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Abstract: The task to provide multi-disciplinary engineering analysis of helicopter rotor 

blade is stated, as the most vital, in authors‟ opinion, to provide efficiency of the design 

process, where it is just the efficiency rather than deep insight into any of the discipline that 

has to be preferred. 

Two contributing problems are considered within this task formulation: 

- A combined analytical/experimental method to get Campbell‟s diagram for a helicopter 

blade has been developed. The method is based on experimental measurement of elastic 

compliance matrix of the blade at zero rotation speed. Results for actual blades are presented. 

The vital demand of the task of blade characteristics identification goes from the fact that to 

get Campbell‟s diagram and vibration mode shapes of a rotating blade from appropriate 

dynamic response processing is rather a complicated problem; also any hardware to excite the 

blade under rotation may affect properties of the mechanical system and thus deteriorate the 

results. 

- A problem of computational analysis of blade motion within the rotor is formulated, for 

which dynamic condensation approach is NOT used. For aerodynamic analysis, a discrete 

singularities method is used that makes it possible to calculate chord-wise aerodynamic forces 

exactly. 

Also under discussion is the use of undeservedly forgotten abstract concepts like “suction 

force” and “chordwise variable inductive wash” closely associated with the theory of thin 

lifting surface. 

1 INTRODUCTION 

TsAGI‟s and world-wide experience of successful and unsuccessful developments in the area 

of multidisciplinary design of helicopter rotor blade [1] makes it possible to select efficient, 

not too complicated and proven computational techniques and to take into account most of the 

physical effects related to the problem. 

A model of thin lifting surface is used for aerodynamic calculations. The effect of surface 

thickness on airfoil moment characteristics and lift curve slope is taken into account by 
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distribution of sources over the surface. Though simple, this approach provides very good 

results just competitive with panel methods. Comparison between the almost exact solution 

(by Christoffel-Shwartz integral) and thin lifting surface method for a thick 19% GU airfoil is 

presented below. 

It should be noted that the Prandtl-Glauert transformation cannot be used to consider air 

compressibility as the equation for flow potential has variable coefficients if written in the 

system of coordinates connected to the blade. Thus an ordinary 4-dimensions wave equation 

has to be solved for a quasi-steady problem (4
th

 coordinate is time). This problem is solved by 

the method of “descending along the coordinate (time)”. Functions of influence of 

singularities (sources and vortices) moving along a helix line are used. 

Basically, the above aerodynamic problem formulation allows us to formulate also the 

problem of noise propagation from the rotor due to blade lift force variations caused by blade 

elastic vibrations while flow is not separated. The problem of noise analysis due to boundary 

layer and due to flow separation is not stated.  

In-house mech generator and settings module to set up finite elements properties and 

materials reology data has been made for NASTRAN‟а. It accelerates data preparation for FE 

analysis. Once the blade geometry is set up or obtained from aerodynamic optimization 

module, then all the are is done automatically and faster than by use of PATRAN. Also 

automated are transferring aerodynamic loads onto FEM of the blade and generation of a 

matrix of aerodynamic influence coefficients (for static aeroelasticity analysis), matrices of 

aerodynamic stiffness and aerodynamic damping  (for aeroelastic stability analysis). 

Nonlinear formulation slightly complicates flutter analysis and makes programs running 

slower, which is undesirable for CAD/CAE software. 

To accelerate program run time, a dedicated optimal algorithm has been developed for 

NASTRAN, which essentially shorten processor time for nonlinear analysis. 

A cost effective procedure of identification of an elastic system well described by beam 

bending equations in the field of centrifugal inertial forces has been developed. This is 

equivalent to obtaining Campbell‟s diagram and vibration eigenmode shapes of a rotating 

blade. The key idea is the refusal from finding bending stiffness of the beam in a set of 

spanwise stations, but getting its flexibility matrix (structural influence coefficients) instead. 

The above approaches are intended for use in blade flutter analysis. Appropriate software 

codes have been developed enabling fast calculation of multiple design configurations. 

Alongside with in-house programs, other well-proven developments, especially NASTRAN 

have been adapted for these problems. 

2 THE AERODYNAMIC MODEL AND BRIEF COMPARISON WITH OTHER 

MODELS 

A model of thin lifting surface is used for aerodynamic calculations. The effect of surface 

thickness on airfoil moment characteristics and lift curve slope is taken into account by 

distribution of sources over the surface. Though simple, this approach provides very good 

results just competitive with panel methods. Comparison between the almost exact solution 

(by Christoffel-Shwartz integral) and thin lifting surface method for a thick 19% GU airfoil is 

presented below. 
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Airfoil data Christoffel-Shwartz integral Thin lifting surface 

СL0 0.7921 0.7518 

C
α

L
 

0.1275 0.1285 

Cm(0.25) at α=0 -0.157 -0.158 

Table 1: Airfoil data comparison 

Of course the comparison is better for thinner surfaces 

The thin lifting surface model allows pressure distribution to be calculated on both the surface 

sides with account for its thickness. The solutions are known to have integrable singularities 

at the edges free of trailing vortex sheet. A correction is used to get continuous pressure 

distribution. The correction is made by “transferring” flow potential from the thin lifting 

surface onto real blade surface, then flow velocity is calculated by differentiating along the 

surface. The correction does not change spanwise distribution of the circulation. The method 

enables consideration of viscous effect as the “external solution” is fairly smooth. The 

problem of airfoil shape design for assigned pressure distribution is also simple within this 

formulation, as well as other problems like airfoil modification to avoid “root effect on a 

sweptback wing”, effect of sudden change of sweep angle, e.t.c. 

A theoretical abstraction of “suction force” is associated with thin lifting surface theory. It is 

used to consider the fact that lifting force is not perpendicular to a lifting surface. The 

numerical techniques proposed by the authors allows for exact calculation of suction force on 

the edges, which is important for analysis of chord-wise loading and “chordwise flutter”. 

Panel-based methods, especially Galerkin-based programs do not provide exact calculation of 

in-plane (chordwise) loading. Meanwhile, the authors are aware of the drawbacks of the thin 

surface method. Indicating drawbacks of other approaches, we just emphasize advantages of 

the thin surface method, but do not consider it as a universal one. 

A theoretical abstraction of a chord-wise variable inductive wash-down is less known. It has 

been proven that chord-wise local distributed circulation within the blade aerodynamic system 

can be obtained from the solution of a two-dimensional problem of flow about an airfoil with 

taking into account an inductive wash-down that is variable in chordwise direction. It is 

rather similar to a theoretical abstraction of an inductive washdown that is constant in 

chordwise direction in the lifting vortex line theory. 

So far many practical designers and analysts are keen to the lifting line model only for 

the reason that it easily incorporates airfoil wind tunnel data. This may be done for the lifting 

surface model also, with theoretically-proven averaging of the chordwise variable inductive 

washdown. Without deep insight into what “theoretically-proven” is, just note a simple 

consideration. If lifting surface analysis calculation gives approximately constant washdown 

in chordwise direction, then both lifting line and lifting surface models are valid. Otherwise 

means that incorporating of airfoil aerodynamic data into the lifting line model is not correct. 

This is not important for straight unswept blades of high aspect ratio, however it‟s strongly 

important for curved low aspect ratio blades. 
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2.1 Aerodynamic model. Nonlinearity 

An aerodynamic model of a rotor is always nonlinear, as vortex sheet pitch depends on 

the rotor thrust. Correct determination of vortex sheet pitch is the main factor to obtain the 

thrust value. All aerodynamic derivatives also depend on the pitch (here we mean derivatives 

at constant pitch used in aeroelastic stability analysis). That is why flutter performance 

depend not only on rotation speed, but on pitch as well. 

The existing methods to determine the vortex sheet pitch may be divided into two classes: 

The first one includes pitch determination on the basis of a simplified (impulse, Zhukovsky‟s 

theory e.t.c.), with consequent application of a more precise approach (lifting line or lifting 

surface). 

The second class includes methods of iterative or other type pitch determination on the basis 

of a unified theoretical model. 

We lean towards the first class method, proposing, in our opinion, the best version. 

The essence of the method considered is as follows. The inductive velocity is known to be 

constant over the rotor disk if the spanwise circulation distribution delivers minimum 

inductive losses at the assigned power supplied to the rotor. 

To avoid any misunderstanding, let us define explicitly what the inductive velocity is. 

Hereafter, the inductive velocity Vind is the velocity of a uniform flow, which component, 

normal to the sheet, and at the sheet, is the same, as the normal to the sheet component 

of the velocity induced by the sheet. No velocity component is constant downstream the 

rotor, but for the rotor with minimum inductive losses, the component normal to the sheet, 

though not constant, is the same as if produced by a uniform flow „blowing‟ onto the sheet 

with the velocity Vind. It‟s clear that vortex sheet is a constant pitch helical surface in this 

case. 

The numerical algorithm is as follows. At the first step, the vortex sheet pitch is taken from 

application of Zhukovsky‟s rotor theory. The spanwise circulation distribution is calculated 

that delivers minimum inductive losses at the assigned power supplied to the rotor. Inductive 

velocity Vind is calculated, and pitch value for the next iteration is determined. Stable and 

efficient iterative procedure has been developed successfully. There is no need to consider 

blade model, but infinite vortex sheet only, which results in small dimension of the problem. 

2.2 Aerodynamic model. Compressibility effect. 

It should be noted that the Prandtl-Glauert transformation cannot be used to consider air 

compressibility as the equation for flow potential has variable coefficients if written in the 

system of coordinates connected to the blade. Thus an ordinary 4-dimensions wave equation 

has to be solved for a quasi-steady problem (4
th

 coordinate is time). This problem is solved by 

the method of “descending along the coordinate (time)”. Functions of influence of 

singularities (sources and vortices) moving along a helical line are used. Noерштп more is 

needed for vertical blowdown mode. 

Sometimes a linear blade analysis is thought to be unreliable if it demonstrates supercritical 

pressure coefficient on the blade surface. Fortunately, this is not the case. For an airplane 
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wing, all points of which are moving with the same speed, appearance of local aerodynamic 

zones is always advertent resulting in shock-induced losses. Vise versa, as the blade points are 

moving with different speeds and local Mach numbers, no interference between propagating 

disturbance waves takes place, and thus strong shock waves with entropy loss do no occur. 

The above effect reduces the accuracy of transferring airfoil experimental derivatives into 

lifting line analysis, though the error is on the safe side concerning flutter. 

3 ELASTIC AND INERTIAL MODELS. 

Both elastic and inertial properties of the blade are set up within NASTRAN-based finite 

element models (FEM). 

In-house mech generator and settings module to set up finite elements properties and 

materials reology data has been made for NASTRAN. It accelerates data preparation for FE 

analysis. Once the blade geometry is set up or obtained from aerodynamic optimization 

module, then all the other is done automatically and faster than by use of PATRAN. Also 

automated are transferring aerodynamic loads onto FEM of the blade and generation of a 

matrix of aerodynamic influence coefficients (for static aeroelasticity analysis), matrices of 

aerodynamic stiffness and aerodynamic damping  (for aeroelastic stability analysis). 

An automatically generated FEM model may be enlarged and edited then in PATRAN 

preprocessor. The interface algorithm between in-house and PATRAN preprocessor is 

designed so that no updating is required. 

NASTRAN features the widest capabilities of modeling inertial and elastic configurations, 

both schematic ones and identical “one-to-one”. Any springs and dampers may be introduced; 

rotor hub flexibility matrix or hinges may be simulated with the aid of superelements; any 

mechanism may be introduced (e.g., pitch-flap coupling mechanism). Many of these options 

are available from in-house preprocessor also, and both complement each other. 

Also there are a lot of capabilities for composite materials simulation in NASTRAN, and all 

these are available from the authors‟ interface. Shell, Solid and Beam elements may be set up, 

as well as variable shell thickness, vector fields of anisotropy axes for composite materials 

and their laminate stacks. 

3.1 Elastic and inertial models. Nonlinearity.  

Nonlinear formulation of elastic and inertial models seems necessary. 

Basically, it does not seem necessary for beam-based model, however a FEM model in 

NASTRAN version does makes it necessary. Unfortunately, we do not know any means to 

adjust NASTRAN for correct modeling of a fairly linear effect, i.e. centrifugal inertial forces 

field,  without use of nonlinear algorithms. 

Nonlinear formulation slightly complicates flutter analysis and makes programs running 

slower, which is undesirable for CAD/CAE software. 

To accelerate program running, a dedicated optimal algorithm has been developed for 

NASTRAN, which essentially shorten processor time for nonlinear analysis. 
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It happened possible to provide the interaction with NASTRAN, in which eigenvalues and 

eigenvectors problem is solved at each intermediate step (rpm increment). As a result, we can 

built resonance rpm diagram (Campbell‟s diagram) and get all necessary data on nonlinear 

elastic/inertial model of the blade for rpm values within the operational range, having 

consumed the run time only 30% longer than one nonlinear analysis cycle. Indeed, it‟s 

possible because the problem of obtaining first dozen or two dozens of vibration modes is 

solved very fast, e.g. by means of Lanczoc method. It‟s also intuitively clear how we can built 

a matrix of aerodynamic influence coefficients at each rpm step. 

3.2 Identification of inertial and elastic model of the blade. 

The most direct way to get the source data for identification of an elastic system is 

experimental modal analysis, which in our case should be performed on a rotating blade. 

However, this is not too easy and feasible from many points of view. 

Meantime, it‟s possible to develop an “inexpensive” identification procedure of an elastic 

system well described by the equations of beam bending. The key idea is the refusal from 

finding bending stiffness of the beam in a set of spanwise stations, but getting its flexibility 

matrix (structural influence coefficients) instead. An n x n flexibility matrix may be obtained 

by applying force in each of n reasonably selected structural points and measuring 

displacements from the applied force in all these points. The techniques is rather consumable 

for matrix of high dimensions, e.g. when numerous vibration modes have to be obtained. It 

seems expedient to develop a procedure of getting matrix of any dimensions for any nodes 

allocation on the basis of a standard procedure and moderate number of measurements. Let‟s 

formulate the above in a formal manner: 

Definition. The problem of identification of elastic properties of a beam is solved, if a 

procedure has been developed to obtain n x m flexibility matrix {A} that provide 

correspondence between any finite set of displacements  [u1, … ,un] in points of the beam with 

any finite set of forces applied in assigned points of the beam [f1, … ,fm]: 

 [u]
T
={A}[f]

T
 (1) 

Of course, we cannot expect to be able to find out such a procedure with fixed scope of 

measurements for any beam with an arbitrary spanwise stiffness distribution. It‟s evident 

however that a beam with rather a simple stiffness distribution may be identified in the above 

sense by a small number of measurements, and then it‟s possible to generate a flexibility 

matrix of any dimension for any set of nodal points. 

Let us consider a beam cantilevered at its left end. Now we demonstrate a useful flexibility 

matrix properties of the beam by proving a simple Statement 1. 

Before formulation and proving the Statement, note that we really can limit ourselves with 

consideration of a left cantilever beam, as to get the flexibility matrix then for the same beam 

with any other boundary conditions is a trivial mathematical task. 

Statement 1. Let aij=a(xi,xj) be a component of the cantilevered beam matrix, equal, by 

definition, to the displacement in a point xi under the unit force applied in a point xj. Then, for 

any fixed  xi and any xj > xi , the following relationship takes place 
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 a(xi,xj)=C1i+C2i xj, (2) 

where constants C1i, C2i do not depend on xj.  

The proof. Evidently, the beam deflection line from a unit force applied in xi is a straight line 

at xj>xi. In other words 

 a(xj,xi)=C1i+C2i xj, (2‟) 

Now we can write down the procedure to build up the flexibility matrix for a left cantilevered 

beam. Let the beam be placed within segment [0,1] in x coordinate. 

As a(xj,xi) = a(xi,xj) (the rule of reciprocity of the mechanical work), then (2) follows from 

(2
‟
). End of proving. 

Not let‟s write down the procedure to build up the flexibility matrix for a left end cantilevered 

beam. The beam occupies [0,1] segment in x axis. 

 Let's generate Chebyshev‟s  grid within [0,1] so that X1=0, Xn=1. 

  A Chebyshev‟s grid is generated within each segment [0,Xj]; j=1, … , so that: 

  x1j=0, xmj=Xj.  

 A force is applied subsequently in each point X2 , … , Xn, as well as in the point 

Xn+1=1.5 (to apply the force in Xn+1, a rigid arm is attached to the right end with 

moment bearing); displacements in the points {x2j, … ,xmj}U{ X2 , … , Xn+1 } are 

measured for each force application in the point Xj, j=2, … , n+1.  

 A set of n-1 twice continuously differentiable interpolants is built on the basis of 

measured displacements {u(x2j), … ,u(xmj)}U{ uj(Xj) , … ,uj(Xn+1) } 

for j=2, … n; 

each interpolant satisfying the boundary conditions Ij(0)=0, Ij’(0)=0, Ij’(Xj)= [uj(Xj+1)-

uj(Xj)]/( Xj+1-Xj),Ij”(Xj)=0. 

Also one continuously differentiable interpolant that satisfies the boundary conditions 

In+1(0)=0,In+1’(0)=0, In+1’(Xn)= [un+1(Xn+1) -un+1(Xn)]/( Xn+1- Xn) is built. 

The interpolants Ij<n+1(x) are polynomials of m+2 power at x<Xj<n+1, 

In+1(x) is an m+1 order polinomial, and all these are the linear functions at x>Xj<n+1. 

 A k x n flexibility matrix {A} may be built for an arbitrary set of nodal points, which 

displacements are of interest, i.e.: 

  a(x
*
i,Xj)=Ij(x

*
i); i=1, … ,k; j=2, … n+1.  

 From the matrix just described above, with the use of the results of proving the 

Statement 1 (linear interpolation along the matrix line within the upper triangle), and 
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from the mechanical work reciprocity principle (matrix lower triangle is symmetric to 

the upper one) a k x k‟ flexibility matrix may be obtained for a set of nodal points 

  {x
*
1, … , x

*
k}U{x

**
1, … , x

**
k‟};  

where {x
**

1, … , x
**

k‟} – the points of force application. 

Of course, the most common is the particular case of the square matrix, when {x
*
1, … , x

*
k} 

and {x
**

1, … , x
**

k’} are the same. 

A matrix of slope angles {A}
‟
 (x-derivative), and a matrix of curvatures {A}

”
 (second x-

derivative) may be obtained similarly. The difference is that the work reciprocity principle is 

not easy to use to obtain the lower triangle in this case. From the Statement 1 it follows that 

the {A}
”
 lower triangle is zero, while the {A}

‟
 lower triangle includes constants for each 

column. It can be simply derived that a‟(xi,xj)= [a(xi”,xj)- a(xi‟,xj)]/( xi”- xi‟) at xi”,xi‟< xj. 

Below is an example of the beam with linear spanwise stiffness (not flexibility!) variation. 

Simulated “measured” stiffness values are compared with the exact solution. The comparison 

show rather acceptable quality of the algorithm. Below, l is the beam length, (curvature is 

presented as a fracture of l, and a slope angle is presented in %s). 

 

 

 

 

EI(x) № 

 “Mesured”  0,952   X force 

Exact 0,950 № X  displacement  

 

Slope  

Curvature   

Table 2: The structure of flexibility matrix 
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   1 2 3 4 5 6  

EI(x)  X 99 278 500 723 902 1001  

0,952 1 99 0,08 0,31 0,58 0,86 1,08 1,21  

0,950   0,1249 0,5796 1,1465 1,7135 2,1681 2,4204 :100 

   0 0,0470 0,1055 0,1641 0,2111 0,2372 :l 

0,863 2 278 0,31 1,85 4,11 6,36 8,17 9,17  

0,861   0,1249 1,0124 2,6758 4,3391 5,6730 6,4133 :100 

   0 0 0,0646 0,1292 0,1811 0,2098 :l 

0,747 3 500 0,58 4,11 11,18 18,82 24,95 28,35  

0,750   0,1249 1,0124 3,4310 6,6378 9,2094 10,6365 :100 

   0 0 0 0,0746 0,1345 0,1677 :l 

0,638 4 723 0,86 6,36 18,82 34,88 48,30 55,74  

0,638   0,1249 1,0124 3,4310 7,5102 11,5244 13,7521 :100 

   0 0 0 0 0,0700 0,1089 :l 

0,562 5 902 1,08 8,17 24,94777 48,29843 69,65 81,71  

0,549   0,1249 1,0124 3,4310 7,5102 12,1749 15,1445 :100 

   0 0 0 0 0 0,0441 :l 

 6 1001 1,21 9,17 28,35 55,74 81,71 96,88  

   0,1249 1,0124 3,4310 7,5102 12,1749 0,1537 :100 

   0 0 0 0 0 0 :l 

Table 3: Flexibility matrix in initial points 
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   1 2 3 4 5 6  

EI(x)  X 0 200 400 600 800 1000  

0,995 1 0 0,00 0,00 0,00 0,00 0,00 0,00  

1,000   0,0000 0,0001 0,0002 0,0003 0,0005 0,0006 :100 

   0 0,0503 0,1005 0,1508 0,2010 0,2513 :l 

0,901 2 200 0,00 0,68 1,72 2,75 3,79 4,82  

0,900   3E-09 0,5174 1,5705 2,6236 3,6767 4,7298 :100 

   0 0 0,0555 0,1109 0,1664 0,2219 :l 

0,798 3 400 0,00 1,72 5,62 9,92 14,22 18,51  

0,800   3E-09 0,5174 2,1488 4,3779 6,6070 8,8361 :100 

   0 0 0 0,0626 0,1253 0,1879 :l 

0,695 4 600 0,00 2,75 9,92 19,54 29,61 39,67  

0,700   3E-09 0,5174 2,1488 5,0324 8,6015 12,1706 :100 

   0 0 0 0 0,0718 0,1436 :l 

0,601 5 800 0,00 3,79 14,21737 29,60745 47,79 66,49  

0,600   3E-09 0,5174 2,1488 5,0324 9,3512 14,4653 :100 

   0 0 0 0 0 0,0829 :l 

 6 1000 0,00 4,82 18,51 39,67 66,49 96,57  

   3E-09 0,5174 2,1488 5,0324 9,3512 0,1533 :100 

   0 0 0 0 0 0 :l 

Table 4: Interpolated flexibility matrix 
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Extended flexibility matrix for the Gauss-Chebyshev quadrature formula 

EI(x)  X 13 109 283 500 718 892 988 

0,991 1 13 0,00 0,00 0,01 0,01 0,01 0,02 0,02 

0,994   0,0021 0,0326 0,0877 0,1564 0,2251 0,2802 0,3108 

   0 0,0244 0,0684 0,1233 0,1781 0,2221 0,2466 

0,947 2 109 0,00 0,11 0,37 0,70 1,03 1,30 1,45 

0,945   0,00206 0,1518 0,6412 1,2515 1,8618 2,3512 2,6228 

   0 0 0,0460 0,1034 0,1608 0,2068 0,2324 

0,860 3 283 0,01 0,37 1,97 4,26 6,55 8,38 9,40 

0,858   0,00206 0,1518 1,0546 2,7115 4,3683 5,6970 6,4344 

   0 0 0 0,0632 0,1264 0,1771 0,2052 

0,747 4 500 0,01 0,70 4,26 11,18 18,63 24,60 27,92 

0,750   0,00206 0,1518 1,0546 3,4310 6,5574 9,0645 10,4558 

   0 0 0 0 0,0728 0,1311 0,1635 

0,641 5 718 0,01 1,03 6,547088 18,62741 34,05 46,91 54,05 

0,641   0,00206 0,1518 1,0546 3,4310 7,3854 11,2609 13,4116 

   0 0 0 0 0 0,0680 0,1057 

0,566 6 892 0,02 1,30 8,38 24,60 46,91 67,23 78,70 

0,554   0,00206 0,1518 1,0546 3,4310 7,3854 0,1188 14,7278 

   0 0 0 0 0 0   

 7 988 0,0194 1,445014 9,402826 27,91842 54,05082 78,70231 94,95 

   0,00206 0,151793 1,054608 3,431041 7,385443 0,118759 0,1536 

   0 0 0 0 0 0 0 

Table 4: Extended flexibility matrix for the Gauss-Chebyshev quadrature formula 
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It would be useful to bring the blade identification problem to a more observable result than 

just a flexibility matrix. The more common and observable one is Campbell‟s diagram, which 

is useful to conclude whether the blade is suitable for flight service. The algorithm to build 

the Campbell‟s diagram is also easy to develop. Below is the diagram for the above 

mentioned blade, as well as vibration mode shapes for the first 4 modes at maximum rpm. 

The flexibility matrix for the blade model has been built on the basis of 6 nodal points. 
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Figure 1: Campbell‟s diagram 
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Figure 2: Vibration mode shapes scaled to unit energy 
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Below is the brief description how the results shown above (Campbell‟s diagram and mode 

shapes) can be derived. 

Suppose we know almost exactly the beam mass distribution (e.g. by sawing it into pieces and 

weighing each peace). 

So, let mass per unit length spanwise distribution is known: 

 ],[)()( 0 RrrrPrm n   (3) 

Let the beam is rotating with unit angular velocity. Then: 

 

R

r

rdrrmrN )()(  is the tension force, which is n+2 order polynomial in this case. 

Consider the equation of the beam disturbed motion: 
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Basis functions )(rfk  are chosen so that 1)( kk rf , and k i if0)( ik rf . 

If S>1, then 0)( 0 rfk and 0)( 0  rfk . The last condition means embedding blade root into 

the hub cutout. 

If 0<S≤1, then only 0)( 0 rfk . The last condition means supporting the blade on the hub 

cutout. 

Real (not integer) S may be used for some specific tasks. 

After substitution (12), the equations of the system with finite DOFs system are written as 

follows: 

        0
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The stiffness matrix {A} for a non-rotating blade has been already determined by means of 

measurements and some mathematical transformations. So let‟s write how matrices {B} and 

{C} look like. 

A Gauss quadratic formula is used below to substitute summation for integration. Note, use of 

quadratic formulas give exact integral value if mn 2)1(2  . 

The nomenclature below is as follows: 

hk – weights of the Gauss quadratic formula; 

Mk = m(rk)hk – «lumped masses»; 

Ni ,fik = N(ri),fk(ri) e.t.c. ; 

rh – radial location of a horizontal hinge; 

r0 – radial location of the blade root section; 

Ih – blade moment of inertia about horizontal hinge axis; 

Iaxi – blade moment of inertia about the horizontal axis crossing the rotor axis of rotation; 

Ihh  – the hub cutout moment of inertia of about the horizontal hinge axis; 

Sh – static moment of inertia about the horizontal hinge axis; 

Saxi – the blade static moment of inertia about the horizontal axis crossing the rotor axis of 

rotation; 

Shh  – the hub cutout static moment of inertia about the horizontal hinge axis. 

The formulas to determine matrix {B}: 
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From these transformations it follows that: 
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The formulas to determine matrix {C}: 
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From these transformations it follows that 
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Other components of the matrix are 0. 

The value of 
 2
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rr 
 should be added to b00 to take into account the hub cutout.  

Functions )(rfk and their first and second derivatives have been already used above. Below 

are some useful formulas for derivatives of basis functions: 
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The expression for the first derivative: 
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Let‟s resolve the uncertainty of 0/0 type: 
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The expression for the second derivative: 
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Again let‟s resolve the uncertainty of 0/0 type: 
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If r equals only rk, or it does not equal to any {ri}, then there are no uncertainties. 

4 THE PROBLEM FORMULATION FOR THE OBLIGUE BLOWING OVER THE 

HELICOPTER MAIN ROTOR 

Let‟s first formulate an aeroelastic problem for the main rotor under vertical blowdown. 

Let L be an aerodynamic matrix providing correspondence between intensities of discrete 

vortices “attached” to the blade with the displacements in the points where aerodynamic 

boundary conditions are set up (non-permeability condition). 

Thus 

    VLu
2


,  

where  V  is a diagonal matrix of flow velocities in the points of vortices allocation: 
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Evidently, the matrix L may be built because of linear relationship between discrete vortices 

intensities and pressure values on the blade surface. The transformation matrix from the 

pressure values in surface points to the displacements in the points where boundary conditions 

are set up may be obtained either experimentally (as shown above), or by nonlinear static 

problem FEM solution. 

Note that the solution of the nonlinear static problem for a rotating blade is much more 

reliable, effective and proven than the problem of determination of mode shapes for rotating 

blades. The latter would have to be resorted if a dynamic condensation method were used. 

The static aeroelasticity problem is formulated then as follows: 

 

     

       









AVVLD

AVuD

1

1

2






 (5) 

Or in a resolved form: 

         














AVVLD
1

2
 (6) 

It has been noted above: 

 D  is a matrix between displacements and slope angles (differentiation matrix); 

 V   is a diagonal matrix of velocities in the control points to satisfy boundary conditions; 

 A  is a matrix of aerodynamic influence setting the correspondence between vorticies 

intensities and the velocities induced by them in control points. 

The above formulation (6) is applicable for the analysis of the main rotor under vertical 

blowdown. It‟s checked by many researches, highly effective and allows the HOT COLD 

GEOMETRY problem to be solved easily.  

It may seem strange that when a rotor just starts moving [forward] in the plane of rotation, 

then such a problem formulation is not used, but a dynamic condensation method is used at 

once instead. A question arises why a continuous transition is not considered at all!  

The answer may be as follows: 

For the steady motion of the main rotor, the following should be the periodic functions of 

time (with the blade rotation period): 

non-permeability condition, matrix of aerodynamic influence, and vortices intensities. 

Let‟s build the solution iteratively. First select N uniformly spaced moments in time, within 

one period of rotation, and get the solution of the static aeroelasticity problem at each 

moment. Once the moment is fixed, then the problem may be treated as “quasistatic”. 
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             NktttAtVtVLD k ,...,1;)()()()()(
2

kkk
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
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
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 (7) 

If the number of blades is n, and they are supplied with horizontal hinges, then the matrix of 

solutions and the right hand side have n+1 columns each. 

The first column of the right hand side contains non-permeability conditions corresponding to 

an assigned law of the cyclic pitch variation; the k
th

 column contains non-permeability 

conditions corresponding to unit angular velocity of the k
th

 blade flap motion with all other 

blades motionless. From the columns of the matrix of solutions corresponding to such right 

hand sides, we can get one column by calculating n values of flap angular velocity from the n 

equations of zero moment in the horizontal hinge. The matrix of such a system is almost 

diagonal due to the slight cross-influence between the blades. 

For the moment bearing attachment of the blade root, only the first column is enough, and the 

solution is got at once. 

Now perform the next iteration. The idea of iterations is to correct the right hands side at each 

next step by adding non-permeability conditions caused by inertial unloading and the 

velocities that are the mismatches between “quasistatic” and dynamic solutions.  

To obtain velocities and accelerations, let‟s write the displacements 

    NkttVLtu kkk ,...,1)()(
2

)( 00 


  

in the form of Fourier series: 
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Then 
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By adding, to the first column of the right-hand side (7), the non-permeability conditions 

     )()(inertion kk tuMLDt    

from the deformation due to inertial unloading, 

and non-permeability conditions from the velocities 
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   )(')(
1

dumping kk tuVt 
 ,  

we get the solution of equations (7), 

find out flap angular velocity for each blade, 

get one column of solutions for circulations and displacement at each time moment, 

represent the displacements as Fourier series, 

calculate non-permeability conditions from inertial unloading, 

calculate non-permeability conditions from the velocity, 

e.t.c. 

4 CONCLUSIONS 

The authors regard the above consideration as promising and propose it for futher 

implementation in design practice   
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