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Abstract: This paper presents an aero load correction strategy applicable to the static aeroelastic op-
timization of composite wings. The optimization framework consists of a successive convex subproblem
iteration procedure, in which a gradient based optimizer consecutively solves a local approximation prob-
lem. Responses are approximated as a linear and/or reciprocal function of the laminate membrane and
bending stiffness matrices A and D. Together with the laminate thicknesses h, they constitute the
design variables in the optimization process. Internally, the design space is transformed from stiffness
matrices to lamination parameters, resulting in a continuous and convex optimization problem. Struc-
tural responses considered in the stiffness optimization are strength, local buckling and mass; aileron
effectiveness, divergence, and twist constitute the aeroelastic responses.

Steady aeroelastic loads are calculated with a doublet lattice method (DLM) embedded in the applied
finite element solver, allowing for the generation of response sensitivities that incorporate the effects of
displacement-dependent, aeroelastic loads. To incorporate flow phenomena that cannot be reproduced
with DLM, a higher order aerodynamic method is considered. The developed correction methods and
their application are presented in this paper. The correction is twofold, firstly aiming at a correction
of DLM by means of camber and twist modifications applied directly to the doublet lattice mesh and
secondly, by employing the capabilities of a higher order computational fluid dynamics (CFD) solver, like
the DLR-based TAU code. To this end, DLM loads transferred to the structure are rectified by means
of the supposedly superior CFD results.

The aero load correction method is applied in the stiffness optimization of a forward swept wing.
First, a trim application without structural optimization is discussed, to demonstrate the convergence
behavior of the correction forces. The results of a wing skin mass minimization with balanced and
unbalanced laminates are presented. In particular, the differences between optimizations with and without
aero correction are highlighted. Eventually, a stacking sequence optimization based on the continuous
optimization results is demonstrated.

1 INTRODUCTION

The application of composite material in load carrying structural components of an aircraft is rapidly
gaining momentum. Three principal reasons for this can be identified. One, the continuous enhancements
in the area of automated production technologies. Two, the progress in the development of computational
methods to analyze and optimize composite structures to fully exploit their possible advantages. And
three, the increasing confidence of designers in composite materials as a result of growing experience.

The identification of potential benefits to be achieved with composites, accordingly has entailed a con-
siderable amount of research work. Starnes Jr and Haftka [1] for example apply an approximation based
optimization to minimize the weight of a composite wing structure subjected to different combinations of
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buckling, strength, displacement and twist constraints. Although not optimizing, but analyzing the effect
of bending-twist coupling on the aeroelastic behavior of composites plates with various symmetric, unbal-
anced stacking sequences, Hollowell and Dungundji [2] demonstrate the effects induced by the coupling
terms in the bending stiffness matrix. Green [3] investigates the influence of non-symmetric laminates on
the aeroelastic behavior of high aspect ratio wings by applying an integrating matrix method to derive
divergence and flutter speeds of various stacking sequences. A valuable survey on aeroelastic tailoring
effects as a result of the directional stiffness in orthotropic composites is provided in Shirk et al. [4].
They investigate possible influences of rotated fiber angles on minimum weight, twist, normal modes,
flutter and aerodynamic performance for various configurations, ranging from fighter aircraft to forward
swept configurations. A general overview on optimization technologies ranging from optimizations on
panel level to the aeroelastic optimization of composites in aircraft wings is provided in Vanderplaats and
Weisshaar [5]. Eastep et al. [6] investigate the influence of layup orientation in a straight fiber design on
the optimized mass of a low aspect ratio wing, constrained by strength, roll-reversal and flutter velocity.

In a more recent work, Leon et al. [7] maximize the flutter eigenfrequency and speed of a composite
plate wing with ply angles as design variables, considering symmetric and non-symmetric stackings.
A related research, but for a tow steered composite plate featuring symmetric layups is described in
Stodieck et al. [8]. They investigate the effect of varying tow angles on eigenmodes, elastic axis, as well
as divergence and flutter speed. Guo et al. [9] present a two-stage procedure, where in a first step, layer
thicknesses and angles serve as the design variables in minimizing mass, subject to strength and damage
tolerance constraints. The second stage focuses on a reduction of the wing’s response to a 1-cos-gust,
measured by its transverse tip deflection.

Composite optimization with a focus on forward swept wings were first performed by Krone [10], who
demonstrated a considerable weight saving potential with the application of tailored stiffness distributions.
Weisshaar [11, 12] performed detailed investigations into the effect of the spanwise stiffness distribution
and bending-torsion coupling on divergence velocity, aileron effectiveness and spanwise center of pressure
of forward swept wings.

Aeroelastic tailoring studies based on lamination parameters have been attempted previously.
Kameyama and Fukunaga [13] using a composite plate wing demonstrated the influence of lamination
parameters on the flutter and divergence characteristics. They consider a parametrization of the bending
stiffness matrix only, while implying symmetric laminates. Herencia et al. [14] demonstrate a two-step
optimization scheme to minimize mass of an aeroelastically loaded wing. In a first step, lamination pa-
rameters describing symmetric but potentially unbalanced laminates in the skins and spars, are used.
The second step comprises a genetic algorithm based stacking sequence optimization. Minimization of
compliance of a variable stiffness slender wing represented by beam elements is demonstrated in Abdalla
et al. [15]. The cross-sectional properties of the beam are parametrized using lamination parameters that
define the membrane stiffnesses of the box cross-section. Another two-level optimization strategy has
recently been proposed by Liu and Toropov [16]. Allowing for symmetric and unbalanced laminates, a
lamination parameter based weight minimization is performed before applying genetic algorithms for the
derivation of stacking sequences.

In [17] the authors describe a stiffness optimization strategy based on lamination parameters and
the consideration of static aeroelastic constraints. The strategy is adopted in the stiffness optimization
of a parametrically defined set of forward swept wings, [18], featuring equivalent wing area and span
and variable leading edge sweep. The influence of several static aeroelastic constraints on the minimized
wing skin mass is investigated, in particular focusing on potential benefits of unbalanced over balanced
laminates. The present report describes an advancement of the optimization framework by means of
a correction of the aero loads adopted in the optimization, as well as a stacking sequence optimization
following the continuous stiffness optimization. Sec. 2 provides an overview of the continuous stiffness
optimization framework. The aero load correction methods are introduced in sec. 3. They are twofold,
one, an adaptation of the camber line represented by the doublet lattice method that is integrated in the
applied finite element solver, sec. 3.1, and two, a correction of aero loads by means of a higher order CFD
method, sec. 3.2. An introduction to the stacking sequence optimization is provided in sec. 4. Sec. 4.1
describes the methodology of stacking sequence tables, sec. 4.2 introduces an interpolation strategy for
response approximations. Results for the optimization of a forward swept wing are summarized in sec. 5,
starting with a model description, sec. 5.1, a basic trim analysis, sec. 5.2, a mass minimization, sec. 5.3,
and a stacking sequence optimization, sec. 5.4.
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2 CONTINUOUS STIFFNESS OPTIMIZATION

For the optimization of composite structures, the problem is split into a three-step process, as detailed
in IJsselmuiden [19], allowing for efficient use of suitable methods in each step. The first gradient-based
design step targets optimal stiffness distribution by using laminate stiffness matrices through lamination
parameters as the design variables. Step one, which constitutes the central topic in the previous works
on aeroelastic tailoring of composite wings, [17, 18], will briefly be introduced in this section. The second
step targets an optimal stacking sequence design, with the optimization seeded from the design obtained
in the first step. Details will be provided in sec. 4. The third step deals with retrieving optimal fiber
paths for manufacturing and is not part of this research.

FE Model

Optimization
Model

Sensitivity
Analysis

Approximation
Setup

Optimization
Step

Convergence
criteria

reached?

STOP

CFD Correction Module:

• mesh deformation
• Euler calculation
• force coupling

displacements & flow parameters

fτ
+

fDLM
−

∆fτ (used in next it.-steps)

no: pass new design variables

yes

Figure 1: Stiffness optimization process

An overview of the step one optimization process is depicted in Figure 1. The boxes featuring a
gray background constitute the original process without aero correction. It corresponds to a successive
convex subproblem iteration procedure, in which a gradient based optimizer consecutively solves a local
approximation problem.

The process is geared towards the optimization of the load carrying, shell-like structural components
in a wing box, the properties of which can be represented as membrane A and bending stiffness matrices
D, and shell thickness h. Considering only symmetric laminates, the coupling stiffness matrix B is zero
and does not have to be considered.

The optimization is based on a finite element (FE) model of the wing structure that serves as an
analysis model for the desired responses f , and for the evaluation of sensitivities ∂f

∂x of the responses with
respect to the design variables x. In this research, the Nastran finite element solver is applied. The
DLR–Institute of Aeroelasticity in-house tool ModGen [20] is used as a preprocessor to parametrically
define and generate the FE model of the load carrying wing box, the aerodynamic and coupling model,
as well as fuel and mass models. The responses and sensitivities serve as input for the derivation of an
analogous analysis model that describes the behavior of each response in the surrounding of the analyzed
design. For this purpose, each response is approximated as a function of potentially each design variable,
while satisfying the essential properties of convexity, separability and conservativeness, equation (1).

f̃ =

N∑
j=1

(
Ψ̂j

m∣∣
0

: Âj + Ψ̂j
b∣∣

0
: D̂j + Φj

m
∣∣
0

: Aj
−1 + Φj

b
∣∣
0

: Dj
−1 + αj

∣∣
0
hj

)
+ C0 . (1)

The sensitivities generated with Nastran are converted to linear, Ψ, and reciprocal, Φ, sensitivities
with respect to the stiffness matrices, where superscripts [·]m and [·]b denote sensitivities with respect to
membrane and bending stiffness, respectively. αj is the sensitivity with respect to the thickness design
variable. The approximation model replaces the actual analysis model in the search of the optimizer for
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a minimum of the objective function f0, greatly accelerating the function evaluations required during the
optimization. Within the optimizer, stiffness matrices A and D are represented as functions of lamination
parameters, along with consideration of their feasible region as described for example in Setoodeh et al.
[21].

Each optimization step results in a new set of design variables that represent the global optimum
of the convex approximation subproblem. Convergence is monitored by determining the change in the
objective function for subsequent feasible iterations, equation (2). In case the change drops below a
prescribed value δstop, the optimization is stopped, otherwise the process continuous with the derivation
of new responses and sensitivities: ∣∣∣∣∣f0

∣∣
(l+1)

− f0

∣∣
(l)

f0

∣∣
(l)

∣∣∣∣∣ ≤ δstop . (2)

A detailed description of the optimization process and the components involved is provided in [22].
Aside from regular structural responses strength, buckling and mass, the aeroelastic responses aileron

effectiveness, twist and divergence are considered in the optimization process. While their approximations
are summarized in table 1, the reader is referred to [17, 18, 22] for details on their derivation.

Table 1: Response approximations

strength r̃i ' Φm
i : A−1

i + Ψm
i : Ai + sti∆Ni

buckling r̃i ' Φb
i : D−1

i + sti∆Ni

mass m̃ '
∑

j
αjhj

aileron effectiveness η̃ail '
∑

j
Ψm
j : Aj + Ψb

j : Dj + Φm
j : A−1

j + Φb
j : D−1

j + αjhj

twist ϑ̃ '
∑

j
Ψm
j : Aj + Ψb

j : Dj + Φm
j : A−1

j + Φb
j : D−1

j + αjhj

divergence q̃div '
∑

j
Ψm
j : Aj + Ψb

j : Dj + Φm
j : A−1

j + Φb
j : D−1

j + αjhj

The process depicted in Figure 1 is based on aeroelastic loads generated with the Nastran internal
doublet lattice method. Methods for correcting those loads will be discussed in the following section.

3 AERO CORRECTION METHODS

The reason to perform a correction of the aeroelastic loads are the potential differences in wing surface
pressures between the doublet lattice method developed for subsonic flows and presumably more correct
higher order aerodynamic methods, usually designated as computational fluid dynamics (CFD). The
latter types of methods allow for the consideration of flow phenomena that cannot be reproduced with
DLM. Among the flow phenomena that should be considered the most important are:

1. airfoil camber and thickness as opposed to the standard flat plate results obtained from DLM,

2. compressibility effects including local recompression shocks,

3. strongly non-linear aerodynamic forces resulting from viscous flow phenomena like separation.

Correction methods, with a strong focus on doublet lattice, have received a lot of attention. Giesing
et al. [23] suggest methods that require either a correcting of DLM pressures or modifications to the
downwash based on the aerodynamic influence coefficients. Palacios et al. [24] provided a survey of
the available correction techniques, focusing on unsteady aerodynamic forces. An industrial application
of DLM correction is presented in Brink-Spalink and Bruns [25], who suggest a least square correction
method that makes use of unsteady CFD results, and a two-dimensional correction method. Both methods
are aimed at correcting the aerodynamic influence coefficient matrix. In a more recent work, Dimitrov
and Thormann [26] compare gust responses obtained from DLM, CFD, and DLM that are corrected using
quasi-steady CFD data.

The doublet lattice method is also the built-in method of choice for computing steady and unsteady
aerodynamic loads in Nastran, [27]. The theory is established in Albano and Rodden [28], Giesing et al.
[29], and Rodden et al. [30]. It belongs to the potential theory methods, where potential flow singularities,
distributed on a flat mesh, are superimposed with the undisturbed free-stream. The strength of the
singularities as a result of a linear system of equation has to be such, that the flow tangency at each box
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making up the mesh is fulfilled. This finally leads to a so-called aerodynamic influence coefficient matrix
AIC that relates the pressure p in a box to the local downwash angle w of each box:

wj =
1

q
AICjjpj . (3)

Along with a surface integration matrix S, the aeroelastic loads in each DLM box fa can be related to
the pressures, equation (4):

fa = Sajpj , (4)

fDLM = Hsafa , (5)

and ultimately to the aeroelastic loads in the structural coupling nodes fDLM by means of a coupling
matrix H, equation (5). Aero correction methods modifying either equation (3) or (5) will be introduced
in the following sections 3.1 and 3.2.

3.1 Camber Correction

It is possible in Nastran to influence the geometric downwash w in equation (3) by a so-called W2GJ

correction matrix. A detailed investigation of this contribution is provided in Kaiser [31]. To this end, an
individual downwash can be defined for each DLM box, corresponding to a local angle of attack change,
as illustrated in Figure 2. The required box rotations for the emulation of a camber line are shown
in Figure 2(a). The chordwise constant rotation of each DLM box as shown in Figure 2(b) is used to
emulate a twist of the wing section. Both downwash types described in Figure 2 can be varied in spanwise

airfoil
airfoil camber line
box with camber correction

(a) camber (b) twist (sample: 3◦)

Figure 2: DLM W2GJ correction illustration for a chordwise row of DLM boxes

direction, allowing for the simulation of cambered airfoil blending and a geometric twist distribution. The
parametric FE model generator ModGen by default provides three W2GJ correction matrices for camber,
twist, and the combination of both, which are generated based on the wing planform and the airfoil data
provided in the ModGen input file. Airfoil and planform data suffice to span the underlying aerodynamic
surface.

In sec. 5 it will be demonstrated that by a sole correction for airfoil camber and twist, an adequate
agreement of pressure distributions computed with DLM and higher order aerodynamics can be achieved.
This however only holds for lower, recompression shock free Mach numbers. In the presence of shocks, the
necessity for a correction by means of CFD is inevitable when aiming at an improvement of aeroelastic
loads. Such a correction will be discussed in the following section.

3.2 CFD Correction

Computational Fluid Dynamics, CFD, denotes methods used to solve the governing equations of a fluid
flow. While the term is usually applied in conjunction with higher order volume mesh methods like Navier-
Stokes solvers, strictly speaking it also applies to lower order methods. In the scientific community, as in
this work, its meaning is dedicated to higher order methods exclusively. Decision was made in favor of
the DLR – German Aerospace Center unstructured CFD solver Tau, [32, 33]. It can be applied either
for solving the full Navier-Stokes equations with a dedicated boundary layer and turbulence modeling,
or in a simplified version, in which the viscous terms in the flow equations are neglected, hence resulting
in the Euler equations. Despite its inability to account for skin friction and flow separation – except at
sharp corners like trailing edges – as well as a biased shock prediction for strong shocks, [34, 35], the Euler
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solver is applied in the present work. The main reasons are the considerable time saving compared to a
full Navier-Stokes calculation, along with faster mesh generation by avoiding the necessity for a dedicated
boundary layer mesh. Euler constitutes a reasonable compromise between computational effort and the
gain in accuracy of the aerodynamic loading, well suited for the application in the structural optimization
process.

TAU
DLM

Figure 3: Force vectors at the coupling nodes

The basic idea behind the entitled CFD correction consists of rectifying aerodynamic loads obtained
using the doublet lattice method by means of the supposably superior CFD results. To this end, the
relevant sizing load cases are analyzed with Tau, considering an appropriate volume mesh deformation
that resembles the structural displacements. With the doublet lattice forces concentrated onto the cou-
pling nodes, compare equation (5), the same nodes are selected for splining the surface forces obtained
from the Euler calculation. The difference between the CFD force vector and the DLM force vector at
each coupling node is applied as a static amendment to the respective load case. The force vectors on a
deformed wing structure are shown in Figure 3.

3.2.1 Process

The process of correcting the aerodynamic loads obtained with DLM constitutes an addition to the
existing optimization framework [17]. In Figure 1, the CFD correction part is already incorporated. It is
defined as a stand-alone module that collaborates with the optimization via well-defined interfaces.

For each load case that is to be corrected using CFD aero loads, the necessary input is generated along
with the Nastran runs required for sensitivity derivation and passed to the CFD correction module. The
input consist of structural displacements at the coupling nodes, utilized for the CFD mesh deformation,
and the flow parameters Mach number, stagnation pressure, density and the angle of attack. It is
important to note that the Euler calculation is performed for the same angle of attack as identified in the
Nastran DLM trim maneuver analysis. Only symmetric maneuver and cruise load cases are designated
for CFD correction, the first due to their potential to drive the structural sizing and the latter due to the
evaluation and possible constraining of wing twist. In both cases the corrected aero loading can have a
significant influence on the results.

Once the CFD forces are generated and condensed to the coupling nodes, denoted as fτ in Figure 1,
they are subtracted from the appropriate DLM forces fDLM , yielding the correction forces ∆fτ :

∆fkτ = fkτ − fkDLM , (6)

where superscript k indicates the structural iteration steps for which Tau corrections are generated.
The correction forces are grouped by load case and saved in the appropriate Nastran FORCE card

format. A new optimization process is initiated, this time including the correction forces during the
responses and sensitivity generation. The loop of optimizing and computing new correction forces is
continued until an overall convergence is achieved. Investigations have shown that a recalculation of the
correction forces is not necessarily required during each, but only every nth iteration step. Details will
be provided in sec. 5.

Usually, an aeroelastic trim calculation in Nastran ensures that the lift forces generated by the
doublet lattice model exactly balance the weight vector multiplied with the vector defining the load factor.
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The application of additional static correction forces at the coupling nodes presupposes the capability to
perform a trim solution that incorporates the forces in the static equilibrium equations. Nastran does
provide this necessity. Consequently, performing a trim calculation along with the additional correction
forces implies a force distribution at the coupling nodes in the trimmed solution, which exactly matches
the CFD results. Since this only is true if the structural properties and therefore the displacements
remain unchanged, this statement strictly speaking does not apply during the optimization. The reason
is that during an optimization sequence, the correction forces remain constant and will only be updated
after n iterations performed in the optimization block.

In the following, an examination of the convergence behavior will be given to demonstrate the ac-
ceptance of this approach. Setting up the static equilibrium equation for the (k + n)th iteration leads
to:

(K− qKA)uk+n
s = f ie + ∆fkτ , (7)

where KA is the aerodynamic stiffness matrix, which links structural displacements to the aerodynamic
forces generated by DLM according to:

fDLM = qKAus . (8)

Superscript k denotes the last structural iteration step for which Tau correction forces were generated,
and accordingly superscript n is the nth subsequent structural iteration step. This notation implies that
Tau corrections not necessarily have to be performed for each structural iteration. Vector f ie represents
inertial and external forces. Inserting equation (6) and (8) in (7) yields:

Kuk+n
s − fk+n

DLM = f ie + fkτ − fkDLM , (9)

and thus:

Kuk+n
s = f ie + fkτ + ∆fres , (10)

where:

∆fres =
(
fk+n
DLM − fkDLM

)
. (11)

Equation (10) states that in a converged solution where the residual force ∆fres vanishes, the static
equilibrium is determined entirely by means of Tau aerodynamic forces fτ , keeping in mind that according
to equation (6) the aerodynamic force vector is a combination of doublet lattice forces and correction
forces, fτ = fDLM + ∆fτ . At this point it should be stressed that the converged aeroelastic deformation
u complies with the Tau aerodynamic forces, and likewise also accounts for the displacement dependent
doublet lattice forces according to equation (8).

3.2.2 Implementation

The CFD correction module depicted in Figure 1 takes over the task of computing Euler CFD forces
at the coupling nodes, based on the input that is required to perform a Tau calculation on a deformed
mesh. The essential steps successively performed in the module are illustrated in Figure 4.

coupling
matrix

generation

surface mesh
deformation

based on
coupling
matrix

volume mesh
deformation

preprocessing
and flow

calculation

force coupling
based on
coupling
matrix

displacements & flow parameters

fτ

Figure 4: CFD correction module flow diagram

Equivalent to the coupling matrix applied in equation (5), a coupling matrix H to map FE node
deformations onto the CFD surface mesh, equation (12), needs to be constructed. The transpose of H
can also be used to achieve the second goal of transforming CFD forces onto the structure, equation (13):

ua = Hus , (12)

fs = HT fa . (13)
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In this research, the coupling method by Neumann et al. [36] is applied. The volume mesh deformation
following the surface mesh deformation is part of the Tau software suite. Details are described in [22].

The CFD meshes employed in this work were generated using the surface modeler and unstructured
volume mesher sumo, [37]. Depending on the intended surface pressure resolution, result accuracy, in
connection with for example the computed shock position, and the CFD convergence and computing
time, the generated Euler meshes usually exhibit ≈ 200, 000 to 300, 000 triangular surface elements and
tetrahedra elements ranging from ≈ 0.7 ∗ 106 to 3 ∗ 106. sumo allows for a mesh export directly in the
appropriate Tau mesh format.

4 STACKING SEQUENCE OPTIMIZATION

In this section, the second stacking sequence design step is described using the method developed in [38].
It constitutes the next step subsequent to the continuous optimization process depicted in sec. 2, which
in turn provides the required stiffness matrix input and sensitivities. The stacking sequence design tool
[38] consists of: a stacking sequence table (SST)-based genetic algorithm (GA) for the design of blended
structures, [39], combined with a modified Shepard’s method for improving approximation accuracy in
the GA, [40].

4.1 Stacking Sequence Table

In an efficient variable stiffness design, usually a finite number of panels each having constant stacking
sequence are considered. Laminate blending [41] is a technique that assures continuity of fiber and
material content between such adjacent panels having different ply layups, thus enhancing structural
integrity and manufacturability. [42, 43] present some of the successful attempts at achieving fully-
blended optimal designs.

A stacking sequence table is an intuitive way of representing the ply layup of panels in a blended
composite structure. Each column in an SST essentially corresponds to the stacking sequence of a certain
number of plies. Starting with the stack featuring the smallest thickness, plies are added successively,
following several design guidelines, up to the maximum number of plies. This ensures that the plies in the
thinnest stack are carried on to the thicker ones, thus inherently satisfying the requirement of blending,
without enforcing it as additional constraints.

In comparison to previous works on blended composite design, [43, 44, 45], the SST-based optimizer
[39] offers the following advantages:

• implementation of several industry-standard laminate and ply-drop design guidelines

• explicit information of ply drop sequence among adjacent panels for manufacturability

• fully-blended designs according to the generalized blending definition [46]

An advantage inherent to this approach is the compact and efficient form of encoding of the entire SST
using only two chromosomes. SSTlam defines the stacking sequence of the thickest laminate and SSTins
defines the order in which plies are inserted from the thinnest to thickest plies. By suitably optimizing for
these two chromosomes and the ply-numbers in the panels, an optimal blended structure can be obtained.
An example of an SST having ply numbers between six and ten is shown in Fig. 5.

no. of plies:

Nmin Nmax SSTlam SSTins

6 8 10
45 45 45 45 45 45 0
90 90 90 90 90 90 0

90 90 90 90 90 1
-75 -75 -75 3

-45 -45 -45 -45 -45 -45 0
-45 -45 -45 -45 -45 -45 0

-75 -75 4
90 90 90 90 2

90 90 90 90 90 90 0
45 45 45 45 45 45 0

Figure 5: Example of SST with six to ten number of plies
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4.2 Successive Approximations

The concept of successive approximations as introduced in sec. 2, helps to reduce computational costs
related to expensive FE-analyses. This is realized by carrying out the optimization on approximations of
responses, equation (1), rather than expensive FE responses themselves. The optimization is iteratively
followed by a design update and construction of new approximations for the next optimization loop. A
similar successive approximation framework is used in this stacking sequence step also.

The aeroelastic response approximations listed in Table 1 are applied also in the GA to evaluate
the optimization objective and constraints. The stacking sequence optimizer presented in [38] addresses
strength and buckling constraints using a modified approach. Rather than using direct approximations
of strain and buckling as in [17], panel loads are directly approximated instead:

Ñ '
∑
j

Ψm
j : Aj + Ψb

j : Dj + αjhj , (14)

where Ψm and Ψb are panel load sensitivities evaluated from Nastran. The panel loads are then used
to evaluate strain and buckling responses using suitable analytical tools. The benefit of such an approach
is that using a direct analysis of approximated loads compensates for the increase in computational time
with a higher accuracy in the buckling and strain responses themselves.

The approximations mentioned above are single-point approximations constructed at a design point
and are accurate only at that particular point. A modified Shepard’s method [40] constructs multi-point
approximations by interpolating previously analyzed design points, thus improving the quality of the
approximations. For instance, the aileron effectiveness response is evaluated using such a multi-point
approximation as

η̃ail(x) =

n∑
i=1

wi(x) η̃aili

n∑
i=1

wi(x)
, (15)

where η̃aili is a single-point approximation of the aileron effectiveness response at the ith point as in
Table 1, wi(x) is a weighting function defined in [40] and n is the total number of approximation points.
An improvement in the quality of the approximations naturally results in a faster convergence.

Optimization steps

i) At the optimal design obtained from the continuous stiffness optimization step, response approxima-
tions are evaluated. This forms the first design point.

ii) The optimal solution to this approximate sub-problem is then found using the GA for SST, wherein
response approximations are used to evaluate the objective and constraints. In this step, approxi-
mations for mass, twist, divergence and aileron effectiveness are evaluated to obtain the respective
approximate responses. Panel strength and buckling are estimated analytically from the panel loads,
which are approximated from the load sensitivities.

iii) An FE analysis at the optimal design point obtained in step ii) yields new response approximations
at this point.

iv) A multi-point approximation of the responses (as in equation (15)) is formulated using all single-
point approximations obtained till the present iteration.
Steps ii) - iv) are then sequentially repeated till convergence.

Two possible objective functions for the GA optimization can be utilized. In the first case, the
objective function of the GA is directly chosen as the particular response to be minimized, for instance
structural mass. In the second case, the objective function aims to match the stiffness of the GA design
to the optimal stiffness obtained in the previous continuous optimization step. The optimizer described
here and in the ensuing results utilizes the former approach.

5 RESULTS

A stiffness optimization with corrected aero loads, followed by a stacking sequence optimization, likewise
featuring aero load correction, is demonstrated in this section.
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5.1 Model Description

With this work following up on the research presented in [18], the same reference model for demonstration
of the developed processes was adopted. An overview on the analysis model is presented in Figure 6. In
Figure 6(a) the dimensions of wing and wing box are depicted. The corresponding FE model is shown
in Figure 6(b), along with non-structural masses in front and aft of the wing box and clamping at the
root rib. The fuel model, featuring one concentrated mass per rib bay is shown in Figure 6(c). The DLM
and aero-structural coupling model are depicted in Figure 6(d). The coupling nodes are based on the

aileron at y=16.0−17.5m,
 0.1m aft of rear spar

1.702m

Y

X

front spar 15% aft of leading edge

rear spar 60% aft of leading edge

17.890m

−16.8° leading edge sweep

2.056m

5.
22

1m

(a) planform and wing box dimensions (b) FE model

tank 3: 469 kg
tank 2: 993 kg

tank 1: 5171 kg

2 4 6 8 10 12 14 16 18
0

200
400
600

span, m

m
as

s,
 k

g

(c) fuel model (d) DLM and coupling model

Figure 6: Reference model setup

so-called load reference axis (LRA), which consists of a virtual axis in spanwise direction that is marked
by grid points in each rib plane. The grid points are attached with RBE3 multi point connections to the
corresponding circumferential rib nodes. Each LRA grid point comprises two RBE2 rigid elements, one
extending to the leading edge of the underlying planform and one to the trailing edge.

All above mentioned models were parametrically generated with the ModGen pre-processor. A
detailed description of the model generation process and the applied mass and material properties is
given in [22].

Load cases applied in the optimization are listed in table 2. They can be grouped into maneuver
load cases used for sizing of the structure (1-4), a cruise load case (7), load cases for the determination
of aileron effectiveness (12-15), and a divergence load case (16). The load cases are combined with five
mass cases resulting from variations in fuel and passenger mass. Masses for half the fuselage and tails
were attached to the clamping node on the centerline. Presumably the most unfavorable combination of
empty wing tanks and maximum passenger load was considered for sizing load cases (1-4). The cruise
load case (7) was investigated for a wing fuel loading approximately corresponding to begin/mid, and end
of cruise flight, and for maximum and half passenger loading, totaling four more load cases. The aileron
effectiveness and divergence load case were independent of the mass distribution and could therefore be
computed along with one of the depicted mass cases.

The optimization model comprised in total 68 design fields, Figure 7, where a design field speci-
fies a group of elements that all refer to the same, unique set of stiffness matrices and shell thickness.
Accordingly, the design variables are made up of 68 independent (A, D, h)-sets. Approximations for
strain and buckling failure, aileron effectiveness, divergence and twist were implemented according to
the derivations summarized in table 1 on page 4. This included the convexification of aeroelastic re-
sponses, described in [22]. The strain allowables required for the failure envelope construction were set
to [εt, εc, γxy] = [0.5%, −0.4%, 0.4%].
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Table 2: Load case definition

LC # type Ma [−] q [Pa] nz [g] H [m]
1 sym., push down, VD 0.597 25300 -1.0 0
2 sym., pull up, VD 0.597 25300 +2.5 0
3 sym., push down, MD 0.870 22700 -1.0 6700
4 sym., pull up, MD 0.870 22700 +2.5 6700
7 sym., cruise, MD 0.780 9700 +1.0 11900
12 antisym., roll, 1.15VD 0.690 33800 0
13 antisym., roll, 1.15VD 0.860 31900 4000
14 antisym., roll, VD 0.870 22700 6700
15 antisym., roll, VD 0.870 12000 11900
16 divergence, VD 0.870

XY

Figure 7: Design fields

The CFD mesh was generated with sumo and based on the same planform and airfoil coordinate
input defined for the generation of the finite element model. In order to determine the appropriate mesh
resolution that would be required to achieve convergence of the important aerodynamic quantities like
lift and moment, a convergence study was performed. The values of lift, moment and drag coefficient,
CL, Cm and CD, for six meshes featuring different tetrahedra numbers are presented in Figure 8(a). As
stated by the figure, the coefficients converged for meshes with element numbers above ≈ 1.5 ∗ 106. The
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Figure 8: Reference model CFD mesh

mesh that was finally selected for the aero correction process consisted of ≈ 2.7 ∗ 106 tetrahedra and is
marked by a blue star in Figure 8(a). It comprised ≈ 315, 000 surface triangles, a spanwise section of
which is shown in Figure 8(b), to give an impression on the element density and distribution as it was
achieved using diverse sumo meshing parameters.

In response to the vast amount of significant results generated by trim calculation and stiffness op-
timization using aero correction forces, only the most interesting results and load cases are selected for
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presentation. They are chosen depending on the particular structural or aerodynamic focus. The reader
is referred to [22] for an in-depth discussion of the findings.

5.2 Trim Application

In order to separate the effects of a newly applied CFD aero correction from the effects induced by a
stiffness optimization, the general functionality of the CFD correction module was demonstrated using
a classical static aeroelastic trim application. In doing so, the most prominent differences between the
results of the applied aerodynamic methods can be highlighted.

The iterative procedure to determine the aeroelastic deformation considering Tau correction forces
can be expressed as:

uk+1
s = K−1

(
fk+1
DLM + ∆fkτ + f ie

)
, (16)

with:

∆fkτ = fkτ − fkDLM , (17)

where superscript k denotes the iteration step and f ie corresponds to the summation of constant inertial
and external forces. An iterative procedure which performs deformation and aerodynamic analysis in
a sequential order is referred to as a weakly coupled system, whereas in a closely coupled system the
aerodynamic forces can be expressed directly as a function of displacement, thus allowing for a direct
solution of the static equilibrium equation.

According to equation (16) convergence can be tested by monitoring either a characteristic node
deflection or the iterative behavior of the aerodynamic forces. This is shown in Figure 9, exemplarily for
a sizing and a cruise load case. The load case numbering corresponds to the definition given in table 2,
where the last two digits identify the load case and the first digit the mass case. The deflection shown in

1 2 3 4 5 6
−1.3

−1.2

−1.1

−1

−0.9

−0.8

iteration

z−
de

fle
ct

io
n,

 m

(a) tip z-deflection development, LC 1003

1 2 3 4 5 6
−7.5

−7

−6.5

−6

iteration

( 
|f D

LM
| −

 |f
τ| )

 / 
|f τ|, 

%

 

 

2.9

3

3.1

3.2

3.3

3.4

|f ae
ro

|, 
N

*1
e−

5

 

 

DLM
TAU

LC 2007

(b) aero load development, LC 2007

Figure 9: Static trim monitoring

Figure 9(a) is monitored at the outermost spanwise load reference axis grid point, representing the tip
of the wing. In the finite element solution of iteration k = 1, Tau forces f0

τ were not yet included. They
are generated only afterwards, for a CFD mesh deformation which is based on the displacement results
of the FE analysis. Accordingly, only DLM forces affected the deflection for iteration k = 1. From the
second iteration on, Tau forces based on the previous FE analysis were included. Figure 9(a) shows that
once the correction forces are considered from iteration two on, convergence was achieved after three to
four iteration steps.

The same holds for the monitored aero loads, Figure 9(b). Depicted in the upper axis is the force de-
velopment for DLM and Tau respectively. |faero| denotes the magnitude of the sum over all aerodynamic
forces in the xz-plane. Aside from quick convergence, a second very important finding is the conver-
gence of the resulting Tau force towards exactly the same value as the DLM force in the first iteration
step k = 1, which did not, as yet, comprise the correction forces. This implies that the combination of
fDLM and correction ∆fτ in the converged solution exactly reflects fτ , as it was stated in equation (17),
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fτ = fDLM + ∆fτ . The corresponding force magnitude reflects the constant lift force required to balance
aircraft weight multiplied by the load factor.

The lower axes in Figure 9(b) depicts the relative differences between the DLM and Tau force mag-
nitudes. It was mentioned previously that the Tau Euler calculation is performed for the same angle of
attack as that resulting from the Nastran trim analysis. Thus, the converged difference between |fDLM |
and |fτ | is based only on aerodynamic discrepancies among the two discretization and analysis methods.

To demonstrate the impact of the two aero load correction methods presented in sec. 3, a comparison
of pressure difference ∆Cp between upper an lower surface for DLM and Tau is plotted in Figure 10.
A comparison for LC 1002, hence a sizing load case with nz = +2.5g and a rather low Mach number

(a) LC 1002

(b) LC 1004

Figure 10: Pressure difference ∆Cp for the converged trim solution

of M = 0.597 is shown in Figure 10(a). Evidently, the camber corrected DLM was in good agreement
with the higher order aerodynamic CFD method Tau. In all the depicted sections, DLM reproduced
the main trends, although slightly downstream of the Tau results. With the DLM mesh featuring a
considerably coarser discretization, no data were available at the trailing edge; the largest deviations
therefore occurred at these positions. An entirely different behavior is revealed when looking at the
second nz = +2.5g sizing load case 1004, Figure 10(b). The free stream Mach number was considerably
higher, resulting in a strong shock on the upper and on the lower wing surface and thus a considerable
influence on the pressure difference ∆Cp. As a result of the large negative pressure difference in the back,
and a decrease in the frontal part with respect to the doublet lattice results, the Tau distribution was
expected to cause a larger nose-down, thus negative twisting moment.

5.3 Numerical Results: Mass Minimization

Having demonstrated the functionality of the aero correction process in a pure trim analysis, the applica-
tion and interaction within the stiffness optimization process was tested. While the wing skin mass was
defined as the objective to be minimized, the structural constraints again comprised strain and buckling
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failure for all shell elements belonging to the specified design fields. In terms of aeroelastic responses, only
aileron effectiveness and divergence were constrained, while no constraint was defined for twist. Aileron
effectiveness for the four load cases listed in table 2 was limited by a lower bound to ηail ≥ 0, thus no
aileron reversal. Divergence was constrained to a lower limit of qdiv ≥ 35000Pa at a Mach number of
M = 0.87, ensuring a reasonable clearance with respect to the aeroelastic stability margin (1.15 times the
dive Mach number / velocity). In order to confirm the mass minimization results, several variations of the
starting design, comprising modifications on thickness and stacking sequence, were optimized in parallel.
Except for some exceptions, all the starting designs led to the same optimum in terms of minimum mass
and optimized thickness and stiffness.

The minimized masses of the investigated combinations with and without aero correction as well as
balanced and unbalanced laminates are listed in table 3. As illustrated by the table, consideration of the

Table 3: Optimized wing skin masses

balanced unbalanced
with aero correction 576.2 kg 403.9 kg
no aero correction 563.1 kg 423.7 kg

aero correction did not imply a fixed impact on optimized mass, given by the fact that the mass increased
for balanced, and decreased for unbalanced laminates. Anyway, the intention of the aero correction lies
in the improvement of sizing loads and the enhanced determination of the aeroelastic responses. Owing
to the considerable mass savings of unbalanced over balanced laminates, the sections focus will be placed
on the results attained with unbalanced laminates.
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Figure 11: Aero force development, unbalanced laminates

In a first step, the aero force development during the stiffness optimization was reviewed to ensure
convergence of the structural properties, and of the correction forces. The results for two sizing load
cases are depicted in Figure 11. In the optimization process depicted in Figure 1, a Tau correction run
was requested every five structural optimization steps. The dashed blue lines in Figure 11 indicate a Tau
correction run at the 4th, 9th, 14th . . . iteration step. Accordingly, the new correction forces were only
available for these iterations, while DLM forces were generated during each iteration step. The graphs
state that the Tau and DLM forces for all sizing load cases converged, while in parallel the optimization
process minimized the mass objective by modifying the stiffness properties and thus the aeroelastic
behavior. The trim application already proved a fast convergence with constant structural properties, and
the stiffness changes during the optimization did not considerably deteriorate the convergence behavior.
Nevertheless, Figure 11 reveals a more gradual correction force change during the optimization, compared
to the already good agreement seen with respect to the final state for the second Tau correction step in
the trim application.

The optimized thickness and stiffness distribution are plotted in Figure 12, where Ê11(θ) = 1/Â−1
11 (θ)

is the polar thickness normalized engineering modulus of elasticity. It allows for a visual assessment of
the directional membrane stiffness distribution. In search of a weight optimal solution, bending-torsion
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Figure 12: Optimized design, unbalanced laminates

coupling was introduced by tilting the major stiffness direction from inner to outer wing gradually forward,
thus leading to a negative twisting tendency when bending the wing up. Thereby the center of lift could
be shifted inward, eventually reducing the root bending moment.
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Figure 13: Aeroelastic constraints development, unbalanced laminates

The optimization with aero correction led to an active divergence pressure constraint, while it was
not active when optimizing with DLM only. Divergence pressure as developing throughout the iteration
steps is shown in Figure 13(a). The aileron effectiveness remained clearly in the feasible domain, the
lowest, still inactive response is shown in Figure 13(b).

X

Y 1001

1002

1003

1004

LC

(a) DLM&Tau, upper skin

X

Y 1001

1002

1003

1004

LC

(b) DLM, upper skin

XY

1001

1002

1003

1004

LC

(c) DLM&Tau, lower skin

XY

1001

1002

1003

1004

LC

(d) DLM, lower skin

Figure 14: Optimized design, sizing load case per field, unbalanced laminates

More prominent differences when applying aero correction revealed when looking at the load cases
that accounted for the highest strength or buckling failure index in each design field, Figure 14. Plots in
the left column depict upper and lower skin of the optimized model including aero correction (denoted
“DLM&Tau”), the equivalent, but without aero correction (denoted “DLM”), is shown in the right
column. While wing skin sizing for the optimization without aero correction was clearly dominated by
nz = +2.5g LC 1002 and nz = −1.0g LC 1003 and only a few design fields being sized by LC 1004 and
none by LC 1001, the allowance for aero correction led to a perceptibly different distribution. Distinct
spanwise and chordwise regions developed, comprising all sizing load cases considered in the optimization.
It should be noted that the distributions shown in Figure 14 are only an indicator of the dominant load
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cases. Even a slightly lower failure index in an element resulting from another load case is not represented
in this plot.

The differences in twist for an optimization with aero correction compared to an optimization without,
is depicted in Figure 15, in which the spanwise twist distribution for two high Mach number sizing load
cases 1003 and 1004, and for two representative cruise load cases 2007 and 5007, featuring the largest
mass variation among the investigated cruise conditions, are shown. Unexpectedly, the nz = +2.5g pull
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Figure 15: Optimized design, twist distribution with and without aero correction, unbalanced laminates

up maneuver LC 1004 in both optimizations showed a negative tip twist, differing by ≈ 2◦. The reason
for this could be found in the bending-torsion coupling evoked by the variable stiffness orientation, Figure
12(b). The twist distribution promoted compliance with the divergence pressure constraint and helped
to alleviate loads in the outer wing, thus supporting mass minimization. The twist being more negative
when considering aero correction could be attributed to the different structural designs and to the more
negative aerodynamic airfoil moment. As a result of the superposition of geometric coupling of the
forward swept wing, and the negative aerodynamic twisting moment, and despite the lower inertial and
therefore aerodynamic loading in case of the nz = −1.0g push down maneuver LC 1003, the wing twisted
considerably more negatively for LC 1003 compared to LC 1004. Again, the difference between the
aero corrected design and non-corrected design could mainly be attributed to the different aerodynamic
moment distribution.

5.4 Numerical Results: Stacking Sequence Optimization

3334

3031

27

Y

32

28

23

29

24

19

25

20
15

26

21
16
11

X

22
17
12
 6

13
 7

18

 1
 8
 2

14
 9
 3

10
 4 5

Figure 16: Distribution of independently
blended regions in the upper skin

The results from the stacking sequence optimization as
described in sec. 4 are presented here. The optimiza-
tion hence constitutes the second step in the three-step
design process. The results for the forward swept model
are introduced above, subjected to the same load cases,
objectives and constraints. The continuous stiffness op-
timization presented in the previous section showed an
optimal wing box mass of 403.9kg with unbalanced lami-
nates. This mass represents the theoretical upper bound
in performance that can be achieved, since a lamination-
parameter based continuous optimization does not im-
pose any restriction on ply angles, ply thickness or lam-
inate continuity. This continuous design constituted the
first design point in the stacking sequence optimization,
helping to efficiently find the region of interest for the
GA to search.

For this step, the wing was modeled to comprise of six independently blended regions - hence six
independent SSTs. This is more appealing from an industrial perspective, wherein a large structure such
as an aircraft wing is manufactured as segments before being joined together. Enforcing blending over
the complete wing hence only constrains the design space by combining structurally separate entities.
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Shown in Figure 16 is the distribution of the independently blended regions over the upper wing surface.
A similar distribution is also used for the lower surface.

The GA parameters and the design guidelines enforced are presented in Table 4. The optimal stacking
sequence design was found to have a wing mass of 485.9kg, or ≈20% higher mass than the stiffness-optimal
design. Importantly, the optimal stacking design was feasible, ie. having a safety factor for the design
constraints of exactly 1.0. The increase in mass over the stiffness-based design can be attributed mainly
due to the following reasons: allowable thickness only in discrete steps of the ply thickness, discrete set
of allowable ply angles, enforcing ply continuity through blending, inclusion of several design guidelines
and the limitations of a GA search in itself.

Table 4: GA parameters and design guidelines, [39]

population size 100
mutation probability 0.9
crossover probability 0.3

max. number of generations 1000
ply thickness 0.1524mm

fiber angles 15o-steps
max. contiguous plies 4

damage tolerance outer ply ±45o

max. disorientation between adjacent plies 45o

max. dropped plies between fields 40

The optimized thickness and stiffness distribution are plotted in Figure 17. A direct comparison of
Figure 17(b) with the continuous optimization counterpart, Figure 12(b) identifies an equivalent ten-
dency of the wing to have a forward-tilted stiffness, indicating the dominant direction of the ply angles.
The discrete design however shows a rather smeared distribution of the stiffness with a less articulate
directional alignment. A comparison of the thickness in Figure 17(a) with Figure 12(a) shows a more
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Figure 17: Optimized stacking design, unbalanced laminates

gradual decrease in the thickness of the plies from root to tip in the stacking sequence design. Some of
the elements in fact, have a lower thickness than in the theoretical continuous optimum itself. The above
observations are a consequence of the blending requirement - each panel in a blended design is influenced
by the ply layup in all the other panels in that blended region. This results in a smooth and ’smeared’
distribution of the thickness and ply angles, resultantly in the stiffness itself.

6 CONCLUSION

A detailed insight into the application and implications of a doublet lattice force correction using a higher
order CFD method in an aeroelastic stiffness optimization were presented.

The trim application demonstrated the general functionality and convergence of the correction pro-
cedure, and highlighted the differences to be expected when using the two aerodynamic methods Tau
and DLM. The improvements made in the doublet lattice method due to using a W2GJ camber correction
and the limitations of this correction with the emergence of recompression shocks were illustrated. It
was shown that the consideration of camber correction did greatly improve DLM quality when applied
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in shock free conditions. The effects of aero correction consideration on mass minimization, emphasizing
the differences with respect to optimizations that did not feature an aero correction were highlighted.

The applied Euler method proved to converge reliably with the mesh generated in sumo. Nevertheless,
it should be mentioned that the Euler method has a limited application range. With increasing angle of
attack and thus lift coefficient, Euler predicts the shock to move more and more downstream, increasing
in strength. Flow separation, other than at the sharp trailing edge, cannot be modeled. Accordingly,
in the case of severe aerodynamic load conditions the Euler results will start to deviate from what can
be expected in reality. A possible solution to this problem is to increase CFD fidelity further, and thus
consideration of the full Navier-Stokes equations along with viscous boundary layers and turbulence
modeling. Apart from the need for a new CFD mesh topology including a prismatic sub-layer, the
required changes to the developed CFD correction module are minimal.

Eventually, the application of a stacking sequence optimization based on the results from the contin-
uous stiffness optimization was demonstrated, proving the functionality of the process.
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[42] G. Soremekun, Z. Gürdal, C. Kassapoglou, and D. Toni. Stacking sequence blending of multiple
composite laminates using genetic algorithms. Composite Structures, 56(1):53–62, April 2002. doi:
http://dx.doi.org/10.1016/S0263-8223(01)00185-4.

[43] S. T. IJsselmuiden, M. M. Abdalla, O. Seresta, and Z. Gürdal. Multi-step blended stacking sequence
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