

. The method of imposed motion in structural dynamics, or, in other words, the method of 

kinematic excitation is described in [1,2]. The idea of the method may be presented as 

follows: let us consider an elastic article under test (Fig.1), which structural pure sine 

oscillations may be measured as a set of complex amplitudes Xi(jω) in the points i=1,…,n  by 

a set of n sensors. For instance, this may be dynamically scaled model for wind tunnel (WT) 

flutter tests. According to [1,2], such a flutter test model is mounted on movable supports, e.g. 

on the top of the rods of hydraulic actuators (HA1, HA2) supplied with force cells to measure 

the forces fi(jω) occurred between the rods and the model.  

The goal is to determine characteristics of dynamic performance of “free” unsupported model 

on the basis of measurements on the model being supported. Providing an assigned sine 

motion of the rods Xfi(jω) at given frequencies and measuring model oscillations Xi(jω) and 

the forces fi(jω), it is possible to get the FRF matrix containing model FRFs  

Wij(jω)=Xi(jω)/fj(jω), including those in wind tunnel flow. By definition, Wij(jω) is the 

response of the sensor number i to the unit force number j: fj(jω)=1, while all other forces are 

zero. This means Wij(jω) is the FRF matrix of the unsupported model free of the restraints 

imposed by the rods.  Using the results of measuring Wij(jω) at various ω at different air flow 

speed, it is possible to determine frequencies and logarithmic decrements of in-flow elastic 

vibration modes of the “free” model, and finally, to determine its flutter speed.  



IFASD-2015-138 

2 

According to [1,2], motion of the supports may be provided by means of electro-hydraulic 

actuators that realize “rigid” excitation. In this case, motion of the model in the points of 

connection with the supports (actuator rods) is governed by actuator drive signals, i.e. 

imposed motion, or kinematic excitation is provided. Model structural dymanics in flow, 

without excitation, corresponds to the case with fixed supports. The envelope of the flow 

parameters that is free of flutter for the supported model, may completely contain the 

envelope free of flutter of the unsupported model, or may be essentially wider than the latter. 

In this case, using virtually direct measurements, the dynamic characteristics of the 

unsupported model may be determined not only within its flutter boundaries, but also beyond 

them.  

Application of the above techniques in daily practice in the time of the publications [1,2] was 

not rational as no techniques of matrix FRF measurements within the acceptable time were 

available at that period. Today, thanks to the wide use of high performance digital multi-

channel PC-based data acquisition, processing and control systems, these problems are 

practically solved.  Moreover, use of multi-sine drive signals allows FRF to be measured 

within very short periods of time. Thus the ideas formulated in [1,2] became of practical value 

for flutter tests. In particular, modal analysis on the basis of measured vector FRFs has 

become an ordinary working tool.  

The basic elements of modal analysis and flutter prediction based on subcritical (below flutter 

boundary) measurements are described in [3,4,5]. Appropriate in-house TsAGI software 

allow modal analysis and flutter prediction of a flexible aircraft to be carried out on the basis 

of identification of differential equations of structural dynamics in the presence of air flow.  

The measured responses to the following types of excitation can be used: 
- pure sine, 

- multi-sine of a specific waveform, 

- controlled pulse excitation,   

- uncontrolled pulse excitation, 

- external uncontrolled random excitation (close to “white noise”). 

The Polymax modal analysis algorithm [6] used in “LMS Test. Lab – Structural testing” [7] 

almost coincides with the modal identification procedures described in [4,5]. 

Also, the techniques described in [1,2] enable the effect of extra links (restraints) imposed 

onto the tested article in the driving point to be evaluated without complicated analysis. For 

simplicity, let us consider single input/multiple output excitation (SIMO). Consider a linear 

dynamic system (Fig.2) under pure sine excitation by the force f(jω) applied in a driving 

point. System displacements are measured in the driving point Xf(jω) and other output points 

Xi(jω), i=1,…,n. Let the vector FRF W
T
(jω)={W1(jω),…,Wn(jω)}, where Wi(jω)=Xi(jω)/f(jω), 

be measured. Consider also an additional linear dynamic system connected to the tested 

article in the driving point in parallel to the source of excitation. Let the dynamic stiffness of 

the additional system be Q(jω). It is easily shown then that the components of the vector FRF 

of the tested article with the connected additional system is calculated by the formula: 
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where Wf(jω)=Xf(jω)/f(jω) is the component of the vector FRF of the initial tested article in 

the driving point. Particularly, when the additional system is a spring with stiffness K, then its 

dynamic stiffness Q(jω)=K; when the additional system is a damper, then Q(jω)=jωD, where 
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D is the damping coefficient; when the additional system is a weight with mass M, then 

Q(jω)=-ω
2
M. The simultaneously connected mass, damper and spring gives the dynamic 

stiffness Q(jω)= -ω
2
M+K+jωK. Once FRFs of the initial tested article are measured, then 

FRF of the article modified by adding extra mass, stiffness and damping in the driving point 

may be obtained by simple recalculation. 

This paper describes the basic elements of structural dynamics testing techniques with use of 

kinematic excitation, or imposed motion method. The efficiency is shown on the example of 

flutter tests of an elastically scaled model of all-movable stabilizer in transonic T-128 wind 

tunnel. 

2 EXPERIMENTAL RIG AND TEST TECHNOLOGY 

The model was tested on a dedicated test rig mounted on the floor of the T-128 test-section 

(fig.3). The model was mounted on a vertical rotating shaft supported by the upper and lower 

bearings. The bending of the shaft between the upper and lower bearings provides modeling 

of full-scale root stiffness in bending.  

The shaft is instrumented with strain gauges: out-of plane bending (T2) and in-plane 

(chordwise) bending (T4). The rotation root stiffness is modeled with two flat springs, one of 

which is instrumented with strain gauge T3 to measure the rotation angle of the model root 

rib. To provide model forced oscillations in tunnel air flow, the rig is equipped with a small-

size electrohydraulic actuator. 

The actuator driving cylinder is fixed on the model in the nose area of the root rib. 

To monitor model oscillations and excitation system performance, an accelerometer D1 and 

the rod position feedback sensor Т1 are installed. The actuator rod is connected to the free end 

of a short cantilevered beam K1 via a flexible link Т. The beam K1 is additionally supported 

by struts К2 and К3 attached to the rig fairing. A strain-gauge-based force cell to measure the 

excitation force is mounted between the cantilevered beam/struts junction and a flexible link. 

The stabilizer plane itself is instrumented with two strain-gauge half-bridges T5 and Т6 to 

measure elastic deformations of the plane. The above listed sensors provide the so-called 

“flight system of sensors” (FSS) used for measurements in tunnel flow. 

Dedicated calibration tests at zero flow speed have been performed to determine the 

correspondence between FSS outputs and model displacements in the set of nodal control 

points. During the calibration tests model forced oscillations have been detected both by FSS 

sensors and nodal accelerometers. The nodal grid on the plane is shown in Fig.4. The 

transition matrix from FSS outputs to nodal control point displacements has been generated 

on the basis of the calibration results. 

The control of excitation, signal sampling, data acquisition and preliminary analysis, 

identification of mathematical models and analysis of flutter performance on the basis of 

experimental data are provided by the dedicated PC-based multichannel data acquisition 

system of TsAGI in-house development. The system block-diagram is shown in Fig.5. The 

excitation (drive) signal Ugen with assigned spectral and amplitude features is built up in 

digital domain by a special software module and outputted through the digital-to-analog 

converter (DAC) to the actuator control unit as a target signal. 
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There it is summed up with an inverse feedback sensor signal provided by the strain gauge T1 

and appropriate amplifiers. The mismatch between the target and feedback signals is 

transmitted to the servo valve to control the position of the actuator rod. The D1 

accelerometer signal, via a charge amplifier, is sampled by an analog-to-digitial converter 

(ADC). Signals of the following sensors are sampled by ADCs via stain gauge conditioning 

amplifiers: force cell F, rod position feed-back sensor Т1 and strain gauges Т2,…,Т6 to 

measure model elastic oscillations in the tunnel flow. 

During each test (tunnel run), sensor signals are acquired at pre-selected tunnel flow 

conditions (test steps) under multi-sine model excitation over the frequency range of the first 

five vibration modes (10-140 Hz). Measurement duration at each step is 20-60 seconds. 

Number of steps in each test is determined by technological capabilities of the WT. 

For instance, a fragment of model oscillation waveforms within 8 seconds under multisine 

excitation in flow at М=1.4, Q = 20 300 kN/m
2
 is shown in Fig.6. The lower curve in Fig.6 is 

for the feed-back sensor Т1. Other curves as go from the top to the bottom are for T2,…,Т7, 

F, D1 and Ugen signals accordingly.  

Signal spectra and vector FRFs are calculated then between tunnel runs on the basis of these 

time-domain signals. For example, the spectra of the drive signal Ugen, force cell F and shaft 

bending Т2 signals are shown in Fig.7. Fig. 7 demonstrates rather a complicated spectrum 

profile of the "generator" signal. It was selected so both to provide reliable excitation of all 

the modes of interest, and from the other hand, not to cause too high oscillations in the 

vicinity of resonance frequencies of the model with excitation system connected. Specific 

dips in the vicinity of frequencies of about 19, 32, 85 and 125 Hz can be well seen in force 

cell spectrum under locally constant profile of the drive signal. Such dips are generic for 

kinematic excitation method. 

Figs. 8a, 8b show typical magnitude and phase FRFs obtained with multisine excitation in 

flow at М=1.4, Q=20 300 N/m
2
. In these figures the patterns of magnitude and phase variation 

versus frequency typical for main vibration modes can be well seen. 

Vector FRFs measured in flow is the initial source to obtain in-flow modal data (frequencies, 

logarithmic decrements and complex vibration eigen modes). Figures 9a,9b show dependence 

of eigenfrequencies (f1,…,f5) and decrements (d1,…,d5) on dynamic pressure for the first 

five vibration modes obtained by in-flow measurements at atmospheric pressure in the WT 

staganation chamber. Additionally, dynamic pressure versus Mach number (М) is shown in 

fig. 9a. Note that all the data presented in these figures have been obtained during as little as 

two short WT runs. The data in these figures provide clear visual indication of typical errors 

in evaluation of model frequencies and decrements in flow.  

Note that measurements at М=1.0 (at maximum dynamic pressure) were made within flutter 

envelope of the unsupported free model. This became possible due to the fact that flutter 

boundary of the supported model (with hydraulic excitation system connected) is far beyond 

than that for the free model. 

The real and imaginary parts of the eigenvector for the first (unstable) vibration mode in flow 

at q = 37 000 N/m
2
 and М=1.0 is shown in Fig. 10a, 10b as the mode shape in nodal control 

points. One can see from the figures that the imaginary part of the eigenvector is essentially 

less than the real one. For other modes, relative value of an imaginary part is even less, so 

only real parts of the 3rd , 4th , and 5th mode eigenvectors in flow are shown in 
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Figs.10c,10d,and 10e. The second mode is model in-plane oscillations as a rigid body; it just 

rotates chordwise about the point of the shaft/root rib intersection. 

3 CONCLUSION 

The above data distinctly show that the method of imposed motion (kinematic excitation) in 

model wind tunnel flutter researches can be effective and reliable technique to ensure tests 

within short time with minimum risk of model failure due to flutter. 

The method and relevant technology can be recommended for broad practical application in 

model wind tunnel flutter researches.  
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Figure 4: GVT nodal points  
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Figure 5: Data acquisition and control system 
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Figure 6: An example of model oscillations in flow at М=1.4, Q=20 300 N/m
2
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Figure 7: Signal spectra for "generator" Ugen, force cell F and shaft bending Т2 

 

 

Figure 8: FRF components in flow at М=1.4, Q=20 300 N/m
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a) Model eigenfrequencies and Mach number vs. dynamic pressure  

at standard T-128 flow conditions 
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b) Decrements vs. dynamic pressure at standard T-128 flow conditions 

Figure 9 

 

Figure 10: Model eigenvectors in flow at q = 37 000 N/m
2
 and М=1.0  
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