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Abstract: Local nonlinearities of airplane landing gears are considered. Analytical formulas 
and results of analysis of torsional stiffness and damping of a landing gear strut with local 
nonlinearities (free-plays, shimmy damper nonlinearities, seals friction) are presented. 

Shown also the results of analysis of shimmy stability boundary and limit cycles oscillations 
under dry and quadratic nonlinear friction by means of methods based on Routh-Hurwitz 
procedure, solution of full eigenvalue problem of shimmy linear equations matrix, as well as 
on D-partition of torsional dynamic stiffness plane for landing gear strut. 

1 INTRODUCTION 

The analysis of the works published in the last 20 years on the problem of shimmy shows that 
this problem in our country and abroad is still relevant [1-7]. All types of landing gears with 
both cross wind undercarriage and steered and self-oriented wheels exposed shimmy. The 
occurrence of shimmy is dangerous because it can not only damage landing gear, but, as a 
consequence, leads to costly repairs and downtime of the aircraft. Therefore, the design and 
development of research methods shimmy is the relevant task. 

The main reason for the existence of shimmy of the wheels of aircraft landing gear during 
stage flight tests, and in the course of their further exploitation is to mistakes made when the 
landing gear are being designed.  

Construction landing gear are spatial, structural variable nonlinear dynamic systems [1]. One 
of the difficulties of analysis shimmy of such systems is the presence of nonlinearities in the 
design of almost all struts [4-9]. 

Some of non-linearity essentially depends from the wear of the structural elements of the 
strut, and it does the shimmy phenomenon is less predictable. Therefore, for accurate 
prediction of shimmy need to be able to estimate and model the nonlinearity and also to 
analyze the characteristics of shimmy taking into consideration range of changes of the 
characteristics of nonlinearities and to identify the most adverse combination of design 
parameters landing gear and operating regime of the aircraft. 

In studies shimmy leading role belong to the computational methods, but for the reliable 
estimates of safety from shimmy of the wheels requires not only an adequate mathematical 
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model of the shimmy phenomenon, but reliable methods for determining the parameters of 
this model [8]. This safety assessment from shimmy in the range of operating loads and 
speeds of the aircraft often carried out by means of a mathematical model, whose parameters 
are determined with insufficient accuracy and do not take into account nonlinearity in design 
of strut landing gear. 

The most common research methods linear models shimmy are the methods based on 
application of the procedure of Routh-Hurwitz and the solution of the complete problem of 
eigenvalues of the matrix corresponding to equations [8-10]. Due to the variety of design 
schemes and technical solutions landing gear, control mechanisms wheels and means for 
damping of vibrations, due to the inherent substantial nonlinearities developed a linear 
mathematical model of shimmy for a typical landing gear is not always applicable. 
Application of frequency dynamic stiffness method [8] to calculate the boundaries of the 
region shimmy and parameters of limit cycles oscillations allows to take into account the 
above features. 

2 THE MODELS OF THE NON LINEARITIES IN THE DESING OF THE LANDING 
GEAR OF THE AIRCRAFT 

The main nonlinearity in the design of the landing gear [1-6] is a local nonlinearity, among 
which the most important are: 

- bearing friction of the shock absorber and in the rotating clamp of the control system; 
- nonlinear damping in the hydraulic module of the control system; 
- nonlinearity in the design of shimmy dampers; 
- friction and free-playes in the torque link and the attachment fitting of the strut to the 
airframe. 

Analysis of the phenomenon of shimmy of the wheels of the landing gear of the aircraft 
taking into account the nonlinearities can be divided into two stages: 

1. Development of nonlinear mathematical models of nonlinearities and study of their 
dynamic characteristics. 

2. Study of the characteristics shimmy taking into account developed nonlinear 
models. 

As is known, for prevent shimmy phenomena of cross wind undercarriage of the aircraft are 
being used hydraulic or friction dampers [5]. Therefore, development of mathematical models 
of dampers and study of their properties is an important task to ensure the safe operation of 
the aircraft.  

Below we consider the mathematical model of hydraulic damper (DH), which, with some 
simplifications can be applied also for the analysis of the characteristics of the friction damper 
and the stiffness characteristics of the strut for torsion with free-play, with dry friction, etc. 

Relatively detailed diagram of a hydraulic damper (DH) depicted in figure 1. In this scheme, 
three physical coordinates )(tz , )(ty , )(t  determines the dynamics of the following series-
connected elements: 
- springs with stiffness kC , simulating the elasticity of the strut mount damper to the main 

structure and the elasticity of its body; 
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- piston, having area F , and cylinder, having volume 0V , filled with a compressible fluid 

with an equivalent modulus of elasticity ; 
- springs SC , that simulate the elasticity of the plunger of the damper and its mounting to the 

damped part of the structure. 

 
Figure 1: analytical model of a DH 

Then the dynamics of DH can be described by the following system of nonlinear differential 
equations: 
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Here the first two equations are expressing the condition of equilibrium of the forces acting 
upon fluctuations respectively on the mass km  of the housing of the damper and the mass sm  

of the piston area of S. In this case the nonlinear force )()( tPStp   due to the pressure 
difference )(tp  on the piston DH arising from the flow of fluid from one cavity to another 
through the primary and secondary flow channels (1 and 2). Non-linear character of restoring 
forces in these equations are determined by the presence of free-play )( SK b,b  in the places of 

attachment of the damper to the main structure. 

View functions )()( 00 P,b,fb,f SS   and )()( 00 P,b,fb,f êk    

for bbb,z,b SK  0010 S  shown in figure 2. 

The third equation of system (1) is establishing the dependence of differential pressure on 
flow rate of working fluid through the channels of its flow. The theoretical description of this 
dependence is in general extremely difficult, therefore, in engineering practice is being used 
the following representation for the dependence of the resistance force of the damper from the 
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flow rate )(tq  by its channels 

q,fqfqfSpq sign)( 3
2

21   

where 1f  and 2f  are coefficients, depending on fluid properties, the shape of the channels to 

overflow, and the effective area of the piston of the damper; 3f  is a coefficient that defines 

the dry friction force between the moving parts of the damper. 

In this paper, we assume that the dependence of fluid flow from the differential pressure 
/StFtp )()(   determined by experimental methods, and can be approximated by an 

exponential function (figure 2b). 

.tFFtFkaktq eq )(sign))(()(    (2) 

 
Figure 2: Nonlinearities of DH 

In real structures of the hydraulic units the resistance force caused by the inertia of the fluid 
filling the channels of the ducts, can be significant if, for example, to enter the bypass channel 
2 long length (figure 1). Then the inertial force of a fluids resistance to movement of the 

piston DH can be represented as: 
Sdt

dq
Sðm  , where   is the reduced mass of liquid 

filling the channels of the ducts 1 and 2. The total resistance force of the fluid movement of 
the piston of the damper, obviously, is expressed by the equality: .SpppS mq )(   

The fourth equation of system (1) is a continuity equation of fluid flow with regard to its 
compliance, and the latter expresses the equality of the external force )(tR  to the force in the 
damper shaft. 

Below are present the results of the study of the stiffness and damping properties of the DH, 
using the dynamic stiffness characteristics:  
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The real part of this function will be called effective stiffness ),( 0effC , and the 
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coefficient ),( 0effh  is the effective drag coefficient of the DH (figure 1b), ( 1i , , 

0  is the frequency and amplitude). 

2.1 Model of linear hydraulic damper 

In the simplest case, dynamic stiffness of linear DH with the drag coefficient dh  on an elastic 

foundation dC  can be obtained from equations (1 and 2) without taking the mass of the 

moving parts of the damper with 0 SK bb , 0 , a =1. Then instead of equations (1) we 

have the equation, which in dimensionless form becomes: 
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where: tDL , ddL hCD /  – quality factor, 
q

d K

S
h   — drag coefficient of damper,  -

 displacement of the piston of the damper relative to its housing, qK  - the ratio of the flow 

characteristics of the damper, 
0

4
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In this case, equations (4) relationship of the components of the dynamic stiffness of the 
damper to determine its parameters is expressed by formulas (5) and graphically presented in 
figure 3. 
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Note here practical result: the maximum level of damping when =0 is achieving from the 

condition of equality of the stiffness: dd Ch   - "damper resonance". 

Dependency analysis in figure 3 shows that accounting for the inertia of the liquid   can 
significantly change the elastic and damping properties of hydraulic damper. 
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(a)            (b) 

Figure 3: Effective stiffness (a) and effective drag coefficient of DH (b) 

1.2 Model DH with nonlinearities 

The results of the influence of the nonlinearities of the damper on its dynamic stiffness is 
made under the assumption that the inertia of the moving parts of the damper and inertia 
forces of resistance of the working fluid can be neglected. When considering the effect of 
nonlinear dependence of fluid flow from the pressure differential on the piston of the damper 
we assume that this dependence is determined from the experiment and is approximated by an 
exponential function (2) (figure 2b). Then study the dynamic properties of DH given the 
elasticity of attaching reduced to the study of solutions of the following nonlinear equations: 
















 

å

åå

FFof
d

Fd

FFofFsignFF
d

Fd

0
)(

)(
)(

   (6) 

where: tDN , 
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The parameters aeà F,F,q  are the coordinates of the nodes of interpolation of experimental 

flow characteristics of the damper; LN D,D  - quality factor of a nonlinear and a linear 

damper. 

For two cases of the nonlinear equation (4), when the exponent of the approximating function 
in equation (4) equal  =0.5 and 2.0, with help of harmonic linearization analytical are found 
the analytic expressions for the calculation of the components of the dynamic stiffness (3) [8]. 
When  =0.5 equation (6) determines the dynamic properties of the hydraulic damper on an 
elastic foundation with a quadratic characteristic dependence of the resistance force on the 
speed of displacement of the strut relative to the housing. For this case the formula for the 
computation of components of the dynamic stiffness of DH is present below: 
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где ND  – the quality factor of DH with quadratic characteristic resistance force. 

We note here that if DH with quadratic characteristic resistance force is fixed to a rigid base, 
the equivalent resistance coefficient of viscous friction damper is calculated by the known 
formula: 

03

8 


hh eq  ,      (8)  

For other values of exponent   of the approximating function in equations (6) calculation of 
the components of the dynamic stiffness was performed using the algorithm based on 
numerical integration of equations (6) by the Runge-Kutta method. 

The modulus of dynamic stiffness 0D  and its phase   was determined from the following 

relationships: 
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where: a1, b1 are the components of the basic harmonic of the Fourier series of steady-state 
periodic solution of equation (6) and represent the required components of the components of  
the dynamic stiffness of the nonlinear hydraulic damper. 

The results of calculations at ex =0 and at different exponents of approximating function  
shown in figure 4. 
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Figure 4: Influence of the exponent of the approximating function 
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2.3 The influence of free-play on dynamic stiffness DH 

Analysis of the influence of the nonlinear function )( 0F,b,f S  (1) due to the presence of 

free-play in the pivot joint of strut damper with an external load made in the simplest case, 
when the mathematical model of the damper is represented by the equation: 
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When  sin , 00 DF   a function )( 0F,b,f S  can be represented by the method of 

harmonic linearization in the form  )]()([)( 000 DbgD,bgF,b,f SSS , and then obtain 

the following characteristic equation for determining the modulus 0D  and phase   of 
dynamic stiffness:  
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where the coefficients )( 0D,bgg S  and )( 0Dbgg ,S  are expressed through the 
parameters of the nonlinear function as follows: 
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The solution of the transcendental equation (10) was performed by the graphic-analytical 
method, from which it follows (figure 5), that the emergence of a free-play in places of 
fastening of the hydraulic damper leads to a significant reduction of its stiffness and damping 
properties. 
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Figure 5: Influence of free-play on the dynamic stiffness of DH  

We note here that at   the fluid flow in the channels of the duct damper, tending to infinity, 
is missing, and DH "turns" in the spring with free-play. In this case, the posting control with 
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free-play in many cases can be represented by a model consisting of an elastic element with 
stiffness C  and free-play, size 2b (figure 6). This model, in particular, may show dynamic 

properties in torsion unmanaged wheel landing gear of the aircraft in the presence of free-play 
in the joints of the links of torque link. 

In the general case of nonsymmetric nonlinearity obtained the formula (12) by the method of 
harmonic linearization to calculate the dimensionless effective stiffness of the elastic-loaded 
chain with a free-play [7]. 

 

Figure 6: Scheme of the rigidity of the strut in torsion with free-play (indicated by a dotted line symmetric free-
play) 
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From the analysis of formula (11) implies that the effective stiffness is determined by only 
two parameters  ,  , and plotted in the form of a one-parameter family of curves (figure 7). 

When  =0 and 
1

0
32



 xx  the relation (11) is identical to the correlation function, 

describing the “symmetric free-play” (figure 7,  =0). 
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Figure 7: Dependence of effective stiffness of the strut torsion from the amplitude (indicated by a dotted 

line symmetric free-play)  

Comparison of experimental and calculated data shows that the dynamic characteristics of 
hydraulic dampers can be with acceptable accuracy obtained by calculation [ ]. 

In summary, the above main results, it should be emphasized that the most important 
parameter determining the dynamic properties of DH is its quality factor, defined as the ratio 
of linearization of the flow characteristics of the damper (figure 2b): 

The greatest damping effect of the hydraulic damper is manifested at frequencies of 
oscillation of the shaft close to the value of the quality factor of the damper. 

The appearance of free-playes at the joints of the damper to the main structure can lead to 
significant reduction in the efficiency of the use of hydraulic dampers, especially, at 
frequencies D . 

2.4 Dynamic stiffness of the friction damper 

In some cases, to prevent shimmy of wheels of orientation are applying friction dampers 
(FD). Example of FD is the front landing gear of a light aircraft, where in a mathematical 
model the link between oriented and fixed part of the spring strut can be modeled in the form 
of a dry friction damper, attaching on an elastic foundation with stiffness C  and moment of 

friction frM . Then the components of the dynamic stiffness are calculated by the 

approximate formula (13). 
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From formulas (13) and the graphs in figure 8 shows that the dry friction damper has a 



 

 11

maximum damping coefficient when the vibration amplitude is twice the amplitude bw , 

equal 



C

Fbw
bw , in which FD is included in the work. 
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Figure 8: The dependence of components of the dynamic stiffness of FD on elastic foundation from the 
amplitude of vibration 

3 THE INFLUENCE OF NONLINEARITIES ON SHIMMY OF WHEELS 
CROSSWIND OF UNDERCARRIAGE OF AIRCRAFT 

As is well known [7-10], for the analysis of shimmy of wheels crosswind of undercarriage, 
the connection between the movable 1 and fixed 2 parts strut of landing gear is modeled using 
an elastic element C  and connected in series with perfect shimmy damper dh  (figure 9). In 

this case, the torque produced by shimmy damper, it is linearly dependent on the velocity   
of the piston relative to the housing from deformation or (  ) of the elastic element C . In 

the case of quadratic dependence of the resistance force of the hydraulic damper on the speed 
of its piston, the pivot axis of the wheels, the corresponding equation has the form [9]: 

,Csignh )(    2       (14) 

where 2ramn/hhhd   ; 

a , m , r  and n  – tyre lateral stiffness, mass, wheel radius and wheels number (scaling 
coefficients).  

For an approximate estimation of the effect on shimmy structural strength (dry) friction in the 
shock absorber landing gear, the dependence of the moment of these forces from the velocity 

θ  represented in the form of an ideal relay features: 

.signÌÌ fr  
        (15) 
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Figure 9: Scheme of a landing gear with steered wheel and wheel of crosswind   

Then on the basis of relations (14) and (15) on known [10] the system of linear differential 
equations describing the motion of wheels of crosswind undercarriage may be in 
dimensionless form is represented as: 
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In these equations  ,, , , respectively, the angles of rotation of the strut landing gear 
relative to the axes Ox and Oy (figure 9), the displacement of the center of tire contact from 
the diametrical plane of the wheel and the angle of rotation center of the contact patch. 

Relation of dimensional and dimensionless quantities in (16) is defined by the following 

relations: 2nmrII xx  , 2nmrII yy  , 2nmrII xyxy   are the moments of inertia of the fixing 

of the landing gear relative to the respective axes; 2mrII ëk   - the moment of inertia of the 

wheel about the axis of its rotation; rm/aVV   - the speed of the aircraft; akk  , 
2arbb   - vertical stiffness and torsional stiffness of the tire; naCC   , 2narCC    -

 lateral and torsional stiffness of the landing gear mounting; 2r , r , r  –

 kinematic characteristics of the tire in the theory of rolling Keldysh; rtt   – the wheel axle 

offset; rll   – the effective length of the strut. Approximate calculation of the amplitudes and 
frequencies of limit cycles oscillations (LCO) of nonlinear system (16) and evaluation of their 
stability in some cases can be made on the basis of results of calculation of the linear system. 

Let's take the simplest example of such a system grapho-analytical method of determining the 
parameters of limit cycles using the results of the calculation of the stability of a linear 
system. Therefore, let us proceed from the condition that during oscillations of the landing 
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gear on the border region shimmy with the frequency sh  the moment of forces of dry 

friction approximately defined by an equivalent damping ratio 
0

4


 


Ì

heq , then, obviously, 

the values of the amplitudes of limit cycles oscillations LCO
0  can be determined from the 

equality of the calculated and specified values: 

./Ìh LCOsh sh

04        (17) 

Graphic build path dependencies )M,V(f fr
LCO 0 , based on equality (17), shown in figure 

10. 
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Figure 10: Calculation of parameters LCO NLG with friction damper 

At this the figure in quadrant a) shows a boundary region shimmy in the parameter plane 
shshh    and the speed of rolling of the wheels V , and the frequency of the shimmy 

m/a/shsh  , which are obtained from the solution of the equations (16) for =0 and 

replacing a summand 
signM  on the summand  h . In quadrant b) is dependence  

eqh
 from the amplitude 0 . Then, on the basis of equality (17) in quadrant c) depicts the desired 

dependence of the amplitudes of the LCO from the speed and moment of dry friction . 

From the presented results it is seen (figure 10c) that the limit cycles due to dry friction 
forces, are unstable, since the oscillation of the strut with the amplitudes LCO

00   these 

forces produce in the strut landing gear damping torque, less torque required for rolling 
stability of the wheels. 

In the case when to prevent shimmy at the strut of landing gear is set DH with quadratic 
characteristic (14), take in (16) the friction moment is equal to zero. Then, replacing the 
nonlinear part of the third equation of this system with linear part, equal dh , for the 

corresponding linear system of equations can determine the boundary of the stability domain 

in the parameter 
sh

d /h   plane and another independent parameter, e.g. a parameter ñ . 
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Then, from the equation: 

sh
eq

sh
d hh  ,      (18) 

where LCOshhh sh
'eq 03

8



  is the equivalent resistance coefficient of viscous friction 

damper, it is not difficult to obtain the dependence of the amplitudes of limit cycles LCO
0  

from parameter ñ . 

In the more general case, when the movement of the crosswind wheels is determined by the 
system of nonlinear equations (16), having two nonlinear terms, the application of the 
graphical method is time consuming task. 

Significant advantages when performing parametric calculations shimmy based on local 
nonlinear dependencies, as indicated above, the use of dynamic stiffness method (DSM) [ ]. 
In this method the equations shimmy with the help of the Laplace transform is written a single 
matrix equation. The matrix of this equation will contain an element that when setting a 
variable of the Laplace  is  is frequency response dynamic torsion stiffness of the strut 

),( 0iD , which can be used to explore shimmy with a variety of models of this stiffness. 

Examples of computation of this function is discussed above and in [7-9]. 

Method DSM, first, provide a much higher performance when computing the boundary of the 
stability domain in comparison, for instance, with the method of stability analysis, based on 
the Routh procedure, in combination with the solution of the complete problem of 
eigenvalues. Secondly, this method allows to investigate shimmy of the wheels with regard to 
more than two local nonlinearities and used in the calculations of the experimental frequency 
response. Third, the DSM method provide an opportunity to investigate the stability of the 
movement struts not only with crosswind wheels, but also other types of struts wheeled 
landing gear (managed, unmanaged) and consider the variety of relationships between the 
moving and fixed parts by means of the frequency characteristics of dynamic stiffness. 

Following this method [8], the system of equations (16) is represented in the frequency 
domain in the form of a nonlinear system of homogeneous algebraic equations: 

00  )i()i,(K    (19) 

where Ti,i,i,ii ][ )()()()()(   is a complex vector of generalized coordinates. 

Matrix ),( 0  iÊ  for equations (16) can be represented as the following structure: 
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  (20) 

It is obvious that the summand )(  i,D 0  of element )i(K 22  of matrix )i,(K 0  is the 

frequency characteristic of the dynamic stiffness of the strut in torsion and in the present case, 
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crosswind wheels is the sum of the dynamic stiffness of the nonlinear hydraulic damper 
)i,(Dd 0  and dynamic stiffness )i,(Dt 0  due to dry friction forces: 

,i,Di,D
C

iMiM
i,D dfr

dfr )()(
)()(

)( 






00

0
0    (21) 

where ;
M

ihii,D
fr

fr eq

0
0

4





)(  and components of the dynamic stiffness 

)()()( 000  ,hi,Ñi,D efefeff   are calculated by the formulas (5). 

After calculating the matrix ),( 0  iK  by equations (20) and (21), take 0),( 0  iDt  (dry 

friction is absent), then using the method of dynamic stiffness can calculate for the stability of 

motion of the wheels the required values of the damping ratio )( shik  22Im , which are 

determined by complex value of the increment to the imaginary part of element )(22 ik  of 
matrix and calculated by the formula: 

)(Adet

)i,(Ktde
I)i(K y 




22

02

22  .  (22) 

where )(  i,Ktde 0  is the determinant of the matrix ),( 0  iK  for ;0)(22 iK  

)(det 22 iA  - algebraic addition to element )(22 iK  of  the matrix )i,(K 0 . 

It is obvious that the intersection points of the calculated function )( shiK  22θ Im  with 

the specified function 00 4Im  /MiD fr
sh

,fr )(  (figure 14) determine the amplitude and 

frequency of LCO of the testing system depending on the change of the preset parameters of 

nonlinearities frM , h  and speed V  (figure 11). 
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Figure 11: The influence force of the quadratic a) and dry friction on LCO amplitude (- - - numerical 
integration). 
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From the analysis of these dependences shows that the nonlinearity of the type of dry and 
quadratic friction significantly change the picture of the emergence and development of 
shimmy. In the absence of forces of structural friction the movement of the crosswind wheels 
may be accompanied by sustained oscillations, while the level of external disturbances will 
not cause vibration of strut with amplitude exceeding the amplitude of the unstable limit 
cycle. With the growth of the forces of dry friction the amplitude of the unstable limit cycle 
increases, and steady, on the contrary, decrease, i.e. dry friction in the strut can significantly 
delay the occurrence of shimmy. Increasing the fluid flow flowing in the damper (reducing 

the coefficient of resistance h ), you can also boost safe level of external disturbances. 

4 SELF-OSCILLATION OF MLG WITH FREE-PLAY IN THE ATTACHMENT 
FITTING OF TORQUE LINK 

The method of DSM were calculated parameters of limit cycles oscillations of the wheels of 
the main landing gear of a transport aircraft with the use of models in torsional stiffness with 
free-play (12). The results of the calculation of the amplitude of self-oscillations for the cases 
of symmetric and asymmetric free-play is shown in figure 12 for two values of speed V  of 
rolling of the wheels. Analysis of these results shows that the oscillations of the wheels of 
MLG with "symmetric" free-play will be damped at all levels of initial angles of twist of the 

strut 0 , if the damping ratio shhh θθ . When shhh θθ  the wheel oscillation will be damped 

only when the initial deviation is smaller than the amplitude of the unstable LCO: LCO
00 θθ  . 

 
Figure 12: Dependence of the amplitudes of the LCO from damping coefficient of the support in torsion with 

"symmetric" and "asymmetric" free-play 

For "asymmetric" free-play parameters LCO depend on the speed of rolling of the wheel. At 

low speeds and when shhh θθ  the calculations at shimmy in the time domain, performed in [ ] 

show that the accuracy of an approximate method of harmonic linearization models of 
nonlinearities is quite satisfactory for engineering calculations of the parameters of limit 
cycles of self-oscillations of the wheels of the landing gear. 

5 CONCLUSION 

The results of the studies discussed above demonstrate the importance of taking into account 
nonlinearities in the study of shimmy and show a significant influence on the parameters of 
limit cycles oscillations of the wheels. 
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