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Abstract: An isogeometric framework is presented for parametrizing a wind turbine rotor blade and analysing its response.
The framework consists of multi-fidelity approach for wind turbine rotor analysis. The aeroelastic loads are determined
using a low-fidelity model. This low-fidelity model is based on isogeometric approach to model both the structural and
aerodynamic properties, because of its suitability for shape and size optimization. The structural properties are determined
using a geometrically exact beam model and a standard Blade Element Momentum(BEM) method is used to calculate the
aerodynamic loads. In addition, the aerodynamic loads calculated using BEM theory are modified to account for change
in the blade shape during shape optimization or for very flexible blade undergoing large deformation. The cross-sectional
properties of the blade, needed for the beam model, are determined using an in-house tool that generates the cross-sectional
stiffness properties with all possible couplings for thin-walled, multi-cell, open or closed cross-sections with anisotropic
properties. The aeroelastic loads are applied in finite element analysis (Nastran) as static loads to a shell model of the blade;
and both the stress response and buckling response are extracted. In addition, sensitivity coefficients of the aeroelastic
responses to the design variables are calculated, such that this framework can also be used to optimize the rotor blade.
Furthermore, the capabilities of Nastran are extended such that design dependent loads can be applied, resulting in correct
aeroelastic sensitivities of Nastran responses. The framework is verified against results from the commercial codes FAST
and GH Bladed, using the NREL 61.5m rotor blade as a baseline for comparison,showing good agreement. Finally, the
capability of the present method in designing and analysing non-conventional blades is demonstrated by investigating the
aeroelastic characteristics of the curved Sandia 30m, STAR blade.

1. INTRODUCTION

Wind turbines are designed for increased energy yield while minimizing operational cost, as to make it competitive with
other energy sources. In the past decade an increasing number of wind farms has been installed offshore, while the size of
HAWTs has also steadily increased [1]. However, larger HAWT rotor blades are more flexible, which means aeroelasticity
needs to be taken into account.

Several aeroelastic codes for wind turbine analysis have been developed. Most approaches[2, 3, 4, 5, 6] use Blade
Element Momentum(BEM) theory for calculating the aerodynamic loads, while the structural models are based either on
FEM, modal approach or Multi-body dynamics. A detailed review on wind turbine aeroelasticity can be found in [7].

Furthermore, the increased cost of energy production, necessitates the design of more efficient wind turbine rotor blades.
Many researches are continuously being conducted to design wind turbine rotor blades with increased energy yield, while
minimizing the cost. Several optimization methods[8, 9, 10, 11] have been proposed to minimize the Cost Of Energy(COE)
of HAWTs, that did not incorporate the aeroelastic effect of wind turbine blades. However, as wind turbine rotor blades
became more flexible, their aeroelastic effect is being incorporated during the optimization process [12, 13, 14, 15]. In
addition,the use of bend-twist coupling in wind turbine blades is increasingly being investigated for increased energy
capture or for load reduction [16, 17]. Bend-twist coupling in blades can be achieved by optimizing the fibre orientations
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of the composite laminates [18] or designing a swept blade planform [19], where the additional moment caused by the
blade sweep twists the blade to stall or to feather depending on the direction of the blade sweep.

The demand for designing an optimal wind turbine rotor blades(in terms of planform or material distribution), places
a premium on rotor blade optimisation. A general framework is presented in this work that is capable of parametrizing
efficiently a wind turbine rotor blade in terms of its geometry and material, i.e planform, beam axis(as to design curved
blades) and laminate thickness together with the fibre angles of a composite material. The framework is also be capable
of including static aeroelastic effect during analysis. This allows the user to investigate the effect of changing different
parameters of the rotor blade on the wind turbine rotor performance, making the design or optimization of a blade, using
both the geometry and material as design variables, more efficient.

NURBS representations are commonly used to construct Computer Aided Design (CAD) descriptions of engineering
products. More recently the same NURBS representations are used to model physical response quantities both in structural
analysis [20], where they are used to describe the variation of displacements and/or stresses, and in aerodynamic analysis
where it is used to describe the variation of flow velocities and pressure [21]. The use of the same description for both
geometry and physics is termed isogeometric analysis (IGA). In this paper, we create an IGA based framework not only
for describing the geometry of wind turbine rotor blades and analysing their response, but also as means for structural and
aerodynamic design parametrisation.

The rest of this paper is organised as follows: the first section gives a brief overview of NURBS and their properties used
in the present framework. Followed by a section describing the parametrization of a wind turbine rotor blade used in current
framework. The aeroelastic model that describes the structural and aerodynamic models, together with the centrifugal loads
is described afterwards. Finally, the aeroelastic model is verified in the result section using the NREL 61.5m rotor blade
[22] as a baseline for comparison. The capability of the present method in designing and analysing non-conventional blades
is demonstrated by investigating the aeroelastic characteristics of the Sandia 30m, STAR blade [23].

2. NURBS GEOMETRY AND PROPERTIES

One-dimensional B-splines are defined over an interval on the real axis described by a knot vector Ξ

Ξ =
{
ξ1 = ... = ξp+1 = 0, ξp+2, ..., ξn, ξn+1 = ... = ξn+p+1 = 1,

}
, ξ1 ≤ ξ2 ≤ . . . ≤ ξn+1, (1)

where Ξ in this case is an open knot vector. The B-splines of degree p are defined recursively as,

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
and, (2)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (3)

The knot vector has n+ p+ 1 elements where n is the number of non-zero intervals [ξi, ξi+1) called a knot span.
For the present method, the basis functions are C∞ continuous in the interior of the knot span and Cp−1 continuous at
boundary of the knot span. Detailed description on B-spline functions can be found in [24].

The pth degree Non-Uniform Rational B-Spline(NURBS) is a piecewise rational function defined by the projective
transformation,

Ri,p(ξ) =
Ni,p(ξ)wi
ω(ξ)

, (4)

where wi is a positive weight factor of the spline function Ni,p(ξ). The denominator of equation 4 is referred to as
weighting function, i.e.

ω(ξ) =

n∑
i=1

Ni,p(ξ)wi. (5)

The continuity properties of the B-spline functions carry over to NURBS functions. B-spline may be recovered from
NURBS by assigning uniform weights to all basis functions. The additional freedom in choice of weights make NURBS
representations more versatile than B-splines. Moreover, common geometric shapes such as conic sections are exactly
representable using NURBS.

Some of the characteristic features of B-splines and NURBS is illustrated in figure 1, where the basis functions of
B-splines and NURBS are plotted for p = 3 and Ξ =

{
0, 0, 0, 1

4
, 1

2
, 3

4
, 1, 1, 1

}
.
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Figure 1. Cubic basis functions of B-splines and NURBS. The solid lines represent the B-spline basis Ni,3 with i = 1, . . . , n, whereas
modifying a single weight(w7 = 2) results in p + 1 rational basis functions Ri,3 with i = 4, . . . , 7, represented by dashed lines. All

other basis functions are unaffected.

2.1. NUBRS curves

A B-spline curve is a linear combination of B-spline functions and control points in Rd [24]. The position vector of a point
on the curve is given by,

r(ξ) =

n∑
i=1

Ni,p(ξ)P i. (6)

The control points P i, form the so-called control polygon.
A d-dimensional NURBS curve is obtained by projecting a d+ 1 dimensional B-spline curve []. The control points of

the B-spline curve, denoted by Pw, are referred to as homogeneous coordinates. The projected control points, denoted by
P , are referred to as non-homogeneous control points. The d+ 1 component of the corresponding B-spline curve is the
control point weight.

A NURBS curve generated by an open knot vector is tangent to the control polygon at either end. An affine
transformation may be applied to a NURBS curve by applying it to the control points. Because the NURBS shape functions
have local support, change of a control point P i or its weight wi results only in local change of the NURBS curve.

2.2. Knot refinement

Knot refinement gives flexibility for the proposed framework to have different level of parametrization while preserving
the geometry. The coarse knot vector for instance is used to define the geometric properties of the structure and, the refined
knot vector is used for analysis, in which large number control points are needed to get converged result, making this
method particularly useful for optimization.

Knot refinement is the application of multiple knot insertion simultaneously. For Knot insertion, a single knot ξ̄ ∈
[ξk, ξk+1) is added to the knot vector Ξ, resulting in the extended knot vector Ξ ⊂ Ξ̂. As a result, the number of basis
functions is increased by one, i.e. n̄ = n+ 1. Knot insertion changes the vector space of the basis function while preserving
the geometry [], i.e.

n∑
i=1

Ni,p(ξ)P
w
i =

n̄∑
j=1

N̄i,p(ξ)P̄
w
j , (7)

where P̄w
j is an arbitrary homogeneous control point in the new control polygon, calculated from the old control polygon

as
P̄
w
j = αiP

w
i + (1− αi)Pw

i−1, (8)

where the definition of the parameter αi is given in [24].
Assuming that the old knot vector Ξ is extended with r new knots, the knot refinement may be expressed in matrix form

as

P̄
w

= LPw, (9)

where Pw and P̄w are matrix representation of the coarse and refined (homogeneous)control points, respectively. The
columns ofPw and P̄w are the components of a single control point. The symbol L is a banded matrix of size (n+ r × n)
containing information on the knot refinement. Efficient method of performing knot refinement without inserting knots
sequentially, using equation 8, is discussed extensively in [25].

The refined non-homogeneous control points P̄ j are related to the coarse non-homogeneous control points P i as

P̄ = LwP , (10)
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where
Lw = W̄

−1LW , (11)

and P and P̄ are matrix representation of the coarse and refined (non-homogeneous)control points, respectively. The
diagonal matrix W contains the weights wi, with i = 1, . . . , n, for control points P , whereas W̄ contains the weights
wj , with j = 1, . . . , n+ r, for control points P̄ .

3. PARAMETRIC BLADE MODEL GENERATION

A parametric approach is set-up capable of modelling wind turbine blades with generic shapes like sweep, curvature or
any other complex shapes. The parametrization of the current method allows for parametric study or shape optimization
routine, where the shape of the blade and material properties can easily be varied.

The blade geometry is modelled with respect to the rotating frame denoted by (X,Y,Z), shown in figure 2. The base
vector e3 is orthogonal to the rotor plane, while e1, e2 span the rotor plane. The aerodynamic module accounts for wind
shear, where the aerodynamic loads are calculated at azimuth position φ(see figure 2).

Figure 2. Definition of moving reference frame and wind shear for wind turbine aeroelastic analysis

The present method makes use of the NURBS function, described in section 2, to generate the blade shape and material
properties. Multi level discretization scheme is used to parametrize the geometry and material with different set of control
points as shown in figure 3. The control point properties of the geometry and material are mapped unto the analysis space
using the Knot refinement method described in sub-section 2.2.

3.1. Geometry model

The geometry of a wind turbine blade may be defined as a series of cross-sections connected by a beam axis. The beam
axis is parametrized with a set of position vectors defining the beam axis P r , while a cross-section is parametrized with: a
set of airfoil shapes P paf , and the corresponding weightsC, a set of twist distribution P θ , intersection point of the beam
axis with the cross-sectional plane P α, and spar locations on the unit chord line V s.

Beam axis
The beam axis is interpolated using the NURBS function and the control point values of the beam axis as,

rb(ξ) =

n∑
i=1

Ri,p(ξ)Pri, (12)

where Pri is the position vector of the beam axis at control point i.
The arch-length, which is the distance from the root of the blade till the parametric point ξ, is given by,

s(ξ) =

ξ∫
0

J(ξ)dξ, (13)
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Figure 3. Multi level parametrization of a wind turbine blade

where J(ξ) is the Jacobian, defined as,

J(ξ) =

∥∥∥∥drbdξ
∥∥∥∥ . (14)

The definition of the arc length, given in equation 13, is used in subsection 3.3 to generate the finite element model.
The cross-sections are orthogonal to the beam axis. Consequently, the body attached base vector normal to the cross-

section is tangent to the beam axis, i.e.

g1 =
1

J(ξ)

drb
dξ

. (15)

The remaining two, body attached, base vectors(g2, g3) span the plane of the cross-section, calculated as

g̃2(ξ) = g1(ξ)× e2 and g̃3(ξ) = g̃2(ξ)× g1(ξ), (16)

where e2 is a base vector of the rotating coordinate system(see figure 2).
The base vector tangent to the beam axis(g1) remains unaffected by the structural twist θ(ξ), while g2 and g3 are

rotated, such that

g2(ξ) = cos(θ)g̃2 − sin(θ)g̃3 and g3(ξ) = sin(θ)g̃2 + cos(θ)g̃3, (17)

where θ(ξ) is the structural twist calculated using the twist distribution per control point and the NURBS function as,

θ(ξ) =

n∑
i=1

Ri,p(ξ)P θ,i, (18)

where P θ,i is the ith control point value of the twist distribution. The base vectors spanning a cross-section at ξ are given
in a matrix form as, Λ0(ξ) =

[
g1, g2, g3

]
.

Cross-section
The cross-sectional shape of a turbine blade at the parametric point ξ is modelled using the set of airfoil shapes supplied

by the user. First the non dimensional airfoils need to be discretized to get uniform discretization of the airfoil shapes,
suitable for interpolation. The airfoil shapes are provided as a text file of non dimensional airfoil coordinates in 2D plane,
which is not necessary of the same size for all airfoils. The top and bottom skin of an airfoil are discretized separately by
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computing the step size in chord direction(yi+1), such that

min
yi+1

( yi+1∫
yi

√√√√1 +

(
dz(x)

dy

)2

dy −∆C

)2

,

s.t. yi+1 ∈ [yi, 1],

(19)

is satisfied for i = 1, . . . , Nc + 1, where Nc is the number of elements in chord direction, and [y1, yNc+1] = [0, 1]. The
gradient dz(y)

dy
, is computed using finite difference. The minimization problem defined in equation 19 is solved using the

Matlab fminbnd function for

∆C =
1

Nc
, (20)

where Nc is a user supplied parameter.
The chord-wise position of the spars is defined in vector form as,

V sp = [ai, . . . , aS ], (21)

where ai is the location of the ith spar on the non-dimensional chord line, and S is the total number of spars. The present
parametrization method has a limitation that the number of spars is constant along the span of the blade, which my not be
the case for some wind turbine blades.

The spars are discretized in Ns,i equidistant elements, where Ns,i =
(
Ncli

)
r

with the subscript r denoting rounding

to the nearest integer. li is the length of spar i, which is the length of a vertical line intersecting the outer contour of an
airfoil at ai. An example of the airfoil discretization scheme is shown in figure 4, where the chord is discretized in 15
elements.

Figure 4. Example of airfoil discretization and property assignment on cross-section level, where each colour represents a single
laminate. The local airfoil coordinates are denoted by X1 and X2, while g2 and g3 are the base vectors of the beam axis that span

the cross-section.

The discretized airfoil shapes in a given pool are used to calculate the weighted airfoil shapes per control point. Weighted
airfoil shapes are calculated as a linear combination of the airfoil shapes in a given pool(base airfoils) times user supplied
weight factors, i.e.

P af,i =

m∑
j=1

Ci,jP paf,j , (22)

where m is the number of base airfoils, P paf,j is jth base airfoil shape, and P af,i is a matrix representation of the
weighted airfoil shape at control point i, where each row of P af,i represent a point on the airfoil. The coefficient Ci,j is

a component of the n×m matrix C that contains the weights of the base airfoils per control point, and
m∑
j=1

Ci,j is the

chord length at control point i.
The shape of a cross-section in 2D is defined as,

R2D(ξ) = rα +
n∑
i=1

Ri,p(ξ)P af,i, (23)
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where,

rα =

n∑
i=1

m∑
j=1

Ci,jP α,i, (24)

and P α,i is a non-dimensional vector at control point i defining the intersection of the beam axis with the cross-sectional
plane(see figure 4). The 3D co-ordinate of a cross-section at ξ is given by,

R3D,k(ξ) = rb(ξ) + Λ0(ξ)R2D,k(ξ), (25)

where the subscript k denotes a point on the cross-section.

3.2. Material properties

The present method uses composite materials to define the material properties of the wind turbine blade. The laminate
properties used in the present method are comprised of: laminate thickness(h), membrane stiffness(A), and bending
stiffness(D).

First the laminate properties per control point are determined by dividing the cross-section in Npr + 1 sections, where
the contour of the cross-section is divided by Npr sections(see figure 4). The length of each laminate, except the laminate
for the shear webs, is defined by a non dimensional parameter describing the discretization of the (non-dimensional)chord
for property assignment, i.e.

V pr = [0, a1, . . . , aNpr−1, 1], (26)

where ak with k = 1, . . . , Npr + 1, is a partition point on the non-dimensional chord line, and Vpr,i+1 − Vpr,i is the
length of a laminate projected on the non-dimensional chord. The laminate properties at ξ are calculated using the control
point properties of the Npr + 1 laminates and the NURBS function as,

hk(ξ) =

n∑
i=1

Ri,p(ξ)P
k
h,i, Ak(ξ) =

n∑
i=1

Ri,p(ξ)P
k
A,i, Dk(ξ) =

n∑
i=1

Ri,p(ξ)P
k
D,i, (27)

where k = 1, . . . , Npr + 1, is an index running over the laminates per control point, and P k
h,i is the thickness of laminate

k at control point i. Similarly, P k
A,i and P k

D,i are the membrane and bending stiffness matrices of laminate k at control
point i.

3.3. Finite Element model

The finite element model is generated using the geometric model and the material properties, discussed in subsections
3.1 and 3.2, respectively. The blade geometry is discretized in span-wise direction and over the cross-section using two
parameters. The first parameter isNcr , which determines the number of elements in chord direction. The second parameter
is the aspect ratio of a shell element, defined as ar = ∆S

∆C
, where ∆S and ∆C are the length of an element in span-wise

and chord direction, respectively.
The partition of the cross-section is done separately on the airfoil level, such that any cross-section that is a combination

of the base airfoils is also discretized with the same number of elements. The discretization of the blade in span-wise
direction is depicted in figure 5, where the cross-section at ξi+1 is calculated by determining ξi+1, such that

∆Si −
ξi+1∫
ξi

J(ξ)dξ = 0 (28)

is satisfied, for i = 1, . . . , Ns, where ξNs = 1. Equation 28 is solved numerically for ξi+1 using the matlab fminbnd
function.

The finite element solver NASTRAN is used to calculate the structural response of a wind turbine rotor. The finite
elements employed to model a wind turbine rotor are the CQUAD4 elements. The laminate properties may be defined in
NASTRAN using a combination of PSHELL and MAT2 card. The PSHELL card is used to assign the laminate thickness,
while the MAT2 card is used to assign the shell thickness, normalized membrane Â and bending D̂ stiffness properties.
The laminate properties, for elements between the cross-sections at ξi and ξi+1, are calculated using equation 27, for
ξ = 1

2

(
ξi + ξi+1

)
.

The RBE3 card is used to apply the aeroelastic loads, calculated using the low fidelity aeroelastic model, to the
NASTRAN model and perform static and buckling analysis together with sensitivity analysis. The multipoint connections,
used in the RBE3 card, are defined per cross-section, as shown in figure 5.
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Figure 5. Discretization of the geometry in span wise direction and representation of RBE3 connection

4. AEROELASTIC MODEL

An aeroelastic model is presented, where geometrically exact beam model is used to calculate the non-linear displacements
while the Blade Element Momentum theory is employed to calculate the aerodynamic loads. In addition, the centrifugal
loads are also taken into account during the aeroelastic analysis.

4.1. Structural Model

The wind turbine blade is modelled using the geometrically exact beam theory [26] together with the Timoshenko beam
model. The Timoshenko beam model removes the need to determine the location of the shear center, making it useful for
composite optimization.

The internal force resultant and tangent stiffness matrix are respectively, the first and second variation of the strain
energy with respect to the generalized coordinates. The generalized coordinates are the displacement of the beam axis and
its rotation. The strain energy is expressed in terms of the strain measures and the stress and stress-couple resultants,

U =
1

2

L∫
0

(
γtN + κtM

)
dx, (29)

where the stress and stress-couple resultants(NandM ) are related to the strain measures(γandκ), through the Timoshenko
stiffness matrix as

F = Sε, (30)

where S is the six by six Timoshenko stiffness matrix[27] and F is the generalized stress resultant composed of the stress
and stress-couple resultants as F =

{
N M

}
. The the generalized strain measure ε is composed of the translational and

rotational strain measures as ε =
{
γ κ

}
.

Starting from the Reissner-Simo beam theory [28], the translational and rotational strain measures, with respect to the
body-attached frame at a given cross-section are related to the beam configuration(u,R) through the equations

γ = Λt
0

(
Rtu′ +

(
Rt − I

)
r′0

)
and κ̂ = Λt

0R
tR′Λ0, (31)

where κ̂ is the skew symmetric matrix of the rotational strain measure κ and (′) denotes derivative with respect to the arc-
length x. The displacement of the beam axis is denoted by u, whileR is the rotation matrix, which maps the orthonormal
base vectors from the initial configuration(g0,i) to the deformed configuration(gi).

The rotation matrix and its variation with respect to the generalized coordinates is expressed in quaternion representation
of rotations. More on parametrization of rotation using quaternions can be found in [29, 30, 31, 32]. The generalized load
resultant and the tangent stiffness matrix are given as

f =

L∫
0

εS
∂ε

∂q
ds and K =

L∫
0

(
∂εt

∂q
S
∂ε

∂q
+ εtS

∂2ε

∂q∂q

)
ds (32)

where q is a vector, composed of the generalized displacements and rotations. Isogeometric formulation is employed to
evaluate equation 32, where Non-Uniform Rational B-splines are used as basis functions [].
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4.2. Centrifugal load

Rotating bodies experience centrifugal effects. These forces are non existent in inertial frame of reference, however
in rotating frame, the centrifugal effects are seen as inertial loads [33]. These inertial effects can be decomposed into
centrifugal force and Coriolis force. Only the centrifugal effect is considered for current static aeroelasticity. The kinetic
energy of a beam is defined as

T =
1

2

∫
M

|vl|2 dm (33)

where vl is the velocity of the differential mass dm with respect to the rotating frame. Assuming only static blade
deformations, vl is related to the position vector of a particle in rotating frame as, vl = ωêωrl, where ω and êω are
respectively, the magnitude and direction, in skew symmetric notation, of the angular velocity of the blade.

The position vector rl of a mass particle is expressed as rl = rb + Λrp, where rb is the position vector of the beam
axis and rp is the position vector of mass particle with respect to the body-attached base vectors Λ0. Assuming small
rotations, the beam axis and the body-attached base vectors are parametrized as

rb = rb,0 + u and Λ =
(
I + θ̂

)
Λ0, (34)

where rb,0 and Λ0 are the initial beam axis and body-attached base vectors, respectively. The displacement and rotation
of the beam axis are denoted by u and θ respectively.

Using the fact that dm = ρdAds, where dA and ds are the differential area and arc-length, the kinetic energy is
expressed as double integral along the cross-section and the arch-length as,

T =
1

2

L∫
0

∫
A

|vg|2 ρdAds, (35)

where ρ is the material density. The generalized centrifugal force and stiffness are the first and second variation of the
kinetic energy with respect to the generalized coordinates

(
q =

{
u,θ

}t),i.e

fct =

L∫
0

∫
A

∂ |vg|2

∂q
ρdAds, and Kct =

L∫
0

∫
A

∂2 |vg|2

∂q∂q
ρdAds. (36)

4.3. Aerodynamic Model

The Blade Element Momentum(BEM) theory with tip loss correction, described in [34], is used to calculate at the
integration point ξ, the aerodynamic force and moment vector per unit length. The BEM model requires as input among
others: the blade radius r(ξ), chord ca(ξ), twist θa(ξ) and the polar data of the airfoilAaf (ξ).

Starting from the expression for the deformed beam axis

r(ξ) =

n∑
i=1

Ri,p(ξ)(P ri + ui), (37)

where ui is the unknown displacement at control point i and P ri is the initial beam axis at control point i, the radius along
the blade span is calculated as

r(ξ) = rh + ‖r(ξ)× e3‖ , (38)

where rh is the hub radius and e3 is a component of the inertial frame shown in figure 2.
For flexible blades or blades with initially curved beam axis, the undisturbed airflow sees a different airfoil shape than the

structural airfoil shape, as shown in figure 6. This requires that the airfoil polar data needs to be calculated per integration
point ξ. This increases the computational time, thus not useful for fast analysis or optimization. Other possibility is to use
a correction on the chord and twist by projecting the airfoil shape defined in the structural frame unto the aerodynamic
frame and calculating the chord and twist of the projected airfoil shape, as shown in figure 7. To apply this correction, it is
assumed that the chord and twist vary slowly.

The chord cs and twist θs at the parametric point ξ are define as

cs(ξ) =

m∑
j=1

n∑
i=1

Ri,p(ξ)Ci,j and θs(ξ) =

n∑
i=1

Ri,p(ξ)P θ,i. (39)
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Figure 6. 3D and top view of a curved and twisted blade where ai are base vectors of the aerodynamic frame and ti are base vectors
of the structural frame

Figure 7. Projection of a cross-section from the structural plane unto the aerodynamic plane along a1

As mentioned earlier, the chord and twist given in equation 39 are corrected for the flexibility of the blade, first by
projecting the airfoil shape defined in the structural plane to the aerodynamic plane(see figure 7). The cross-sectional
shape of a blade at ξ may be expressed with respect to the body-attached structural frame Λs(ξ) or the aerodynamic frame
Λa(ξ) as

Λs(ξ)rs = Λa(ξ)ra, (40)

where ti, for i = 1, . . . , 3, are the base vectors of the structural frame Λs, defined as

t1 = Rt̄1, t2 = R
(
cos(θs)t̄2 − sin(θs)t̄3

)
, and t3 = R

(
sin(θs)t̄2 + cos(θs)t̄3

)
, (41)

where

t̄1 =
1

J(ξ)

dr

dξ
, t̄2(ξ) = t̄1(ξ)× e2, and t̄3(ξ) = t̄2(ξ)× t̄1(ξ), (42)

10
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and R is the matrix representation of rotation. The vectors ai,for i = 1, . . . , 3, are the base vectors of the aerodynamic
frame Λa, defined as

a1 =
1

‖r(ξ)× e3‖
It1r(ξ), a2 =

1

‖r(ξ)× e3‖
It2r(ξ), and a3 = e3, (43)

where I1 =
[
e1, e2,0

]
and I1 =

[
e2, e1,0

]
. The vectors rs and ra are the co-ordinates of the cross-section with respect

to the structural and aerodynamic frame, respectively. Since et1rs = 0, ra,1 is expressed as

ra,1 = − t
t
1a2

tt1a1
ra,2 −

tt1a3

tt1a1
ra,3, (44)

where ra,i, for i = 1, . . . , 3, is the ith component of ra. The shape of the cross-section, defined in the structural plane, is
projected unto the aerodynamic plane along a1, such that

r̄a = P r̄s, (45)

where
P = Ī

t
Λt
sΛ̄a, (46)

and Ī =
[
e2, e3

]
. r̄s is the co-ordinate of the airfoil shape in the structural plane, whereas r̄a is the co-ordinate of the

projected airfoil shape in the aerodynamic plane. Components of Λ̄a =
[
ā2, ā3

]
are calculated as

ā2 = a2 −
tt1a2

tt1a1
a1 and ā3 = a3 −

tt1a3

tt1a1
a1. (47)

The chord, corrected for blade flexibility and/or initially curved beam axis, is calculated using the projected matrix P
as

ca = cs

√
ēt1P

tP ē1, (48)

where ē1 = {1, 0}t and cs is the structural chord.
The corrected twist θa is calculated as

θa = sin−1 ( cs
ca
ēt2P ē1

) 180

π
, (49)

where ē2 =
{

0, 1
}t.

The polar data of the airfoil shape at the parametric point ξ is calculated from the polar data of the base airfoils as,

Aaf (ξ) =
1

cs(ξ)

m∑
j=1

n∑
i=1

Ri,p(ξ)Ci,jApaf,j , (50)

whereApaf (ξ) is a matrix containing the Cl, Cd, and Cm data, for a range of α, of airfoil j in a given pool.
Wind shear is taken into account when calculating the aerodynamic load on a single blade(see figure 2). The wind speed,

of all blades, at r(ξ) is sampled for a range of, user supplied, azimuth angle and hub height wind speed U , using the power
law defined in the IEC guidelines []. The average aerodynamic force and moment at ξ is calculated as

f̄(ξ) =

Nw∑
i=1

wif i(ξ), and m̄(ξ) =

Nw∑
i=1

wimi(ξ), (51)

where Nw is the number of sampled azimuth positions, wi is the weight of the aerodynamic load calculated at the azimuth

position φi,such that
Nw∑
i=1

wi = 1.

4.4. Aerostructural coupling

In most cases of structural design or optimization of wind turbine blades, the aerodynamic loads are applied as fixed
loads, meaning the aerodynamic loads are not dependent on the structural deformation. This assumption is valid for stiff
structures. For flexible structures however, the aerodynamic loads are dependent on the structural deformation and vice-
versa. The Aeroelastic solution is obtained by equating the internal loads with external loads, expressed mathematically
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as,
R = f int (q,u)− fext (q,u) = 0, (52)

Where R is the residual vector, q is the generalized displacement and rotation vector, and u is the mean wind speed. The
generalized internal and external load vectors(f int, and fext) are defined as,

f int = fs − ω
2Kcsq, and fext = fa + ω2fcs, (53)

where ω is the rotational speed, and fs and fcs are the generalized structural and centrifugal load resultants given in
equations 32 and 36, respectively. The generalized load resultant for the aerodynamic loads(fa) is given as,

fa =

1∫
0

(
∂ut

∂q
Λaf̄ + ∂θt

∂q
Λam̄

)
Jdξ. (54)

Aeroelastic equilibrium condition is achieved when the residual of equation 52 converges to zero. To simulate the
operation of pitch regulated wind turbine rotors, an additional equilibrium equation is added, namely the power after the
rated wind speed is limited to the rated power supplied by the user. An additional general coordinate, namely the pitch angle
is added to the generalized displacement and rotation vector q as, qθ =

{
qt, θ

}t. Therefore, the augmented equilibrium
equations are as follows,

f int (qθ,u)− fext (qθ,u) = 0, and P (qθ,u)− Prated = 0, (55)

where Prated and P are the rated power and the power calculated at wind speed u.
The non-linear aeroelastic equilibrium is calculated by dividing the wind speed u into a given number of steps, controlled

by the parameter λ. At a given (fraction of)wind speed λu, a prediction of the equilibrium point for the next wind speed
is made by linearising the equilibrium equation 55 around the current equilibrium point. Followed by a correction phase,
keeping λ constant and varying the generalized coordinates qθ until the equations in 55 are satisfied.

5. HIGH-FIDELITY STRUCTURAL ANALYSIS

The finite element solver NASTRAN is used to calculate high-fidelity structural response using the shell model of the wind
turbine blade. The aeroelastic loads, including the centrifugal loads, calculated on the low-fidelity model, are applied as
static loads on the NASTRAN model using the RBE3 card described in section 3.3. The aeroelastic force and moment
vectors per unit length are interpolated on the RBE3 elements using the virtual work principle, given as

fRBE3 =

1∫
0

N t(ξ)f interp(ξ)J(ξ)dξ and mRBE3 =

1∫
0

N t(ξ)minterp(ξ)J(ξ)dξ, (56)

where,

N(ξ) =

n1(ξ) 0 0 n2(ξ) 0 0
0 n1(ξ) 0 0 n2(ξ) 0
0 0 n1(ξ) 0 0 n2(ξ)

 , (57)

and n1 and n2 are linear shape functions of the two grid points connected to an RBE3 element. The definition of
the jacobian J(ξ) is given in equation 14. The force f interp(ξ) and moment minterp(ξ) vectors per unit length are
linear interpolation of the aeroelastic loads calculated using the low fidelity model, i.e. f interp(ξ) = Ψ(f̄(ξae), ξ) and
minterp(ξ) = Ψ(m̄(ξae), ξ), where Ψ is the Matlab interp1 function, used to interpolate the aeroelastic loads sampled at
ξae.

Aside from the analysis of the structural responses, NASTRAN is also used to asses the sensitivity of the structural
responses with respect to the design variables. To achieve this, the design optimization solution sequence is used with the
execution control statement SOL 200, while setting the parameter END=SENS of the NASTRAN DSAPRT card to halt
NASTRAN analysis after generating the responses with their sensitivities. NASTRAN employs, depending on the type of
responses, two methods of sensitivity analysis, i.e direct or adjoint method [35]. However, for the responses requested in
the present method, NASTRAN employs solely the direct method in calculating the sensitivities. The total derivative of a
response r with respect to a design variable x is calculated as

∂r

∂x
=
∂r

∂u

∂u

∂x
, (58)
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where u is the displacement solution, obtained from the static equilibrium equationKu = f .
The partial derivative of u with respect to x is given as

K
∂u

∂x
=
∂f

∂u
− ∂K

∂u
u, (59)

where the right hand side of the above equation is denoted as a pseudo load vector fp. The pseudo load vector is composed
of two terms, one of which is the derivative of the applied load f with respect to the design variable x. The sensitivity of
the applied load ∂f

∂u
needs to be provided explicitly to NASTRAN.

During sensitivity analysis, NASTRAN calculates per design variable x, using finite difference, ∆u as follows

K∆u = −
(
∆Ku− ∂f

∂u
∆x
)
, (60)

where the differential ∆x is calculated inside NASTRAN as ∆x = DELBx0, for DELB = 0.001. The first term on the right
hand side of equation 60 is calculated by NASTRAN, whereas the second term is provided to NASTRAN using the DMAP
programming language [36].

The first term of the pseudo load vector defined in equation 60(∆Ku) is calculated by the module PSLGDV, as such the
contribution of the design dependent load f(x) in calculating ∆u is taken into account by adding− ∂f

∂u
∆x to the variable

EGK, which contains ∆Ku. NASTRAN uses central or forward finite difference to calculate the derivative of the stiffness
matrixK with respect to the design variable x.

The responses and sensitivities calculated by NASTRAN are extracted by requestion the response vector R1VALRG and
the sensitivity matrix DSM2, using alter commands described in [36].

6. RESPONSE DEFINITION

The present method defines two types of responses. The first type of responses are those calculated by the low-fidelity
aeroelastic tool. Starting from the aerodynamic force and moment at the root of a single blade, calculated for a hub-height
wind speed U as,

fr(U) =

1∫
0

f̄(ξ, U)J(ξ, U)dξ and mr =

1∫
0

(
m̄(ξ, U) + r(ξ, U)× f̄(ξ, U)

)
J(ξ, U)dξ, (61)

the total thrust and torque are

rth(U) = Bet3fr(U) and rto(U) = Bet3mr(U), (62)

respectively, where B is the number of blades, r is the deformed beam axis, J is the Jacobian of the deformed beam axis,
and e3 =

{
0, 0, 1

}t. The tip deflection and the aerodynamic power are given by

δtip(U) =

n∑
i=1

Ri,p(ξ = 1)ui(U) and P (U) = ω(U)rto(U), (63)

respectively, where ui(U) is the displacement vector of the beam axis at control point i. Since the aeroelastic analysis
is performed for finite (hub-height) wind speeds, the maximums of rth(U),rto(U),δtip(U),P (U) are calculated for each
response by bracketing, with respect to the wind speed U , till the maximum is found.

The second type of responses are calculated using the finite element solver NASTRAN. The membrane stress resultants
N =

{
Nx, Ny, Nxy

}t of element i from the high-fidelity shell model of the blade is given by

N i =
1

2
hi
(
σui + σli

)
, (64)

where hi is the shell thickness of element i and σui and σli are the membrane stresses at the top and bottom side, in shell
thickness direction, of element i, requested in NASTRAN analysis using the DRESP1 card [37]. In addition to the stress
responses, NASTRAN is used to calculate the shell buckling load factor λ, which is also extracted from the NASTRAN
analysis using the DRESP1 card.
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7. VALIDATION/VERIFICATION OF THE AERODYNAMIC/AEROELASTIC MODEL

The aerodynamic module of the present method is validated using the experimental results of the EU-sponsored project
MEXICO. For this project, a three bladed wind turbine rotor with a diameter of 4.5m is tested in a wind tunnel with
dimensions 9.5× 9.5m2. The rotor blade consists of the following profiles: circular from 0 to 20% span, DU91-W2-
250 from 20 to 45% span, RISO from 55 to 65% span, NACA 64418 from 70 to 100% span. Detailed description of the
experimental campaign and the dimensions of the wind turbine rotor can be found in [38]. The normal and tangential
force distribution, calculated using the present method, is compared with experimental data of the MEXICO project, for
tip speed ratio λ = 6.7, wind speed U = 15m/s and rotational speed ω = 44.5rad/s. The current method calculates the
aerodynamic loads at 54 integration points. Figures 8a and 8b show the comparison of the normal and tangential force
distribution for the pitch angles θ = −2.3 deg and 0.7 deg, respectively.

(a) (b)

Figure 8. Comparison of the axial force Fn and tangential force Ft distribution with the MEXICO experimental results at wind speed
of 15m/s and pitch angles: (8a) −2.3 deg and (8b) 0.7 deg.

From figures 8a and 8b, the present method predicts the normal and tangential forces quite well towards the root of the
blade. The tip loads are predicted quite well with the current model, for both the pitch angles of −2.3 deg and 0.7 deg.
There is difference in the tangential force between the experimental data and the present method. The experimental data
for the tangential force is not accurate, since pressure data is used to calculate the force distribution, which doesn’t account
for viscous forces. The tangential force distribution is dependent on the viscous force, thus is less accurately accounted by
the experimental data. The present model predicts the aerodynamic loads quite well, and is thus capable of predicting the
aerodynamic loads on wind turbines with sufficient accuracy.

The aeroelastic code is verified against FAST[39] and the commercially available aeroelastic code GH Bladed [40].
A quasi-steady analysis is performed on the NREL 5MW reference turbine [22]. The blade geometry is generated using
B-spline basis functions of degree 3 and knot spans of 20. The aerodynamic loads are calculated at 60 integration point.
Detailed description of the turbine and blade properties can be found in [22].

The parameters used as representative of aeroelastic behaviour of the turbine are: power, thrust, (flap-wise) root bending
moment, and the (flap-wise) tip deflection. The comparison of the parameters mention above, is shown in figures 9a to 10b
for wind speeds 5m/s till 18m/s. The power curve, shown in figure 9a, agrees quite well between the three methods. The
thrust calculated by the present method and GH Bladed match(see figure 9b), while there is a noticeable difference between
the results obtained by FAST and the present method. This is also observed for the (flap-wise) root bending moment 10a
and tip deflection 10b. The reason for this discrepancy could be caused due to the implementation of a wake model in
FAST, which is not the case for the other two methods.

7.1. Swept blade

Bend-twist coupled blades are used in stall regulated wind turbines for power and load regulation [17]. Bend-twist coupled
blades can be designed with the use of composite materials, where off axis fibres are used to induce bend-twist coupling
[41]. It is more costly to manufacture blades with off axis fibres. In addition, fatigue is an issue for these type of blades,
where stress concentrations occur due to curving or ending of angled fibres [42]. Another method would be designing
swept blades, where the sweep distribution along the blade span induces additional moment that twists the blade further
[42].

The present method allows for changing the blade design, such that these novel methods in designing bend-twist coupled
blades can be performed more easily, which is demonstrated by assessing the performance of the Sandia 30m STAR
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(a) (b)

Figure 9. Comparison of: power(9a) and thrust(9b), between FAST,GH Bladed and the present method, for the NREL 5MW machine.

(a) (b)

Figure 10. Comparison of: (flap-wise) root bending moment (10a) and (flap-wise) tip deflection, between FAST,GH Bladed and the
present method, for the NREL 5MW machine.

blade[23]. The blade geometry is generated using B-spline basis functions of degree 3 and 11 control points, with the
resulting knot vector Ξ =

{
0, 0, 0, 1

4
, 1

2
, 3

4
, 1, 1, 1

}
. The base airfoils used to generate the cross-sectional shape are [43]:

circular, S818, S827, S828. A single spar at 35% chord point is modelled. The control point values of the blade planform
and the beam axis, derived from [42], are shown in table I. The leading and trailing edge, together with the shear webs,
are made of sandwich laminates, where the core is made of foam and the face sheets and the spar caps are made of glass
fibres, with the material properties given in [44]. A quasi-isotropic laminate with the layup [−45, 45, 0, 90]symmetric, is
used for the face sheets, whereas the laminate thickness distribution is derived from [44]. The finite element model of the
blade is shown in figure 11.

The aeroelastic load on the wind turbine is calculated for a hub height wind speed of 19m/s and rotational speed of
12.2rpm. Figure 12a shows the design chord and twist distribution together with the chord and twist distribution, that
account for the aeroelastic effect. From figure 12a it is evident that the twist distribution, corrected for aeroelastic effect,
is different from the structural twist towards the tip of the blade, with maximum difference of 0.5deg. There is negligible
difference in chord distribution between the structural chord and the chord distribution corrected for aeroelastic effect. The
change in twist distribution results in different angle of attack(AoA) distribution as shown in figure 12b. This has an effect
on the normal and tangential force distribution along the blade span, shown in figure 13. In this figure, there is a difference
between the loads calculated with and without taking the aeroealstic effect into account. The tangential load distribution
in particular shows a significant difference starting from 20m til the blade root, with a maximum difference of 5%. This
difference is also observed for the axial force distribution, but less pronounced than for the tangential force distribution.

The present method also calculates the stress distribution along the blade span together with the buckling load factor.
Figure 14a shows the stress resultant, calculated using equation 64, where the aeroealstic load distribution along the blade
span are calculated for the wind speed of 19m/s. In figure 14b, the first three buckling load factors λ, together with their
buckling modes, are shown for the aeroelastic load calculated at 19m/s.
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Table I. Planform data of a swept blade derived from [44]

CP Twist(deg) Chord(m) Rx(m) Ry(m) Rz(m)
1 29.5 1.66 0 0 0
2 29.5 1.66 1.6 0 0
3 19.5 2.48 3.3 0 0
4 13 2.75 6.7 0 0
5 8.8 2.42 10.1 0 0
6 6.2 2.12 13.5 0.1 0
7 4.4 1.84 16.9 0.1 0
8 3.1 1.56 20.3 0.2 0
9 1.9 1.29 23.6 0.4 0

10 0.8 1.02 27 0.8 0
11 0 0.76 30.4 1.5 0

Figure 11. Swept wind turbine blade

(a) (b)

Figure 12. 12a Chord and twist distribution of the swept blade and 12b distribution of the angle of attack(AoA) at 19m/s

8. CONCLUSION

An isogeometric framework is presented for parametrizing a wind turbine rotor blade and multi-fidelity approach for wind
turbine rotor analysis. The aeroelastic loads are determined using a low-fidelity model. This low-fidelity model is based
on isogeometric approach to model both the structural and aerodynamic properties, because of its suitability for shape
and size optimization. The structural properties are determined using a geometrically exact beam model and a standard
Blade Element Momentum(BEM) method is used to calculate the aerodynamic loads. In addition, the aerodynamic loads
calculated using BEM theory are modified to account for change in the blade shape during shape optimization or for very
flexible blade undergoing large deformation. The cross-sectional properties of the blade, needed for the beam model, are
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Figure 13. Axial and tangential force along the blade span at 19m/s

(a) (b)

Figure 14. 14a Average stress resultant distribution calculated at 19m/s and 14b the first three buckling loads

determined using an in-house tool that generates the cross-sectional stiffness properties with all possible couplings for
thin-walled, multi-cell, open or closed cross-sections with anisotropic properties.

The aeroelastic loads are applied in Nastran as static loads to a shell model of the blade and both the stress response and
buckling response are extracted. In addition, sensitivity of the aeroelastic responses to the design variables are available,
such that this framework can also be used to optimize the rotor blade. Furthermore, the capabilities of Nastran are extended
such that design dependent loads can be applied, resulting in correct sensitivities of Nastran responses with respect to the
design variables.

The aerodynamic module is validated against the experimental data of the EU-sponsored MEXICO project. A
comparison between the experimental results and the present method is performed for the normal and tangential force
distribution, for the pitch angles of −2.3deg and 0.7deg, showing a good match between experiment and the present
method.

The aeroelastic module is verified using the NREL 61.5m rotor blade as a baseline for comparison. The power, thrust,
flap-wise root bending moment and the tip deflection, calculated for a range of mean wind speeds, is compared between the
present method, FAST and GH Bladed, showing a good agreement with results from GH GH Bladed and a small difference
between the results from FAST, which can be attributed to the implementation of a wake model which is not the case for the
present method and GH Bladed. Finally, the capability of the present method in designing and analysing non-conventional
blades is demonstrated by investigating the aeroelastic characteristics of the Sandia 30m, STAR blade.

It can be concluded that this framework is suitable for preliminary analysis and optimization of wind turbine rotor
blades, using both the geometric and material parameters as design variables.

17



IFASD-2015-030

REFERENCES

1. S.-E. Thor, P. Weis-Taylor, Long-term research and development needs for wind energy for the time frame 2000–
2020, Wind Energy 5 (1) (2002) 73–75.

2. J. Schepers, J. Heijdra, D. Foussekis, S. Øye, R. Rawlinson Smith, M. Belessis, K. Thomsen, T. Larsen, I. Kraan,
B. Visser, et al., Verification of European wind turbine design codes, VEWTDC: final report, Netherlands Energy
Research Foundation ECN, 2002.

3. T. Van Engelen, Control design based on aero-hydro-servo-elastic linear models from turbu (ecn), in: Proceeding of
the European wind energy conference, Milan, Italy, 2007.
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