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Abstract: Although linearized approaches are typically applied in aeroelastic design,
advanced nonlinear modeling capabilities are increasingly important to accurately ana-
lyze highly flexible or rapidly maneuvering aircraft configurations. On the other hand,
high-fidelity modeling requires huge computational resources, which preclude its exten-
sive application in preliminary design, what-if analysis, and optimization processes. In
this framework, the development of simplified analytical models may represent a compro-
mise solution between accuracy and computational burden. The present work proposes a
nonlinear unsteady aerodynamic model for a typical-section flat-plate airfoil in arbitrary
motion. The fluid is assumed to be inviscid and incompressible. The flow is assumed
to be attached to the body, planar, and irrotational. The aerodynamic loads acting on
the section are related to a complex potential of the flow and analytically evaluated via
conformal-map approach. Free-wake kinematics is implemented by compacting the vor-
ticity shed at the trailing edge in point vortices, which move according to Biot-Savart law.
Numerical results are presented for both unsteady aerodynamics and aeroelastic response
of the typical-section airfoil elastically connected to a support. These results demonstrate
the ability of the present model to capture arbitrary motions and free-wake geometries
without introducing additional simplifying assumptions, providing good physical insight
and leading to relevant applications for aeroelastic design.

1 INTRODUCTION

Nonlinear aeroelastic modeling is currently a challenge for aircraft design. On one side, the
basic simplifying assumptions adopted in linear aeroelasticity, namely linearized kinemat-
ics for the body motion and prescribed geometry for wake evolution, are not reasonable
for aircraft configurations undergoing large-amplitude static and dynamic deflections. On
the other, the resulting high computational burden limits the application of high-fidelity
nonlinear aeroelastic models, not suitable for frequent simulations. A compromise so-
lution between accuracy and efficiency can be reached by deriving simplified nonlinear
aeroelastic models, for instance concerning incompressible potential flows. This enables
to capture relevant nonlinear phenomena with reasonable model complexity and feasible
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computational requirements, allowing to anticipate possible negative effects on aeroelastic
behavior since the early stages of the design cycle.

Typical-section models [1] were historically the first example of analytical models used in
aeroelasticity, due to the possibility to obtain closed-form solutions for the unsteady aero-
dynamic loads in the case of small disturbances. Wagner [2] investigated the lift response
for a flat-plate airfoil in incompressible potential flow to a step in time of angle of attack.
Küssner [3] obtained the lift response to a vertical gust. Theodorsen [4] presented the aero-
dynamic loads on a thin airfoil with a flap in frequency domain, accounting for wake effects
through a unique function of the reduced frequency (the so-called Theodorsen function).
He also carried out a detailed investigation on fixed-wing flutter [4,5], aimed to point out
influence of typical-section properties on the stability margin. Linearized typical-section
models have been later extended in Laplace domain [7,8] to be correctly used in the con-
trol theory framework. Finite-state models have been also derived via numerical fitting
of either Wagner or Theodorsen functions [9–11] or directly from first principles [12, 13],
leading to state-space representations suitable for time-domain simulation and control-
law synthesis. More recently, research efforts have focused on extending two-dimensional
unsteady airfoil theory for incompressible potential flows to include chordwise flexibility
or nonlinear effects. Walker and Patil [14] investigated thrust generation by combination
of rigid-body and elastic motion of a flexible thin airfoil within the assumption of small
disturbances. Yan et al. [15] still assumed a rigid flat-plate airfoil but considered large-
amplitude motions and free-wake kinematics. However, further extensions of their model
to account for flexibility effects are precluded since the unsteady boundary condition is
applied in a relative frame of reference fixed with the typical-section airfoil.

The present work proposes a general analytical approach for obtaining the unsteady aero-
dynamic force and pitching moment on a moving section in incompressible potential flow.
The specialization to a typical-section airfoil is carried out using conformal-map analy-
sis [16, 17], based on a complex potential representation [18, 19] together with a discrete-
vortex model for free-wake kinematics [20, 21]. The proposed aerodynamic model is first
assessed by considering the lift response to a step in time of angle of attack in uniform flow
(Wagner problem). A semi-analytical typical-section aeroelastic model is finally derived
and used to numerically simulate the arbitrary motion due to a sudden start and to the
perturbation caused by a passing concentrated vortex.

2 AERODYNAMIC FORCE AND MOMENT ON MOVING BODIES

A general formulation for the unsteady aerodynamic force and pitching moment on a
moving section in two-dimensional, incompressible potential flow is presented. The plane
of the motion is identified with the complex one. A complex number is written with
a bold character (e.g., i is the imaginary unit), and the conjugate is indicated by an
overline. The body section is assumed as a simply-connected bounded domain Ωb, having
the finite-length, piecewise smooth boundary ∂Ωb. This closed curve is counterclockwise
oriented with a tangent unit vector τ and an outward normal one n = −iτ . The Schwarz
function Φ [22] of ∂Ωb is also introduced, defined via analytic continuation of the conjugate
position x for any x ∈ ∂Ωb. The domain Ωb and its boundary ∂Ωb are assumed to be time-
dependent, so that the present formulation still holds for morphing sections and represents
an extension of Blasius theorem [18,19] to moving and in-plane flexible bodies. Any point
of ∂Ωb has a velocity ub smoothly depending on position and time. A complex potential
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w = ϕ + iψ is introduced, ϕ and ψ being a velocity potential and streamfunction. The
complex potential is an analytic function of the position x and a smooth function of the
time t. Its complex derivative ∂xw [16] gives the conjugate velocity u = u− iv.

Since the fluid is inviscid, the aerodynamic force F (a) (per unit span length) acting on
the section is due to pressure only. This can be rewritten via Bernoulli theorem as:

F (a) = −iρ
∫
∂Ωb

dx
(
∂tϕ+

|u|2

2

)
, (1)

ρ being the (uniform and constant) fluid density. The first contribution in Eq. (1) is recast
as a complex integral using the relations ∂tϕ = (∂tw + ∂tw)/2 and dx = dx ∂xΦ:∫

∂Ωb

dx ∂tϕ =
1

2

( ∫
∂Ωb

dx ∂tw +

∫
∂Ωb

dx ∂xΦ ∂tw
)
. (2)

In order to put the second term in Eq. (1) in complex form, the differential of the
streamfunction along the body boundary is written as dψ = ds u · n = ds ub · n =
i (ub dx− ub dx)/2, so that one obtains on ∂Ωb:

dw = dϕ+
1

2
(ub dx− ub dx) . (3)

Using this relation twice, one has:∫
∂Ωb

dx
|u|2

2
=

1

2

∫
∂Ωb

dw ∂xw

=
1

2

∫
∂Ωb

dϕ ∂xw +
1

4

∫
∂Ωb

(ub dx− ub dx) ∂xw

=
1

2

∫
∂Ωb

[ dw − 1

2
(ub dx− ub dx) ] ∂xw +

1

4

∫
∂Ωb

(ub dx− ub dx) ∂xw

=
1

2

( ∫
∂Ωb

dx (∂xw)2 +

∫
∂Ωb

dx ∂xΦ ub ∂xw −
∫
∂Ωb

dx ub ∂xw
)
. (4)

Substituing Eqs. (2) and (4) in Eq. (1), the aerodynamic force achieves the general form:

F (a) = −iρ
2

[ ∫
∂Ωb

dx ∂tw +

∫
∂Ωb

dx ∂xΦ (∂tw + ub ∂xw) +

∫
∂Ωb

dx ∂xw (∂xw − ub)
]
. (5)

Note that the first two integrals in Eq. (5) are identical if the body does not move (ub ≡ 0).
This is because ψ = ψ0(t) at any x ∈ ∂Ωb in this case, so that the integrals of the imaginary
part of ∂tw vanish, whereas those of the real parts are equal. As a result, Eq. (5) reduces
to the well-known unsteady Blasius theorem [19,24]:

F (a) = −iρ
∫
∂Ωb

dx ∂tw −
iρ

2

∫
∂Ωb

dx (∂xw)2 ,

which takes into account flow unsteadiness without considering the body motion. More-
over, the classical Blasius theorem [18,19] is recovered in the case of steady flow (∂tw ≡ 0).
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The component of the aerodynamic moment (per unit span length) normal to the plane
of the motion (i.e., along the z-axis), denoted by M (a), is written about the pole q as:

M (a)(q) =

∫
∂Ωb

ds (x− q)× (−p n)
∣∣
z

= M (a)(0)− q × F (a)
∣∣
z
, (6)

where M (a)(0) is the moment about the origin (x = 0). The complex form of the latter
is obtained by writing the z-component of x× n as −Re(τ Φ):

M (a)(0) = −Re
[ ∫

∂Ωb

dxΦ (−p)
]

= −ρ Re
( ∫

∂Ωb

dxΦ ∂tϕ+
1

2

∫
∂Ωb

dxΦ ∂xw ∂xw
)
. (7)

Note that the arbitrary function of time given by ∂tϕ + |u|2/2 + p/ρ in Bernoulli the-
orem does not play any role since the integral of Φ on ∂Ωb is imaginary [22]. The two
contributions in Eq. (7) are handled as for the force, so that one finally has:

M (a)(0) = −ρ
2

Re

[ ∫
∂Ωb

dxΦ ∂tw+

∫
∂Ωb

dx x ∂xΦ (∂tw+ub∂xw)+

∫
∂Ωb

dx x ∂xw (∂xw−ub)
]
.

(8)
For a body at rest in steady flow, Eq. (8) reduces to Blasius theorem [18,19].

3 AERODYNAMIC MODEL OF A TYPICAL SECTION

The general formulation in Sec. 2 is specialized to a typical-section flat-plate airfoil [1,4].
The complex potential of the flow is evaluated using a time-dependent conformal map [16]
that transforms the physical plane (x-plane) onto an auxiliary one (ζ-plane) in which the
(moving) plate boundary becomes a circle. The aerodynamic loads are finally evaluated
via the residue theorem [16].

3.1 Conformal maps

The flat-plate airfoil of chord l, center at the point H(t), and placed at an angle of attack
α(t) (clockwise) with respect to the x-axis is mapped onto a fixed circle having center at
the origin and radius R. Once the time-dependent point of the unit circle χ = exp(i α)
is introduced, the conformal map and its inverse are given by:

ζ = 2χ
R

l

[
(x−H) +

√
(x− x−)(x− x+)

]
x =

l χ

4R
ζ +H +

lR χ

4

1

ζ
.

(9)

The time-dependent points x± := H ± lχ/2 are the trailing (upper sign) and leading
(lower) edges, corresponding to the points ζ± := ±R on the circle. The intrinsic reference
system τ = −χ (tangent unit vector), n = i χ (normal unit vector) is adopted, in which
the position (H) and velocity (Ḣ) of the plate center have the following components:

Hτ = −Re(χH) , Hn = Im(χH) , Vτ = −Re(χ Ḣ) , Vn = Im(χ Ḣ) . (10)

The velocity of any point on the plate depends on the one of its center (Ḣ) and on the
time derivative of the angle of attack (α̇):

ub = Ḣ − i α̇ (x−H) = Ḣ − i χ α̇l

4

( ζ
R

+
R

ζ

)
. (11)
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Since the maps (9) do not reduce to identities at large distances from the plate (and from
the circle), the asymptotic velocity in the ζ-plane v∞ is different from the physical one
u∞ = u∞ exp(iβ). The following relation holds:

v∞ =
l χ

4R
u∞ =

lu∞
4R

ei(α+β) . (12)

3.2 Complex potential and wake kinematics

The complex potential w in the x-plane is obtained from the one w̃ in the ζ-plane using
the map ζ = ζ(x; t) (9), i.e., w(x; t) = w̃ [ζ(x; t); t]. Hence, its time and space derivatives
are evaluated as ∂tw = ∂tw̃ + ∂ζw̃ ∂tζ and ∂xw = ∂ζw̃ ∂xζ. The complex potential w̃
is the sum of four contributions, due to the asymptotic stream (w̃∞), plate motion (w̃d),
circulation around the body (w̃c), and wake (w̃w). The normal velocity on the body
boundary ubn := ub · n = Re(ub n) is written using Eq. (11) and taking ζ = R exp(i θ)
as ubn = Vn − (α̇l/2) cos θ. To satisfy the unsteady boundary condition, the complex
potential for vanishing circulation around the body (w̃c = 0) and no wake (w̃w = 0) is
therefore assumed as:

w̃∞ + w̃d = v∞ ζ +
Ar + iAi

ζ
+
Br + iBi

ζ2 .

Evaluating the corresponding normal velocity un = Re[∂x(w∞ + wd) n] on the body
boundary and imposing ubn = un gives:

w̃∞(ζ; t) = v∞(t) ζ + v∞(t)
R2

ζ
, w̃d(ζ; t) = −i lVn(t)

2

R

ζ
+ i

l2α̇(t)

16

R2

ζ2 . (13)

For the sake of completeness, the circulation and wake complex potentials are [19]:

w̃c(ζ; t) =
Γb
2πi

log ζ , w̃w(ζ; t) =
1

2πi

n∑
j=1

Γj
{

log[ζ−ζj(t)]−log
[
ζ− R2

ζj(t)

]
+log ζ

}
,

(14)
where Γj and ζj are the circulation and time-dependent position in the ζ-plane of the j-th
point vortex, whereas Γb is the circulation around the section. The latter is evaluated
via Kelvin theorem in terms of the initial circulation and of the shed vorticity. Wake
kinematics is numerically implemented by means of a time-marching procedure. Although
this leads to a semi-analytical model, it enables to remove the assumption of flat wake
common to all the analytical theories. Vorticity shedding is modeled using the fixed-
position method [21]. At each time-step, a vortex is generated at a point ζ? = R(1 + δ)
close to the trailing edge (x+, corresponding to ζ+ = +R). The quantity δ > 0 is small
with respect to 1 and given. The circulation of the nascent vortex Γ? is determined by
enforcing the Kutta condition ∂ζw̃ = 0 at the point ζ+, so that the conjugate velocity
u = ∂ζw̃ ∂xζ be finite on the trailing edge. The present form of the Kutta condition is:

∂ζ(w̃∞+ w̃d + w̃?
c + w̃?

w)
∣∣
ζ = +R+

Γ?

2πi

{ 1

R−R(1 + δ)
− 1

R−R2/[R(1 + δ)]
+

1

R

}
= 0 ,

(15)
where the circulation (w̃?

c) and wake (w̃?
w) potentials are evaluated without considering

the contribution due to the nascent vortex. Note that the conjugate velocity still has a first
order infinite on the leading-edge (x−, corresponding to ζ− = −R). As a consequence, the
aerodynamic loads have to be evaluated also using Cauchy principal value integrals [16].
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3.3 Aerodynamic loads

The aerodynamic loads on the typical section are obtained by specializing Eqs. (5,8) to
the complex potentials (13,14). Then, the residue theorem and Cauchy principal value
integrals are used for the analytical evaluation. Introduced the following (time-dependent)
coefficients depending on the wake geometry:

a(k) = a
(k)
x + ia

(k)
y := Rk

n∑
j=1

Γj

ζkj

b∓ = b∓x + ib∓y := R
n∑
j=1

Γj
ζj ±R

c∓ = c∓x + ic∓y := 2R2

n∑
j,k=1

ΓjΓk

(ζj ±R)(ζk −R2/ζj)

d = dx + idy := 2R2

n∑
j,k=1

ΓjΓk

ζj(ζk −R2/ζj)
,

(16)

the normal component of the aerodynamic force (divided by ρ) is written as:

F
(a)
n

ρ
= −π

4
l2V̇n +

[
− u∞ cos(α + β)− Vτ +

b−y + b+
y

πl

]
Γb+

+
π

4
l2 [u̇∞ sin(α + β) + (α̇ + β̇)u∞ cos(α + β)]− l

2
ȧ(1)
x +

+(b−y − b+
y ) [Vn − u∞ sin(α + β)] +

lα̇

4
(b−y + b+

y − 2a(1)
y )+

+
1

2πl
(2b−x b

−
y − 2b+

x b
+
y + c+

y − c−y )

=:
π

4
l2 (Gn − V̇n) .

(17)

Note that the term V̇n in Eq. (17) depends on the normal acceleration of the plate center.
This leads to the identification of the added mass πl2ρ/4, i.e., the mass (per unit span
length) of the fluid that is accelerated by the plate motion. The tangential component of
the force (divided by the fluid density) is proportional to a quadratic polynomial in Γb:

F
(a)
τ

ρ
=

Γ2
b − 2q1Γb + q2

4πl
=:

π

4
l2 Gτ , (18)

where the coefficients are given by:

q1 = −πlu∞ sin(α + β) + πlVn −
π

4
l2α̇ + 2b+

x

q2 = π2l2u2
∞ sin2(α + β) +

π2

16
l2 (16V 2

n − 24lα̇Vn + l2α̇2) +
π2

2
l3u∞α̇ sin(α + β)+

+π2l3Vnα̇− 2π2l2Vnu∞ sin(α + β)− 4πlu∞b
+
x sin(α + β)+

+4πlVnb
+
x − πl2α̇b+

x + 2 (b−x
2

+ b−y
2

+ b+
x

2 − b+
y

2
+ c+

x − c−x ) .

Note that the aerodynamic force should be normal to a flat-plate airfoil since the fluid
action on each point of the body boundary is due to pressure only according to Eq. (1).
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Figure 1: Aeroelastic model of a typical-section airfoil.

The tangential component (18) is not exactly zero in the present numerical computations
due to the approximate way in which vorticity is shed, by means of a Kutta condition.
However, this component is found to be at least five orders of magnitude smaller than
the normal one (17). The aerodynamic moment about the origin is written as M (a)(0) =

−HτF
(a)
n +HnF

(a)
τ +M (a)(H), where the one about the plate center is given by:

M (a)(H)

ρ
=

π

128
l4α̈ +

π

4
l2 [Vn − u∞ sin(α + β)] [Vτ + u∞ cos(α + β)] +

+
l

2
(a(1)
y − b−y − b+

y ) [Vn − u∞ sin(α + β)] +
l

2
[Vτ + u∞ cos(α + β)] a(1)

x +

− l
2

16
(ȧ(2)
x + 2α̇a(2)

y ) +
( Γb

2π
+
l2α̇

8

)
(b+
y − b−y ) +

+
1

4π
(−2b−x b

−
y − 2b+

x b
+
y + c−y + c+

y − dy)

=:
π

128
l4 (α̈−M(a)) . (19)

Note that the angular acceleration α̈ appears in Eq. (19). This leads to the identification
of the added moment of inertia πl4ρ/128, i.e., the moment of inertia (per unit span length)
of the fluid that rotates together with the plate.

4 AEROELASTIC MODEL

An aeroelastic model for the typical section depicted in Fig. 1 is derived. The section
moves under the aerodynamic loads and elastic reactions. The mass and elastic centers
are assumed at the plate center H , but the model can be easily generalized to account for
possible offsets. The section is restrained from bending along x- and y-axes and torsional
motion by linear springs having elastic constants kx = m(2πfx)

2, ky = m(2πfy)
2 and

kα = Jα(2πfα)2, where m and Jα are the airfoil mass and moment of inertia with respect
to the elastic center (per unit span length). The x- and y-components of the elastic force

and the elastic moment are written as F
(e)
x = −kx(Hx −Hxe), F

(e)
y = −kz(Hy −Hye) and

M (e) = kα(α − αe), He = Hxe + iHye and αe being the position and angle of vanishing
elastic reactions. Introduced the ratios between the added mass and moment of inertia

7
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and the airfoil ones σ = πl2ρ/(4m) and µ = πl4ρ/(128Jα), the equations of motion are:

Ḧ = σ[(Gn − V̇n) n+Gτ τ ] +
F (e)

m

α̈ = µ(M(a) − α̈)− M (e)

Jα
.

The quantity V̇n is evaluated by means of the first of the above equations (ṅ = −α̇ τ ):

V̇n = Ḧ · n− α̇ Ḣ · τ =
1

1 + σ

(
σGn +

F
(e)
n

m
− α̇Vτ

)
and reinserted into the same equation. Once the initial data H0, Ḣ0, α0, and α̇0 are
given, the Cauchy problem for the plate motion follows:

Ḧ =
1

1 + σ

[
σ(Gn + α̇Vτ ) +

F
(e)
n

m

]
n+

(
σGτ +

F
(e)
τ

m

)
τ

α̈ =
1

1 + µ

(
µM(a) − M (e)

Jα

)
H(0) = H0 , Ḣ(0) = Ḣ0 , α(0) = α0 , α̇(0) = α̇0 .

(20)

For the sake of completeness, the steady-state configuration achieved by the typical section
under the action of the aerodynamic and elastic loads is given by:

H̃x = Hxe +
σu2
∞

2π2f 2
x l

sin α̃ sin[2(α̃ + β)]

H̃y = Hze +
σu2
∞

2π2f 2
y l

cos α̃ sin[2(α̃ + β)]

α̃ = αe +
4µu2

∞
π2f 2

αl
2

sin[2(α̃ + β)] .

(21)

5 RESULTS

A numerical integration of the plate and wake dynamics is performed, using a fourth-order
Runge-Kutta scheme together with the desingularization procedure for vortex-vortex in-
teraction. Once a preliminary validation of the aerodynamic model is carried out by
simulating a Wagner problem, the motion of the typical section due to a sudden start and
to the interaction with a passing concentrated vortex is investigated.

5.1 Wagner problem

A first validation of the aerodynamic model is achieved by considering the lift response
to a step in time of angle of attack. The numerical results are compared with the the-
oretical prediction by Wagner [2], given in terms of the so-called Wagner function. To
compare with a linear model, small incidence and flat wake are assumed. The obtained
lift time-history is normalized by the linearized steady-state value (ρπlu2

∞α) to be directly
compared with Wagner function (see Fig. 2). The numerical results match the theoretical
prediction, apart from a slight difference at the beginning of the simulation. This is be-
cause Wagner function takes on the value 0.5 at t = 0+, whereas the present model cannot
give rise to a discontinuity since wake is generated through vortex shedding. Indeed, the
simulation gives zero lift at the initial time, because no concentrated vortices have been
already released from the trailing edge. However, Fig. 2 shows that the numerical results
agree with the theoretical prediction for t ≥ 0.1 s.
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Figure 2: Normalized lift response to a step in time of angle of attack vs. Wagner function. The simulation
data are α = 1◦, u∞ = 20 m/s, β = 0◦ and l = 1 m.

Test u∞ (m/s) α0 (deg) H̃x (cm) H̃y (cm) α̃ (deg)

1 10 5 0.007 1.7 5.96
2 10 10 0.027 3.2 11.87
3 10 20 0.094 5.4 23.38

4 15 5 0.027 4.9 7.82
5 15 10 0.098 9.0 15.33

Table 1: Sudden start: asymptotic velocity, initial angle of attack, and aeroelastostatic response.

5.2 Aeroelastic response to a sudden start from rest

In order to numerically simulate the aeroelastic response to a sudden start, the typical
section is initially assumed in elastic equilibrium (H0 = He, α0 = αe, Γb0 = 0) in a fluid
at rest. As the simulation starts, the modulus of the asymptotic velocity is rapidly in-
creased (as a hyperbolic tangent) from 0 up to a stationary value u∞. The latter is chosen
below the flutter speed predicted by the linear analysis [1] to avoid divergent oscillations.
The asymptotic flow is assumed to be horizontal (β ≡ 0◦). In contrast with what done to
simulate Wagner problem, which is an aerodynamic transient problem, the typical-section
airfoil is now allowed to move under the proper aerodynamic loads. Consequently, it leaves
the configuration of elastic equilibrium as the flow starts. An aeroelastostatic configura-
tion in which the aerodynamic loads balance the elastic reactions is finally achieved at
the end of the transient response. This is given by Eq. (21). The associated stationary
body circulation is Γ̃b = −πlu∞ sin α̃. A set of test cases is established to point out influ-
ence of u∞ and α0 on the transient aeroelastic response and stationary configuration (see
Tab. 1). The assumed section parameters are: σ = 0.1, µ = 0.05, Hxe = Hye = 0, αe = α0,
fx = 12.5 Hz, fy = 2.5 Hz, fα = 5 Hz. Moreover, a unit plate length is taken. For the
present data, the linear flutter speed is estimated as 23.64 m/s according to Theodorsen
theory [1]. As for actual wing sections, note that the frequency fx is higher than the
other ones. Thus, the motion and stationary displacement of the typical section along the
x-axis are found to be very small (see Tab. 1), also because the aerodynamic force has
a small x-component for not too large angles of attack.1 For this reason, the horizontal
displacement of the plate center is not considered in the following discussion.

1 Note that neglecting leading-edge vortex shedding limits the maximum angle of attack.
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(a) (b)

(c) (d)

Figure 3: Sudden start: time-histories of the vertical displacement of the plate center (a,c) and angle of
attack (b,d) for α0 = 5◦, 10◦, 20◦ and u∞ = 10 m/s (a,b) and for u∞ = 10 m/s, 15 m/s and
α0 = 5◦ (c,d).

The time-histories of the vertical displacement of the plate center and angle of attack are
shown in Fig. 3. The dependency of the aeroelastic response on α0 for u∞ = 10 m/s (Tests
1–3) and on u∞ for α0 = 5◦ (Tests 1 and 4) are pointed out. The parameters u∞ and α0

also influence the aeroelastostatic response since increasing values of both reduce the sys-
tem stiffness, leading to larger stationary linear and angular displacements. Furthermore,
u∞ and α0 also affect the (purely aerodynamic) system damping. Figure 3 shows that the
aerodynamic damping decreases for increasing u∞, which eventually leads to flutter. Note
that the aeroelastic behavior would be different in the absence of pitch since the varia-
tions in the body circulation (and thus in the aerodynamic force) due to plunge play a
stabilizing role. Indeed, a first estimate of the body circulation in the case of no pitch and
having neglected wake effects is given by Γb ≈ −πl [u∞ sin(α + β)− Vn] (Ref. [25]). Thus,
the body circulation decreases in modulus when the section lifts up (Vn > 0), whereas it
increases when the section moves down (Vn < 0). The corresponding variations in the
aerodynamic force act as a positive damping which is enhanced at higher flow velocities.
In conclusion, as well known [1], the typical section does not experience flutter as far
as no aeroelastic coupling occurs between plunge and pitch. Such phenomenon can be
appreciated in the present time-histories (see Fig. 3), which show multiple harmonic con-
tributions. The aerodynamic damping also decreases for growing α0 (see Fig. 3), leading
to larger oscillations around the stationary values of the state variables. Note that the
dependency of the system dynamic on α0 is an evidence of nonlinear behavior.
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(a) (b)

(c) (d)

Figure 4: Sudden start: time-histories of the aerodynamic force (a,c) and moment (b,d) (divided by ρ)
for α0 = 5◦, 10◦, 20◦ and u∞ = 10 m/s (a,b) and for u∞ = 10 m/s, 15 m/s and α0 = 5◦ (c,d).

(a) (b)

Figure 5: Sudden start: time-histories of the location of the application point of the aerodynamic force
for α0 = 5◦, 10◦, 20◦, u∞ = 10 m/s (a) and for u∞ = 10 m/s, 15 m/s, α0 = 5◦ (b).
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(a) (b)

(c)

Figure 6: Sudden start: wake configurations at the time t = 0.7 s for α0 = 5◦ (a), 10◦ (b), 20◦ (c) and
u∞ = 10 m/s.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Suddent start: wake configurations at the times t = 2 s (a,c,e), 7 s (b,d,f) for α0 = 5◦ (a,b),
10◦ (c,d), 20◦ (e,f) and u∞ = 10 m/s.

The time-histories of the aerodynamic loads are illustrated in Fig. 4. Since the tangential
component of the aerodynamic force is at least five order of magnitude smaller than the
normal one during the transient phase, only the latter is presented. From the time-
histories in Fig. 4, the one of the location of the point of application of the aerodynamic
force can be deduced (see Fig. 5). This point suddenly leaves the plate center as the
typical section is started from rest. Then, its oscillates around quarter-chord during the
transient response, approaching it as the aeroelastostatic configuration is reached.
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Test u∞ (m/s) H̃y (cm) α̃ (deg) Γ̃b (m2/s) Γv yv(0)

6 2.5 0.09 5.05 −0.6915 +Γbs +0.25× l
7 2.5 0.09 5.05 −0.6915 −Γbs −0.25× l
8 10 1.7 5.96 −3.2616 +Γbs +0.50× l
9 10 1.7 5.96 −3.2616 −Γbs −0.50× l

Table 2: Interaction with a vortex: asymptotic velocity, (initial) stationary configuration and circulation,
circulation of the isolated vortex and its initial vertical location.

Some wake geometries for different α0 and u∞ = 10m/s are presented in Figs. 6 and 7. As
u∞ rapidly increases at the beginning of the simulation, the steep gradient in the released
vorticity causes the wake vortices to organize in a starting vortex, whose strength increases
with α0 (see Fig. 6). The starting vortex flows downstream as the simulation goes on, but
other smaller vortex structures appear because of the variations in the shed vorticity. Since
the body motion has not a small amplitude in the present case, the flat-wake assumption
is not reasonable until steady conditions are approached (see Fig. 7).

5.3 Aeroelastic Response due to the Interaction with a Vortex

At the end of the simulations previously discussed, the system achieves a stationary con-
figuration in which the steady-state aerodynamic loads balance the restoring elastic force
and moment. Then, it is interesting to simulate the transient response to a disturbance
that moves the section from the aeroelastostatic solution, for instance represented by the
passage of a point vortex of given circulation initially placed at some location ahead of the
section. This problem could help to better understand the phenomena occurring when a
rotating propulsive element (e.g., an helicopter blade) interacts with a vortex.

The typical-section properties are the same than in Subsec. 5.2. The two cases of a
point vortex passing above or below the section are studied. The circulation of the point
vortex is assumed to be equal (in modulus) to the stationary one around the section,
whereas its initial position can be assumed above or below the x-axis. If the vortex
is initially placed above the x-axis, its circulation is assumed as Γv = +Γ̃b (clockwise)
in the presented computations. If the point vortex is initially placed below the x-axis,
its circulation is assumed as Γv = −Γ̃b (counter-clockwise). Two values of the u∞ are
considered, identifying two different initial aeroelastostatic configurations. In both cases,
the angle of vanishing elastic moment is αe = 5◦. The case studies examined, as well as
the corresponding equilibrium parameters, are listed in Tab. 2.

The results are presented in terms of the variations of the quantities of interest (the
vertical position of the plate center, the angle of attack, and the aerodynamic loads) with
respect to the equilibrium values. Since the equilibrium configurations are different, all
the variations are normalized by the equilibrium quantities. Figure 8 illustrates the time-
histories of the relative variations in the vertical position of the plate center and angle of
attack for the four situations examined (see Tab. 2). As the vortex approaches the section,
the induced velocity field causes the pressure to increase on the upper plate surface (when
the clockwise vortex passes above) or on the lower one (when the counter-clockwise vortex
passes below). The section is consequently disturbed from the equilibrium configuration,
being pushed in the opposite direction with respect to the vortex. A transient phase
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(a) (b)

(c) (d)

Figure 8: Interaction with a vortex: time-histories of the relative variation in the vertical position of the
plate center (a,b) and angle of attack (c,d) for the vortex passing above (a,c) or below (b,d)
the section.

follows that eventually leads to a different aeroelastostatic configuration than the initial
one. This is because the circulation shed into the wake leads to a change in the one
around the plate due to Kelvin theorem. As a result, the stationary body circulation
and aerodynamic loads change as well, so that the typical section will no longer be in
equilibrium in the original configuration. The variation in the equilibrium parameters,
divided by the initial steady-state values, is estimated in Tab. 3.

Figure 8 shows that the interaction with the vortex is capable of exciting different dynam-
ics, depending on the fly-over time l/u∞. Lower velocities result in a slower passage of
the vortex in the region closer to the section, whereas higher velocities result in a quicker
passage. The vertical translation, whose associated natural frequency is lower, is mainly
excited in the former case, whereas pitch in the latter.

Test ∆H̃y/H̃y(0) ∆α̃/α̃(0)

6 +0.0238 +0.00025
7 +0.0095 +0.00117

8 −0.0243 −0.00035
9 −0.0093 −0.00135

Table 3: Interaction with a vortex: relative variations in the equilibrium vertical position of the plate
center and angle of attack.
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(a) (b)

(c) (d)

Figure 9: Interaction with a vortex: time-histories of the relative variation in the lift (a,b) and drag (c,d)
for the vortex passing above (a,c) or below (b,d) the section. (Tests 6–9).

(a) (b)

Figure 10: Interaction with a vortex: time-histories of the relative variation in the aerodynamic moment
for the vortex passing above (a) or below (b) the section (Tests 6–9).
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(a) (b)

Figure 11: Interaction with a vortex: time-histories of the point of application of the aerodynamic force
for the vortex passing above (a) or below (b) the section (Tests 6–9).

(a) (b)

(c) (d)

Figure 12: Interaction with a vortex: wake configurations at the time t = 2.5 s for the case u∞ = 2.5 m/s
(a,b) and at the time t = 2 s for the case u∞ = 10 m/s (c,d) with the vortex passing above
(a,c) or below (b,d) the section.

The relative variations in lift, drag, and aerodynamic moment are presented in Figs. 9
and 10. Larger variations occurs for the case of the lower asymptotic velocity, as the
associated fly-over time excites the frequency of the vertical spring. The time-histories of
the location of the point of application of the aerodynamic force are shown in Fig. 11).
This point moves from quarter-chord as the passage of the vortex perturbs the surrounding
flow, then it recovers its initial position as a new steady-state condition is reached at the
end of the transient phase.

For completeness, some wake configurations are also presented in Figs. 12 and 13, which
point out the interaction between the wake and the passing vortex. A unsymmetric dipole
emerges, having the passing vortex as one dipole half. Due to the lack of symmetry, the
dipole rotates clockwise if the vortex has negative circulation and counter-clockwise in the
other case. A closer view of the dipoles for the case u∞ = 10 m/s is presented in Fig. 13.
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(a) (b)

Figure 13: Interaction with a vortex: dipoles at time t = 3 s for the vortex passing above the section (a)
and t = 2 s for the vortex passing below the section (b) for u∞ = 10 m/s.

6 CONCLUDING REMARKS

A nonlinear unsteady aerodynamic modeling for a typical airfoil section in arbitrary mo-
tion has been presented and analytical formulas for the aerodynamic force and pitching
moment have been given. The fluid has been assumed to be inviscid and incompressible,
while the flow has been assumed to be attached to the body, planar, and irrotational.
Within these physical hypotheses, the conformal-map approach, based on the introduc-
tion of a complex potential of the flow rather than a velocity potential, has been used to
simplify the theoretical formulation. Free-wake kinematics has been implemented by com-
pacting the vorticity shed at the trailing edge in point vortices, which have been moved
according to Biot-Savart law. The proposed formulation for unsteady aerodynamics has
been assessed by considering the Wagner problem of the lift response to a step in time of
angle of attack for the case of small perturbations and flat wake. Next, the present model
has been used to numerically simulate the arbitrary motion of the typical-section airfoil
when elastically connected to a support. Several effects like the initial angle of attack, the
stream speed, the transient variation of the application point of the aerodynamic force
have been studied for the case of a sudden start, so demonstrating the predictive capabil-
ity of the model. Finally, an aeroelastic simulation of a point vortex passing close to the
section has been carried out showing the considerable level of mutual interaction between
the vortex kinematics, shed wake, and airfoil motion. The obtained results have shown
that the present approach can be an effective tool for modeling the aeroelastic behavior
of a typical-section airfoil undergoing arbitrary motion in a time-dependent potential flow
of incompressible fluid. Future work will improve the present model including chordwise
flexibility in order to derive a simplified nonlinear aeroelastic model for morphing sections.
Such a model could be used to point out influence of elastic deformation on aeroelastic
stability and response as well as to investigate thrust generation via combination of rigid-
body and elastic motion.
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