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Abstract: This paper investigates the potentiality of the periodic direct output feedback (POF)
control to reduce rotor vibrations in forward flight. The blade control strategy relies on their active
twist actuation. The blades are twisted by means of macro-fiber composite (MFC) piezoelectric
actuators distributed along the span. The multibody software MBDyn is used to model the isolated
rotor of the Bo105, with the original blades replaced by actively controlled ones. The periodic out-
put feedback controller reduces the hub loads by minimizing selected harmonics of the blade root
shear force. The results are compared with those obtained with a periodic H2 optimal controller.
All the closed loop analysis are performed by simulating the rotor dynamics with MBDyn while
running the control code in Simulink. A specialized communication library is used to coordinate
the co-simulation and exchange data between the two codes.

NOMENCLATURE

c Blade choord
Fz Blade root shear force
FZ Hub vertical force
MX Hub moment along x axis
MY Hub moment along y axis
TZ Rotor thrust
p Pitch bearing position
R Blade radius
V Electric potential
V∞ Free stream velocity
α Shaft angle
ϑp Precone angle
ϑtw Blade twist
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µ Advancing parameter
νβ Non-dimensional flap frequency
νϑ Non-dimensional torsional frequency
νξ Non-dimensional lag frequency
Ω Rotor angular velocity
E {., .} Variance matrix

INTRODUCTION

Helicopter vibration and internal noise reduction is being actively pursued by helicopter makers.
Active controls can play an important role, and one of the proposed strategies pursued so far to
alleviate hub loads is to modify the periodic aerodynamic loads at harmonic frequencies above
the 1/rev. The classical higher harmonic control (HHC) [1] is based on a linear quasi-static rotor
response and computes a suitable, vibration cancelling high harmonic signal for the swashplate.
The HHC approach has been widely used. However, the availability of technologies allowing to
embed the actuators into the blades permits the so called individual blade control (IBC), in which
each blade is controlled independently [2, 3, 4, 5]. This paper assumes the availability of actively
twisted blades, with the active twist induced by piezoelectric actuators distributed along the blade
span. The control voltage is computed to minimize the aerodynamic loads. Many works do exist
in the literature about active twist rotors (ATRs). Furthermore, experimental tests carried out at
NASA [2]and DLR [6, 7] proved the technological feasibility of such a solution. Other interesting
applications of ATRs can be found in [8] and in [9].

Since the rotor subsystem exhibits a nonlinear behavior in both the structural dynamics of the blades
and the aerodynamic field, linear time invariant control theory often fails to provide satisfactory
results. A more sophisticate solution is to design a periodic controller, thus taking into account the
periodicity of the rotor in forward flight. An implementation of the model following approach to
stabilize the lag and pitch moments using periodic control can be found in [10]. Applications of
periodic control in the reduction of vibrations by means of IBC are reported in [11, 12], where the
alleviation of the baseline loads is considered as a disturbance rejection problem. In [13] a more
sophisticated periodic controller based on the H2 and H∞ design is exploited to reduce hub loads
through active trailing edge flaps.

The current work is basically an extension of a previous study on periodic control applied on ATRs
[14]. Here the periodic static output feedback control theory is investigated because its design
involves fewer parameters than those of an H2 dynamic compensator. This paper aims at showing
that satisfactory results can be achieved even using the static controller approach, which is also the
easiest solution with a view of a scheduling approach. The work is organized as follows. First, the
rotor numerical model is briefly described. Then, the blade response is properly identified and a
periodic direct output feedback controller is designed. The closed loop simulation results are then
shown and compared with those obtained with the H2 optimal solution.
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Figure 1: Blade section discretization.

Table 1: BO 105 model data with original and piezoelectric blade.

Rotor data BO 105 blade Piezoelectric blade
R 4.9 m 4.9 m
p 0.23 m 0.23 m
ϑp 2.5◦ 2.5◦

c 0.3025 m 0.3025 m
ϑtw −8◦ −8◦

Ω 44.4 rad/s 44.4 rad/s
α 3◦ 3◦

νβ 1.11 1.1
νξ 0.69 0.73
νϑ 3.63 3.89

NUMERICAL ROTOR MODEL

The test bed of this work is an available numerical model of the Bo105 rotor[15]. We focus our
attention only on the main rotor subsystem. The kinematics and the flexbeams characteristics of
the main original rotor are left unchanged. The blades, instead, are replaced with actively twisted
ones, embedding piezoelectric actuators distributed along the blade span. Macro-fiber composite
(MFC) actuators with interdigitated electrodes are used, since they exploit the primary piezoelectric
direction of polarization and thus allow a high strain rate with low actuation power. In order to
generate the highest possible torsional control on the blades, they are oriented in such a way that
the strain is applied at ±45◦.

The available rotor data are employed to build a deformable multibody model through the multi-
body code MBDyn [16]. The swashplate and the pitch links are represented with rigid bodies, while
each blade is modeled using five geometrically exact finite volume nonlinear beam elements [17].
The software can handle piezoelectrically actuated beams provided the stiffness and the piezoelec-
tric coupling matrix of the blade section are known. While the data of the original Bo105 blades are
known, the section properties of the actively twisted blades are computed by employing the semi-
analytical approach described in [18, 19, 20], which takes into account three dimensional effects.
Within this approach the three dimensional continuum is decomposed into the one dimensional do-
main of the beam model and the two dimensional domain of the beam section, which is solved by a
specialized finite element based analysis, as shown in fig. 1. The designed piezoelectric blade has
to satisfy constraints about the position of the elastic axis and the center of mass so to avoid aeroe-
lastic instabilities; therefore, the optimization procedure described in [21] is used to impose these
constraints while maximizing the actuation power. Rotor data and the set of lowest frequencies
accounted for the original and the piezoelectric blade are shown in tab. 1.
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The multibody software MBDyn implements simple aerodynamic theories for the isolated heli-
copter rotor analysis. These models, although very simple, permit fast simulations with a level of
accuracy adequate to reproduce representative vibratory loads in forward flight within a prelimi-
nary design of the controller. The chosen aerodynamic model is based on the blade element theory
combined with the Drees inflow model. The Bo105 blades are built using the shape of the NACA
23012 airfoil. The software requires as input a data sheet with information about the variation of
the lift and drag coefficients, CL and CD, with respect to the Mach number and the aerodynamic
angle of attach.

PERIODIC OUTPUT FEEDBACK VIBRATION CONTROL

System identification

Since the aerodynamic theory is very simple, there is no interference among the actuation of one
blade and the forces on other blades. Thus, each blade can be controlled independently. Therefore,
only an isolated blade is considered in the controller design. The periodic control theory requires
a state space model of the blade response, which will be properly identified in this section . What
we are interested in is a linearized model of the blade mapping the applied voltage on the blade V
to the measured variables on the blade. To such an end it has been decided to take into account
the vertical force acting on the blade root, FZ , and 5 vertical accelerations uniformly distributed
along the blade span, with the baseline loads subtracted so to have a linearized model around an
equilibrium solution. Before the identification, each measure has been suitably filtered so that the
signals include only the 3/rev and the 4/rev harmonics, i.e. those to be minimized. A periodic
subspace identification algorithm [22] has been used to find the equivalent linear discrete-time
periodic (LTP) model of the blade

xk+1 = Akxk +Bkuk
yk = Ckxk

(1)

where the system matrices have period N.

The input/output time histories signals from the numerical simulations are organized in input/output
Hankel matrices Uk,s and Yk,s for k = 1...N as follows

Uk,s =


uk uk+1 · · · uk+s−1

uN+k uN+k+1 · · ·
...

... · · · ...
u(n−1)N+k · · · u(n−1)N+k+s−1

 (2)

Yk,s =


yk yk+1 · · · yk+s−1

yN+k yN+k+1 · · ·
...

... · · · ...
y(n−1)N+k · · · y(n−1)N+k+s−1

 , (3)
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where N is the period, n is the total number of simulations and s is the duration of each experi-
ment. The Hankel matrices are here computed using the results of just one numerical simulation.
Considering the QR factorization of the compound matrices[

Uk,s Yk,s
]
=
[

Q1k Q2k

][ R11k R12k

R21k R22k

]
, (4)

the observability matrix Ok is given by the row space of matrix R22k . It can be computed through
its singular value decomposition (SVD)

R22k = UkΣkVT
k , (5)

Ok = ṼT
k . (6)

The matrix ṼT
k contains the first rows and columns of VT

k based on the chosen order of the identified
system, which depends on the magnitude of the singular values. The matrices Ak and Ck can then
be obtained by exploiting the observability matrix at the instants k+1 and k as described in [22, 13].
The periodicity is imposed by setting ON+1 = O1.

Matrices Bk and Dk are computed through an output error approach by minimizing the squared
2-norm error between the real and the model output, yreal and y respectively:

min
Bk,Dk

‖ yreal− y ‖2
2 . (7)

Two simulations have to be carried out before starting the identification procedure. This is be-
cause the identified blade model is a linearization of the blade response around the trim condition.
The first simulation is required to compute the baseline loads, to be subtracted from the output
of the second simulation, in which the blade is randomly excited. The voltage random signal has
an amplitude of 40 V and is suitably filtered above the 6/rev so to limit higher harmonics in the
dynamic response. The aeroelastic multibody simulation requires a small time step to avoid nu-
merical problems and in this article N = 140 time steps per rotor revolution are used. These time
steps will lead to an identification of 140 linear systems spanning the period. This computational
burden can be reduced because the output of the simulation can be well approximated with a larger
time step. Therefore, the output is decimated to N = 28 time steps per rotor revolution. Having
defined a larger time step for the LTP model of the blade, the output of the multibody simulations
are resampled and an identification technique based on a subspace algorithm is adopted. Hints
about the order of the identified system can be found by analyzing the singular value magnitudes
of the matrix R22k at each time step. Figure 2 shows the singular values for the first time step of
the period and the best compromise between data fitting and system order is given by retaining the
most important singular values. In this work the linear periodic model of the blade is a 14th order
system for every time step spanning the period.

Controller design

The goal of this section is to develop a periodic static output feedback controller to reduce rotor
vibrations through individual blade control. In the general case the sought output feedback control
law is given by

uk = Kkyk, (8)
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Figure 2: System order.

where the gain matrix Kk can be periodic with period N or simply a constant matrix equal through-
out the period. Thanks to the periodicity of the system, a single controller is designed for a single
blade. If the time variable approach is used, the same controller can be used for all the remaining
blades after applying a time shift to the gain matrix.

In the present work we want to minimize appropriate harmonics of the blade root loads, and the
baseline load condition has to be considered in the design model. They are introduced as a distur-
bance to the plant output as shown in the block diagram of fig. 3 where z is the controlled output, y
are the measures, w are white noise disturbances and u the applied blade voltage. The generalized
plant model is then described with the following linear periodic model

xk+1 = Akxk +B1kwk +B2kuk,
zk = C1kxk +D11kwk +D12kuk,

yk = C2kxk +D21kwk.
(9)

The output feedback control law is obtained by minimizing the quadratic performance index

J = E

{
∞

∑
k=0

[
zT

k Qkzk +uT
k Rkuk

]}
, (10)

where Qk and Rk are symmetric periodic user-defined weights. In general no closed form solutions
can be found to this problem, and its solution is found through numerical optimization. The prob-
lem can be reformulated as explained in [23]. Since the most common optimization algorithms
require the gradient of the cost function, it can be computed as

J(K ) = tr(σPG ) (11)

∇K J(K ) = 2(RK C 2 +BT
2 σPA )S C T

2 (12)
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Figure 3: Generalized plant.

The script notation X indicates the block diagonal matrix X = diag(X1, . . . ,XN) related to the
cyclic sequence of the periodic matrix Xk and we denote with σX the K-cyclic shift σX =
diag(X2, . . . ,XN ,X1). Matrices P and S satisfy the discrete periodic Lyapounov equations (DPLEs)

P = A
T

σPA +Q (13)

and
σS = A S A

T
+G , (14)

respectively, where A = A +B2K C2 is the closed loop matrix and Q = Q+C T
2 K T RK C2.

For the solution of the DPLEs the reader is referred to the Appendix. The matrix G is defined
as G = diag(0, . . . ,0,X0). Supposing that there is no cross-correlation between the initial condi-
tions x0 and the disturbances w, i.e. E

{
x0wT} = 0, the matrix X0 is given by X0 = E

{
x0xT

0
}
+

B1N E
{

wwT}BT
1N

+B2N KND21N E
{

wwT}BT
1N

+B1N E
{

wwT}DT
21N

KT
NBT

2N
+

B2N KND21N E
{

wwT}DT
21N

KT
NBT

2N
(the variance matrices are here approximated as identity matri-

ces). Further explanations and details about the output feedback controller design can be found in
[24].

The baseline loads and the sensors noise are considered in the generalized plant assembly as output
disturbances by the shaping filters Wdist and Wn respectively. Figure 4a shows for simplicity only
the baseline load of the blade tip acceleration; since the measures have been previously filtered,
only the 3/rev and the 4/rev harmonics of the baseline signals have to be reproduced. The sensors
noise is represented with constant gains having a value of 0.1. The performance of the controller
are defined by means of the frequency weighting function Wper f shown in the block diagram of
fig. 3. The system output, that we want to reduce is the blade root shear force FZ and the adopted
performance specification Wper f is shown in fig. 4b. Dealing with a 4 blade rotor, the reduction of
the 4/rev harmonic of the shear blade forces will lead to a decrease of the vertical hub load. Wper f
prescribes the minimization of 3/rev harmonic as well in order to reduce vibratory loads associated
to the bending moment of the blade root load, that will lead to a reduction of the in-plane hub
loads. Since all specifications of the desired output are taken into account in the frequency domain
by Wper f , the performance weight Qk of the cost function J is set to 1 and is kept constant for the
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Figure 4: Generalized plant weights.

whole period, while the other weight Rk, which prescribes a constraint for the control signal, is
tuned untill the controller achieves satisfactory results and at the end of the tuning process it has
a value of 5000. With the performance criteria defined above, the resulting generalized plant of
eq. 9 is a 44th order system. In this work we chose a constant gain (1x6) matrix K, and only six
parameters have to be computed through the optimization algorithm, which is consequently very
fast with respect to the design of the full information H2 periodic controller. This is also due to
fact that the DPLEs can be solved very efficiently in contrast with the solution of the discrete time
periodic Riccati equations [25]. The design model is already stable, therefore there is no need to
search for a suitable initial solution, which is hence assumed as the null matrix.

SIMULATION RESULTS

The performance of the periodic controller are tested on a trim configuration at µ = 0.23. The rotor
is trimmed in order to reproduce reasonable thrust, TZ = 20010 N, and moments, MX = 746 Nm
and MY =−85 Nm, with a shaft angle of α = 3◦ as in fig. 5.

The swashplate orientation is set in order to achieve the desired trim configuration. The closed loop
simulation is carried out by coupling MBDyn with Simulink. The communication between the
two programs is managed by bidirectional sockets which allows to exchange data between the two
codes. The closed loop simulation can be entirely performed in the Simulink environment, in which
the multibody model of the rotor appears as Simulink blocks. Since the multibody simulation and
the controller have been designed using different sample times, Simulink Rate-Transition blocks
are used to implement a sample and hold procedure, thus overcoming this issue.

To better evaluate the effect of using a static controller, such as that developed here, the direct
output feedback controller results has to be compared with those of the optimal solution achieved
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Figure 6: H2 Control performance weight.

by implementing a dynamic compensator. In this paper the same design model has been used to
design a full information H2 controller as described in [13, 14]. The performance specification
weight has been adjusted during the developing phase so to optimize the controller performance,
and it is shown in fig. 6. Results are also compared to those of a previous work on the H2 control
[14], in which only the blade root shear force was used as sensor and the baseline loads have not
been filtered.

A summary of the hub loads reduction is shown in fig. 7. A first passive loads reduction, especially
for the vertical force Fz, is obtained by replacing the Bo105 blades with the piezoelectric ones. The
closed loop simulation with the output feedback controller shows a further reduction of vibratory
loads. The 4/rev harmonic of the hub shear force FZ is reduced by 43%, while the the hub moments
MX and MY benefits from a reduction of 65% and 58% respectively. Comparing the results with
those obtained with the H2 control, one can immediately notice that, in the case where only one
sensor is used, the H2 controller provides worst results especially if we observe the shear force
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FZ and the moment MX . Using the same model and sensors, the dynamic compensator works
better, with results that are comparable with those obtained by employing the direct output feedback
strategy. In fact, while the static gain approach achieves a greater reduction of the vertical force
FZ , the H2 control better alleviates MY . This is actually a good outcome for the applicability of
the periodic output feedback controller, because with a simpler control law and a faster design it is
possible to obtain good results while avoiding the implementation of a dynamic controller, which
would involve a larger design space. It is also interesting to remark that harmonics higher than the
4/rev are only marginally excited.

The applied control signal, for both the designed controllers, is shown in fig. 8. It is a sequence of
steps because of the difference between the time steps of the simulation and the periodic controller.
It is important to observe that the presented loads alleviation is obtained with reasonable control
effort.

CONCLUSIONS

The hub vibratory loads of a Bo105 rotor model have been reduced by means of actively twisted
blades, relying on periodic control theory. A periodic linearized model of the blade response is
properly identified and a periodic direct output feedback controller which minimizes the 3/rev and
the 4/rev harmonics of the blade root shear force has been designed. The controller performance
are then compared to the ones of the dynamic compensator arising from the H2 control theory. The
closed loop simulations are performed through the coupling between MBDyn and Simulink.

The 4/rev harmonic of the hub loads has been substantially reduced by the static controller for the
given trim configuration and a major alleviation can be observed in the two moments MX and MY .
The macro-fiber composite piezoelectric actuator properties allow to maintain the control activity
at low values.

A comparison with the H2 controller, using the same design model, shows that the periodic static
output feedback can be a valid substitute. In fact their performance are qute close, while the static
control law involves very few parameters in the developing phase and the design algorithm is faster.
Moreover, dealing with a static gain matrix suitable for all the sample times spanning the system
period, a scheduling approach to cover the whole flight envelope of the helicopter is straightforward
without all the complications that would arise when interpolating state space models [26, 27].

This application is based on a very simple aerodynamic theory. Further studies should be carried
out to validate the designed controllers on a more accurate aerodynamic model able to reproduce
the rotor wake and nonlinear effects, such as those due to transonic regime, dynamic stall and blade
vortex interaction. More trim conditions should also be analyzed to prove the applicability of a
gain scheduling algorithm while using output feedback controllers.
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APPENDIX

Solution of the discrete time periodic Lyapounov equations

This appendix details the algorithm for the solution of the DPLEs [23, 28].

Consider the reverse-time discrete periodic Lyapounov equation (RTDPLE) 13 and the forward-
time discrete periodic Lyapounov equation (FTDPLE) 14. If the monodromy matrix ΦA(N) of the
dynamical system has no reciprocal eigenvalues, then it is possible to use a very simple solution
method, based on reducing these problem to a single Lyapounov equation to compute a periodic
generator. These equations can be solved by using standard methods. The rest of the solution is
computed by backward- or forward-time recursion. This method is briefly described below for both
equations.

• Solution of the RTDPLE: The periodic generator can be computed through the solution of
the following discrete Lyapounov equation (DLE)

P1 = Φ
T
A(N)P1ΦA(N)+

N

∑
j=1

Φ
T
A( j,1)Q jΦA( j,1),

where ΦA( j, i) is the transition matrix and the backward-time recursion is given by

PN−i = AT
N−iPN+1−iAN−i +QN−i i = 0, . . . ,N−2

12
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• Solution of the FTDPLE: The periodic generator can be computed through the solution of
the following DLE

S1 = ΦA(N)S1Φ
T
A(N)+

N

∑
j=1

ΦA(N +1, j+1)G jΦ
T
A(N +1, j+1);

the forward-time recursion is given by

Si = Ai−1Si−1AT
i−1 +Gi−1 i = 2, . . . ,N.
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