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Abstract: A numerical investigation on open-loop control and combined structural and
control design (co-design) of very flexible beams is presented. The objective is to allow for
an efficient design of these systems by identifying design strategies that provide significant
performance advantages with respect to conventional sequential design methods. The
control vector parametrisation method, implemented for both a B-splines (local) and
discrete sines (global) set of basis functions, is used in conjunction with a gradient based
optimiser to solve first the open-loop control and then the co-design problems. Numerical
results show the impact of the time-frequency resolution of the parametrisation on the
outcome of the optimisation. Overall, B-splines can achieve higher performance as they
better exploit the flexible, high frequency driven, behaviour of the structure, particularly
as large deformations lead to changes in the natural frequencies of the system. The
discrete sines based parametrisation, on the other hand, is found to be a more robust
choice. The mutual influence between control and structural dynamics during the design
process is showed and used to explain the ability of the optimiser to approach a global
optimum. In particular, it was found that control and structural disciplines can freeze
the design around specific characteristic frequencies (locking), limiting the advantages of
a co-design approach based on gradient methods.

Nomenclature

Acronyms

CVP Control vector parametrisation
DSS Discrete sine series
FoR  Frame of reference
fps  Frames per second

GEBM Geometrically-exact beam model
Greek Symbols



P

Tn
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Material density

n-th control point used for the B-splines parametrisation

Roman Symbols

A Body-attached frame of reference

B Local frame of reference defined along the beam mean axis s

c Column vector for the optimisation problems constrains

EI  Beam bending stiffness

fo Fundamental frequency in the DSS parametrisation and step in frequency between
consecutive sine waves

fn Frequency of n-th sine wave in the DSS parametrisation

fmaz Maximum frequency captured by the parametrisation of the control

G Global frame of reference

1 Cost function for the optimisation problems

Iy, 13 Sides of the beam rectangular cross-section

m Order of B-spline basis

My Applied external moment used for the pendulum optimal control and co-design

N,  Number of control points for the B-spline parametrisation

N, Size of the basis used to parametrise the control

P Penalty term used for the compound pendulum optimal control and co-design

R Residual form of the physical system

S Beam mean axis

T Final time of the dynamic simulations

t Time

u Control function

vy  Beam tip X velocity measured in the global frame of reference G

x Column vector containing the design variables for the optimisation problems

Yy Physical system state

Subscripts
c Control related quantities in co-design problems
S Structural related quantities in co-design problems
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1 INTRODUCTION

Feedback control strategies to enhance vehicle aeroelastic performance are increasingly
important in aircraft design. While active systems generally provide better performance
than non-controlled, or passive, ones, the integration of the controller usually comes late
in the design process. Most airframes are designed using a sequential approach: in an
early stage development the structure is typically sized for passive response and an active
control is introduced only in a later stage, after the main features of the system have been
established [1]. Looking at the design process from the perspective of a multidisciplinary
optimisation problem, there is substantial evidence that this approach is likely to generate
only sub-optima design points [2, 3.

Historically, aeronautical design has been characterised by relatively stiff structures
exhibiting small deformations. The deriving low influence of the structural geometrical
changes on control systems performance has, therefore, justified the use of a sequential
approach, particularly when considering the practical advantages of decoupling analysis
and optimisation process. Novel aeronautical components, such as high altitude long
endurance (HALE) aircraft wings or large horizontal axis wind turbine (HAWT) blades
are, however, characterised by the presence of highly flexible structures, whose large
deformations lead to nonlinear dynamical responses. As most of the critical operating
conditions of these systems - both in terms of loading and stability - are associated
with unsteady phenomena, an accurate representation of the coupled (aeroservoelastic)
dynamics is a necessary, but not sufficient, condition to achieve optimal designs. For a true
optimum, structural properties and feedback control should be designed simultaneously,
thus leading to the concept of combined design (co-design).

The advantages of a combined control and structural optimisation were already proved
by early work in space structures design [4, 5] and in robotics [6]. These studies used a
linear representation of the closed loop system dynamics, which facilitated the approach
to the design. Asada et al. [6], for instead, directly manipulated the position of the closed-
loop system eigenvalues, while Rao [5] expressed the optimiser gains in terms of the system
energy properties. In this sense, the work from Onoda and Haftka [4] is the first one to
best fit the modern idea of combined design, as, aside from trying a nested approach
similar to that presented by Rao [5], they also optimised the system simultaneously with
respect to optimiser gains and structural design parameters. However, when dealing with
more expensive models, particularly on the structural side, the integration of optimisation
methodologies for the two disciplines has proven to be a difficult task. A crucial point
is to ensure a balanced modelling, in terms of fidelity, between control and structural
analysis disciplines while containing the overall computational cost.

This necessity is a common leitmotiv of multidisciplinary optimisation (MDO). In
aerospace applications, however, MDO has so far mainly been applied to the develop-
ment of efficient methods (coupled adjoints) for static aerostructural optimisation and,
thus, structural tailoring for passive response. While on one side this tendency is linked
to the fact that industrial design still relies strongly on passive analysis methodologies,
the increasing computational cost associated with dynamic analysis and optimisation has
been another important factor to limit the MDO applications in dynamic problems. The
sensitivity analysis presents a further issue, given the relatively high modelling cost of
developing adjoint methods for nonlinear structural dynamics models [7]. The problem of
co-design has been more recently attacked in the aeroservoelasticity domain to optimise
physical systems parameters and feedback control gains of novel aircraft for loads allevia-



IFASD-2015-010

tion under gust or manoeuvres. In these cases, however, reduced order structural models
and linearised formulations were used [8, 9]. Integrated design approaches dealing with
complex structural models have been limited to the use of metamodels [10] in robotics or
to small size systems [11].

As recognised in a recent review by Allison and Herber [3], the lack of emphasis on sys-
tems dynamics is a general issue of common MDO architecture. In particular, the authors
underlined that for controlled systems, the optimisation/design process should explicitly
account for the fact that one discipline, the control one, is inherently dependent on the
evolution of a system in time. This consideration is leading to the development of a new
branch of MDO, the multidisciplinary dynamic system design optimisation (MDSDO).

From a structural perspective, the analysis of HALE vehicles wings or large HAWT
blades introduces nonlinearities when dealing with large geometrical deformations. For
HALE wing design, moreover, the coupling between rigid-body and flexible modes dy-
namics needs to be accounted for [12]. From a control system perspective, open-loop
analysis is a necessary step for a large class of problems, such as trajectory control and
manoeuvre design. In real life applications, these problems need to be addressed in the
presence of disturbances and thus the need of feedback control and closed-loop analysis.
A deterministic open-loop analysis, in which the control has full authority on the system
behaviour, remains, however, a necessary first step in the development process. Also for
the design of feedback control systems, optimal control analysis frees the design process
from the assumption of any specific control architecture, thus allowing to explore a larger
state-design space or to better assess the performance of a given control architecture [13].

Optimal control problems can be solved through an optimise-discretise approach, in
which an optimality condition is enforced on the equations describing the system dynam-
ics. However, in real life applications, the system is often too complex to apply optimality
principles. A common way around this problem is to parametrise the control signal (direct
methods). Single and multiple shooting methods, in particular, are directly linked to sin-
gle and multidisciplinary optimisation: once a parametrisation is chosen, the coefficients
of the parametrisation are directly handled by the optimisation algorithm and there is
no formal difference, at the optimiser level, between closed loop system gain optimisation
and open-loop optimal control solution.

While single and multiple shooting methods have been successfully used in many
optimal control problems, an understanding on how these methods may apply to the
control of active, strongly nonlinear, structures, is a required step to assess the feasibility
of their use in a co-design framework. The most common tendency within the control
community is to use piecewise constant or linear representations [14]. This choice can
be acceptable from a control system design perspective — as a simplified model for the
physical systems is often used — but often not when a balanced modelling fidelity is
sought. In this case, more refined parametrisations, capable to produce realistic signals,
should be used — for example to ensure first derivative continuity in the control input.
The first aim of this work is, therefore, to shed light on this point, assessing how different
parametrisations perform for problems in which the system feature change in time due to
nonlinear effects.

The single shooting (or control vector parametrisation, CVP) method can be inte-
grated in a pre-existing MDO architecture with relatively little effort. There is, however,
little understanding on how this would perform for a combined optimisation process. As
most of high fidelity optimisation models rely on gradient based methods, in particular,
it is important to asses whether the smoothness of the design space is compromised when
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passing from optimal control to combined design.

To this aim, a coupled flexible-rigid body dynamics model, based on a geometrically
exact beam model (GEBM) has been embedded in an optimisation framework. The
actuation on the structure is written as an optimal control problem using both a local (B-
spline) and a global (discrete sine series, DSS) parametrisation. The methodology is used
to control the dynamics of a very flexible beam in hinged configuration and exhibiting large
deformations. As the beam flexibility increases, the level of coupling between rigid and
flexible modes increases as well. Conceptually, therefore, this problem has many analogies
to that of the trajectory control of flexible aircraft in calm air. The active system co-
design is then faced: given the high level of coupling, a multidisciplinary feasible (MDF)
architecture [2] is used. While the architecture implemented do not explicitly exploits
the time nature of the system, control and structure are both modelled on similar fidelity
level, thus allowing the optimiser to fully exploit the features of the system.

2 MODEL AND METHODOLOGY

The optimisation framework is tested for the control and co-design of the flexible pendu-
lum proposed in Ref. [7] and whose structural properties are described in Sec. 3.2. This
problem is fully deterministic, as no external disturbances are accounted for, and has
large affinity with that of the trajectory control of a very flexible aircraft. The pendulum,
in fact, can exhibit large deformations — comparable in magnitude with its length —,
particularly during the co-design phase, when the performance of very flexible structures
can be explored by the optimiser. Importantly, not only the large deformations but also
the coupling between flexible and rigid body modes need to be captured.

This sections starts introducing the structural GEBM with coupled rigid-flexible body
dynamics (Sec. 2.1). The problem of optimal control of the pendulum is then faced, with
Sec. 2.2 providing a brief introduction to direct methods for nonlinear optimal control and
their relation with standard optimisation architectures. The control vector parametrisa-
tions or single shooting method is discussed in more details in Sec. 2.3, where the discreti-
sations implemented in this work are also presented. The section closes with an overview
of the optimisation framework built for control and co-design (Sec. 2.4).

2.1 Rigid-flexible body dynamic model

For modelling the pendulum a GEBM with coupled rigid-flexible body dynamics [15, 16]
is used. The model is here briefly described using the notation introduced in Ref. [17];
frame of references (FoRs) and relevant vectors are shown in Fig. 1. The rigid body
dynamics is expressed in terms of translational (v4) and rotational (w4) velocity vectors
of a FoR attached to the body, A, in respect to the ground FoR G*. Local deformations
are assumed to be small, thus a linear material model is used. Force and moment strains
are written in terms of position R4(s) and the Cartesian rotation vector W(s) associated
to a local FoR B, defined along the beam mean axis s [15]. The coupled nonlinear rigid
body dynamics is finally expressed using:

v {3 Gt b ST ERD o

'Note that, according to Ref. [17], the subscript stands for the FoR in which quantities are projected.
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Figure 1: Definition of frames of reference

where g7 = {vg,wg}, 7 is a vector containing nodal rotation and displacements, and
Qgyrs Qstiff, Qext are, respectively, gyroscopic, stiffness and external forcing terms. Note
that the external force Q.. includes both the control input and the gravitational force.
In particular, the orientation of the FoR A, (, is required. This is expressed in terms
of quaternions such that ¢ = {(y,¢(T}. The scalar ({;) and vector ((,) parts of ¢ are
obtained via integration of the FoR A angular velocity wa according to [18, 19]:

1 1

éO = _§w£Cv ) év = _5 (COWA - (Z)AC’U) (2)

where (7) is the skew symmetric matrix operator.

Spherical joint boundary conditions (BCs) have been implemented by setting the ve-
locity of the body FoR v4 to be zero. Hinge BCs can be derived similarly, allowing
rotations only along one axis; a validation is presented in Sec. 3.1.

2.2 From optimal control to co-design

From a general point of view, an optimal control problem can be seen as an optimisation
problem in which the design variable is a time-dependent function, the control input w(t):

minimise [ = I(u,y, )

with respect to u(t), y(t) (3)
subject to  c.(u,y) >0
R(t,u,y,9) =0

In problem (3) y is the state of the system?, I is the cost functional to minimise while ¢
and R define design and discipline constraints. In the current work, in particular, the set
of equations R is linked to the solution of a GEBM given in eq. (1) over the time domain
(time horizon) [0,T]. The design constraints ¢, instead, refer to specific requirements for
the control. In this work, bound constraints of the form

ur(t) > u(t) > ug(t) tel0,T] (4)

2Note that the notation used here follows the common standard used in optimisation, thus diverging
from the typical notation used in control theory.
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as well as initial and terminal values are enforced.

Analytical tools for the solution of problem (3) are available: an optimality condition,
as the Pontryagin’s maximum principle (PMP), is usually enforce and the control u(t)
is derived either analytically or, most commonly, numerically. Such approaches, usually
referred to as indirect methods, are, however, too complex to be used for the control
of large nonlinear systems [3, 14]. In direct methods, the control function is discretised
in time and expressed in terms of a coefficient vector x., i.e. u(t) = u(z.). In direct
transcription (DT) or direct simultaneous methods, also the state is discretised in time
and treated as a design variable. The optimiser, therefore, handles problem (3) directly,
thus solving the physical and optimal control problem simultaneously. In a MDO context,
this approach would be referred to as All At Once (AAO) architecture. While DT deriving
methods are capable of exploring infeasible and unstable states, thus possibly leading to
a faster convergence of the optimisation, the number of design variables is drastically
increased. Convergence issues, when integrating the approach in a MDO architecture, are
also likely to arise.

If eq. (1) is solved at each iteration for the state y, problem (3) can be recast in the
form of a multidisciplinary feasible architecture (MDF):

minimise [ = I(z.,y(z.), y(y(z.), x.))
with respect to =z, ()

subject to  c(x., y(z.)) > 0

where the dependency of the state on the control y = y(x.) has been underlined. This ap-
proach is referred to as control vector parametrisation (CVP) or single-shooting method:
while a solution to eq. (1) has to be found at each optimisation, the size of the opti-
misation problem is reduced to its minimum. The extension of problem (5) to a MDO
problem that simultaneously optimises control action and structural design parameters
is straightforward and only requires the inclusion of structural design parameters x, and
structural constraints c,:

minimise [ = I(x.,xs, y(xe, ), (Y, Te, T5))
with respect to ., x4

subject to  c.(xe, s, y(Te, x5)) >0
Cs(Te, T, Y(Te, T5)) = 0

2.3 Control parametrisation

In most control problems, the control u is parametrised with a piecewise constant approx-
imation. In addition to being easy to implement, this scheme offers good convergence
properties and allows for discontinuity, which are necessary to model some types of con-
trol (e.g. bang-bang control, [14]). In order to model accurately the movement of typical
control actuators for aeronautical applications (e.g. the deflection of aerodynamic con-
trol surfaces) while limiting the size of the coefficients used z., a C* continuous or higher
parametrisation is required.
Clearly, the quality of the optimal control largely depends on the choice of the parametri-

sation [20]. Other then being realistic, this should be somehow capable of capturing the

7
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features of the system to be controlled. In particular, the dynamics of structures is strongly
linked to the frequency of excitations of external disturbances, as well as control forces. It
is thus natural to use a parametrisation that can be easily linked to the frequency range
that the control can exhibit.

An obvious candidate is the Discrete Fourier series (DFS) or, for control signals having
u(0) = u(T) = 0, a Discrete Sine series (DSS), that is,

1

=57 (7)

N,
u(t) = Z Tepsin2mfpt  with:  f,=n fo , fo
n=1
The DFS and DSS have both the advantage of allowing a direct control of the maximum
actuation frequency of the control. While they are globally defined in time, however, the
frequency resolution depends on the time horizon T'. For DFS series, the frequency step
is fo = %, while for DSS is fy = % A poor frequency resolution can be an issue when
trying to capture the features of structural dynamical problems, particularly when dealing
with large deformations and nonlinear structures. In trying to exploit or control resonance
phenomena, for instance, the control may be required to include specific narrow frequency
ranges. For very flexible systems, moreover, not only the natural frequency of the modes
may change during the simulation if deformations become large, but the distance between
the characteristic frequency of different modes (both rigid and flexible) can also drastically
reduce.

The duality frequency vs. time resolution is a well known problem in signal and image
processing [21]. In this sense, local basis functions can provide more flexibility in terms of
capturing relevant frequency content of the structural dynamics response, including when
nonlinearities imply changes of the system features in time. B-splines, in particular, have
been chosen for their smoothness properties. A set of B-splines basis functions of order p
can be built recursively over a set of N, control points 7, as [20]:

0 else
and ; ;
— Tn _ Tn — _
oW (t) = ———¢P V() + — 677V (t) p>0 (9)
Tntp — Tn Tn4+p+1 — Tn+1

Note that, if N, control points are used, the number of spline basis required is N, =
N, 4+ p — 1. The control signal u(t) is thus expressed as:

u(t) = e 4O (1) (10)

Based on Nyquist criterion, in order to capture a maximum frequency f, .., at least 2
control points per wave are necessary. Convergence studies showed that third order B-
splines provide good and smooth reconstructions for the application in this work. These
have been, therefore, chosen as a good compromise between locality of the function® and
smoothness?.

For both basis, bound constraints are enforced either analytically (B-splines) or by
oversampling the control signal (DFS and DSS).

3 As the splines order increases, in fact, the number of control points required for each wave increases
as well.

4Note, however, that for a good representation of all the frequencies up to fyae, at least 4 control
points per wave should be used;
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2.4 Optimisation and framework

A gradient based method will be used to solve both the nonlinear optimal control and
the co-design optimisation. The choice of a gradient method is a compromise between
the need to keep the computational costs down, the objective of the optimisation and
the design space to explore. When using medium-high fidelity models and dealing with
dynamics a global reconstruction of the design space is in general not a feasible solution.
On the other hand, once the main features of the system are defined, the design space
does not require to be explored blindly but, on the contrary, a certain design needs to
be refined. The assumption of local convexity is therefore expected to be a valid one.
While gradient based methods are often used in optimal control [20, 22], however, this
approach has to be further explored when dealing with co-design problems, particularly
in understanding how the convexity of the design space, and thus the solution found, is
affected when switching from optimal control to co-design.

In this work, a SLSQP optimisation algorithm is used [23]. The GEBM with cou-
pled flexible-rigid body dynamics from an in-house aeroelastic simulation environment
(SHARPy — simulation of high aspect ratio planes, [17, 24, 25]) has been embedded in
an optimisation framework built using OpenMDAO [26]. The implementation is mono-
lithic and uses finite differences for the gradient evaluation.

3 NUMERICAL INVESTIGATIONS

This section starts presenting the flexible pendulum model and a verification of the GEBM
implementation. The optimisation framework and the CVPs introduced are then exer-
cised for the optimal control case proposed in Ref. [7] and results are compared under
similar optimisation objectives (Sec. 3.2). In order to show the effect of using different
discretisations, the behaviour of two pendula of different flexibility is analysed. A Design
of experiment (DOE) is then performed: for a fixed DSS and spline parametrisation of the
control input, the optimal control problem is solved for structures of different flexibility
(Sec. 3.3). Finally, the co-design is attempted using a gradient based method, and the
quality of the results is assessed.

3.1 Model description and verification

The flexible pendulum configuration proposed in Ref. [7] is sketched in Fig. 2. The
pendulum, modelled as a hinged elastic beam, has a constant rectangular cross-section
along its length; the material properties, as well as the specific dimensions of the cross-
section, however, are varied from case to case to obtain stiffer or more flexible designs.
Results obtained with the hinged configuration have been compared against the free
falling flexible beam case proposed in Ref. [7] (Fig. 3). The beam here presented has a
total mass of 1 kg and an overall length of 1 m. Mass and stiffness properties are constant
along its span, with bending stiffness EI = 0.15 kg m?, negligible rotatory inertia and
infinite extensional stiffness. A gravity value of 9.80 m s? has been used. The beam tip
displacements show a good comparison against the results presented in Ref. [7].
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Figure 2: Flexible pendulum geometry
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Figure 3: Free falling hinged flexible beam (the beam is horizontal at time ¢ = 0 s).

3.2 Optimal control results

In the optimal control problem proposed in Ref. [7] the pendulum is initially in a stable
equilibrium position along the vertical direction (Z axis); gravity effects are accounted
for. A control torque moment, My (t), chosen to be zero at the initial and final time of
the simulation, is applied at its root (Fig. 2), causing the pendulum to oscillate about the
hinge point. The torque time history My (t) is optimised such to maximise the leftward
X velocity of the pendulum tip, vy, measured in the global FoR G at time T'= 2 s. Note
that, in spite of the X axis orientation in the global FoR G, vx is assumed to be positive
when pointing leftward, such to ease the analysis of the numerical investigations. The
problem so presented is fully deterministic and can be written, in its continuous form, as:

minimise #;, vy + Ky P(My)

with respect to My ()

(11)

subject to My (0) = My (T) =0
_Mma:r; < MY(t) < Mmax

10
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where

17 dMy \?
P(MY>:§/O [71’1 M)2x+7T2 (#) ]dt

is a penalty term for the control input. In the numerical implementation, My is discretised
by mean of eq.s (7) and (10) when using, respectively, a DSS and a spline basis parametri-
sation; the optimisation is thus performed with respect to basis functions coefficients z..
The constants k; and m; are scaling parameters to ensure that all the terms in the cost
function and penalty factor have same units and comparable magnitude; note that x; is
required to have negative value. An isotropic material of Young’s module £ = 1.2 Pa
and density p = 100 kg m™® was used; the beam has length L = 1 m and a constant
rectangular cross-section of area A = 1072 m? with negligible rotatory inertia [7]. In the
results presented in this work, rigid body rotations and deformations are all planar; thus
the only relevant elastic quantity is the bending stiffness about the local axis perpendic-
ular to the plane where displacements occur. Two beams of different bending stiffness,
one 10 times stiffer then the other, are obtained varying the sides of the cross-section [,
and [3 as summarised in Tab. 1. In the following, the two pendula are referred to as stiff
and flexible.

ly ls Efg fr o
[m] m] [Nm" [Hz] [Hz]
stiff pendulum | 0.1000 0.1000 10.0 0.50 7.76
flexible pendulum | 0.3162 0.0316 1.0  0.50 2.45

Case

Table 1: Pendula structural properties for the optimal cases proposed in Ref. [7].

As the mass properties do not vary, the rigid-body frequency linked to the period of
large free oscillation of the pendulum, f,, is unchanged from one case to another. As
the structure becomes more flexible, however, the natural frequency related to the first
bending mode f; is drastically reduced® (Tab. 1). While from a physical point of view
this implies a larger coupling with the rigid body mode, from a control point of view
it is important to ensure that the frequency resolution of the control parametrisation is
enough to capture the different modes. For the DSS parametrisation, for example, the
step in frequency between waves is fo = 0.25 Hz, thus showing that as the structure
becomes more flexible not only coupling effects increase, but becomes also harder for the
control to target specific modes.

For both the case proposed in Tab. 1 the optimal control problem is solved with B-
spline and DSS parametrisations of different basis sizes, based on the maximum frequency,
fmaz, captured by the control; for the B-spline parametrisation, in particular, the Nyquist
criterion was used to estimate it. It is worth noticing that, fixed a certain value of f,,4z,
the size of DSS and B-spline basis are comparable. In particular, for each parametrisation
the basis size was chosen such to include and exclude the flexible mode natural frequency
of vibration. In both cases, the control input was bounded not to exceed an absolute
value of M., = 3.5 N m; the cost and penalty term parameters were set as per Ref. [7]
to be:

Ki=—1sm* , ko=1

5The characteristic frequencies in Tab. 1 have been computed assuming an underformed configuration
for f. and an Euler-Bernoulli beam model under the small vibrations hypothesis. While large deforma-
tions imply changes in the characteristic frequencies of the structure as it deforms, these values still give
a relevant idea of where the resonance points are located in the frequency domain.

11
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Figure 4: Snapshots (25 frames per second) of the stiff pendulum response for the optimal
actuation with a control maximum frequency f,,.. = 2 Hz using a DSS parametrisation.

m =1N2m %! , Mg = 1072 N2m~ 2%

3.2.1 Stiff pendulum

For the stiff pendulum case the parametrisations have been chosen as shown in Tab. 2.
In the table, N. and f,,.. refer to the basis size of each parametrisation and the related
maximum frequency of actuation. The number of iterations, NI, required to complete
the optimisations and the resulting cost (I), penalty factor (P) and final pendulum tip
velocity (vy) values are also presented.

Parametrisation N,  frae [Hz] | NI vx[ms™!] P I
spline 11 ~ 2 20 6.0838  2.7349 -3.3489
DS 8 2 14 6.0783  2.7257 -3.3525
spline 43 ~ 10 33 12.3490 6.1835 -6.1655
DS 40 10 44 10.5722  4.7685 -5.8036

Table 2: Optimal control of the stiff pendulum using different parametrisations.

As it can be seen, for the cases in which f,,.. = 2 Hz, the control moment does
not excite the first bending mode of the pendulum, which, therefore, only swings rigidly.
This is reflected in Fig. 4, where the snapshots of the pendulum response to the optimal
actuation (modelled using a DSS) show no relevant elastic deformation. The optimal
control and tip displacements related to the f.. = 2 Hz cases have been compared
against Ref. [7] in Fig. 5. Both the spline and DSS parametrisation can capture well
the rigid-body motion frequency, thus returning very similar performances. As physically
expected, the control moment excites the rigid-body motion and uses the gravity potential
energy to increase the final tip velocity vx while limiting the penalty term P.

Setting fia: > fp leads to a drastic improvement of performance as the first bend-
ing mode is now excited. From an energy analysis point of view, the active system is
now capable of storing not only kinetic (rigid-body motion) but also elastic energy; this
is returned at the end of the simulation to enhance the performance. While both the
discretisations show to be capable to exploit the system physics, the spline parametrised
control achieves an extra 6% reduction in cost function. The splines local nature, in
fact, allows the control to better adjust on the natural bending frequency of the beam,
particularly when, as the deformations become larger (Fig. 6), this changes during the
simulation. As a result, while the final cost I is similar for the two cases, the spline based
control based results show a larger, but justified, magnitude of the penalty value P.
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Figure 5: Results for the optimal control of the stiff pendulum using different parametri-
sations. The comparison is against the optimisation results obtained by Wang and Yu [7].

3.2.2 Flexible pendulum

As the pendulum flexibility is increased, the distance between rigid and flexible body
characteristic frequencies f,. and f; is drastically reduced and it becomes harder to excite
one of the modes without exciting the others. Also, geometrically nonlinear deformations
imply changes in the characteristic frequencies of the system. Setting and results for the
optimal control are summarised in Tab. 3; as for the stiff pendulum case, the discretisa-
tions are chosen such to exclude (fq.: = 1.5 Hz) and include ( f;,0. = 4 Hz) the pendulum
bending mode natural frequency (f, = 2.5 Hz).

The effect of the higher coupling rigid-flexible dynamics can be seen in the results
obtained when limiting the control maximum frequency to f,,.. = 1.5 Hz. The B-spline
parametrised control returns a very smooth My time history, with a very low magnitude
and penalty term P. The DS discretisation, instead, manages to excite the first bending
mode, thus achieving better performances. In both cases, the optimal control provides
physically valid results as both discretisations capture, as expected, the rigid-body dy-
namics. The higher nonlinearity of the system, however, encourages the proliferation of
local minima or, more generally, of solutions that depend on the evolution of the control
torque My during optimisation. The concept is underlined in Fig. 8, where the My signal
obtained after one iteration of the optimisation is shown. While the B-spline parametrisa-
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Figure 6: Snapshots (25 fps) of the stiff pendulum response for the optimal actuation
obtained using a B-spline parametrisation with N, = 43 control points (f.. = 10 Hz).

tion leads to a slow increases of the torque magnitude, the DSS parametrisation produces
strong control forces that enhance higher deformations in the beam (Fig. 8). The bending
mode is excited (coupling flexible-rigid body dynamics), thus allowing the optimiser to
see the flexible body dynamics and drive the solution towards a point where the elastic
behaviour of the pendulum is also exploited.

When the size of the control basis is increased such that f,,.. > f», both the discreti-
sations can capture the flexible dynamics regardless of the path towards solution. Even
in this case, spline basis provide better performance: as deformations are relevant, these
manage to better exploit the resonance, as the frequency of excitation can be adjusted
during the simulation. The DSS discretisation, moreover, suffers of frequency resolutions
issues, as the step between consecutive waves f, = 0.25 Hz — dictated by the parametri-
sation scheme, eq. (7) — is almost comparable to the distance between rigid and flexible
modes frequencies.

Parametrisation N,  frae [Hz] | NI vy [ms™!] P I
spline 9 ~ 1.5 22 5.3981 21882  -3.2099
DS 6 1.5 40 8.4210 4.5029 -3.9181
spline 19 ~ 4 o7 159226  5.7340 -10.1887
DS 16 4 53 13.1122  3.4838 -9.6284

Table 3: Optimal control of the flexible pendulum using different parametrisations.

3.2.3 Some conclusions

In all the cases shown, results agree well with those obtained by Ref. [7] (see Fig. 5 and
7). The results in Ref. [7] are obtained using Chebyshev polynomials and a beam model
accounting for damping. This latter difference becomes more important for the flexible
pendulum case, where the current results clearly show higher actuation (Fig. 7c) in order
to exploit the system resonance. It was also seen that different parametrisations can
produce different result: the maximum frequency captured by the control and — when
the nonlinearity of the system increases — the path followed by the optimiser are the
main influencing factors.

When the system nonlinearity increases, as a dependency of the final control on the
path towards the optimum is seen, gradient methods should be used with special care.
While a physically valid solution was always obtained, global basis seem more capable to
capture the system behaviour even when the parametrisation has an insufficient number
of bases functions (fiae < fp). From one point of view, this is linked to the fact that the
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Figure 7: Results for the optimal control of the flexible pendulum using different
parametrisations. The comparison is against the optimisation results obtained by Wang
and Yu [7].

change of the optimal torque My from one step to another is more violent, thus implying
that a larger design space region is explored — this comes, however, at the price of a more
unstable optimisation process. From another perspective, however, this is also linked to
the fact that global basis better capture the low frequency driven dynamics.

For refined enough parametrisations (fi,ae > fp), the results obtained with B-splines
exploit better the system resonance. Local basis, in fact, can provide a better time-
frequency resolution, particularly when the system properties (in this case the flexiblity,
i.e. the characteristic frequencies) change in time (nonlinear effect). This is particularly
true for high frequency driven behaviour, which is localised in time and thus demands a
local reconstruction.

3.3 Design of experiments: stiffness vs. control

Before attempting the active system co-design, the optimal control problem of the pen-
dulum is solved for a range of beams of different stiffness. As shown in Sec. 3.2, if the
maximum frequency f,... that the control can capture is fixed, a more flexible pendu-
lum is generally expected to have better performance. For both the DSS and B-spline
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Figure 8: Optimal control after first iteration for flexible pendulum case using B-splines
(N.=9) and a DSS (N. = 6).
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Figure 9: Snapshots (25 fps) of the flexible pendulum response for the optimal actuation
obtained using a B-spline parametrisation with N, = 9 control points (f.. = 1.5 Hz).

parametrisations, the number of basis functions is chosen such to achieve a maximum fre-
quency fpe: = 6 Hz. The resulting basis size are, respectively, 24 and 27 thus leading to a
FD based sensitivity analysis of comparable computational cost. The pendulum bending
stiffness is varied by changing the dimension of the beam cross-section l and I3 (Fig. 2).
Note that, in order to keep the total mass — and thus the beam cross-sectional area —
constant, only one of the two structural parameters is actually independent. Changes
of beam bending stiffness E'I and natural frequencies are summarised in Fig. 11. The
structural design space, in particular, is chosen to include both designs for which the
control maximum frequency f,,.. is greater and smaller of the pendulum first bending
mode natural frequency. The lower bound for the beam stiffness is, furthermore, chosen
such as to avoid the resonance of the second bending mode of the beam. While this could
also be beneficial, it was not included in this exploratory study to simplify the analysis
of the results.

Results of the DOE using a DSS parametrisation with N, = 24 coefficients are pre-
sented in Fig. 12a. While the actuation penalty is fairly constant over the design space,
the final tip velocity vy and cost function values I have a steep improvement as the natu-
ral frequency of the first bending mode f, enters in the range of the control (I3 = 0.0773 m,
EI = 59785 Nm?). Fig. 12b shows, for each of the structural designs explored in the
DOE, the magnitude z. of the sine waves parametrising the related optimal control.
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Figure 10: Snapshots (25 fps) of the flexible pendulum response for the optimal actuation
obtained using a B-spline parametrisation with N, = 19 control points (f.. = 4 Hz).
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Figure 11: Beam properties changes as a function of the cross-sectional shape; for each 3
value, the size [, is adjusted such to keep the overall beam mass constant.

When f, > 6 Hz, the optimal controls mainly have a low frequency component, such
as to excite the rigid-body mode. As soon as f;, enters in the control range, however, a
peak around this frequency appears. As the beam flexibility decreases, the peak position
moves to follow the bending mode natural frequency. Once I3 < 0.070 m, I and vy reach
a plateau: for all these different designs, in fact, both rigid and flexible dynamics are
exploited, thus performance do not vary considerably.

The DOE using B-spline basis of size N, = 27, shows similar trends for cost, penalty
and final velocity (Fig. 13). The transition from rigid to rigid-flexible dynamics is, how-
ever, smoother. This result is in line with what was already seen in Sec. 3.2.2: when
the bending frequency of the beam is outside, yet close, to the maximum frequency cap-
tured by the control, local basis struggle to capture the flexible dynamics property of
the system. A further consideration is, however, required; while according to Nyquist
assumption the spline basis used can express a maximum frequency of 6 Hz, the wave
reconstruction achieved is not perfect, as only two control points per wave are used. As
at least 4 control points per maximum frequency wave would be required to ensure a good
reconstruction through the frequency range, inputs above 3 Hz are not well represented
with the current parametrisation, thus providing a further explanation for the smooth
trend shown in the transition region. Also the out of trend peaks in penalty term P and
final velocity vy at I3 = 0.080 m can be interpreted in this optic: being the control unable
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Figure 12: DOE and optimal controls frequency content using a DSS parametrisation
with N, = 24 (finee = 6 Hz).

to tune precisely with the bending mode natural frequency, a increase in the final velocity
magnitude can be achieved only with a higher control force. Once the bending mode
frequency is well within the frequency range of the spline parametrisation, performance
become comparable to those obtained for the DSS series.
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1
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12 p
10} ——

#05 0.06 0.07 0.08 0.09 0.10
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Figure 13: DOE using a B-splines basis with N, = 27 (f,... = 6 Hz).

3.4 Active system co-design

For all the co-design cases considered in this section, the initial beam rectangular cross-
section (Fig. 2) is set to have a relatively high bending stiffness (ET = 6.4 Nm?); the initial
size is Iy X I3 = 0.080 x 0.125 m?, with I3 bounded to be I3 € [0.050 m,0.200 m] during
the co-design. Each parametrisation has been tried with different basis size, reaching
a maximum frequency fq of 4 Hz, 6 Hz (as per DOEs, Fig. 12a and 13) and 12 Hz.
Results have been summarised in Tab. 4 and 5, comparing them to the performance
obtained solving the optimal control only problem for the initial beam geometry (DOE
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label in the tables). In the co-design cases, zero and opt have been used to underline the
initial condition (IC) given to the control moment My . For the opt case, in particular,
the initial My was set to be the optimal control found during the DOE; a zero IC for My
was otherwise used. Both the DOEs and physical analysis provide good confidence in the
fact that the structural design is expected, in all cases, to move towards a more flexible

beam, such to allow the control to exploit the first bending mode resonance.

IC Nc fmam lg fb P Vx [

[Hz| [m] [Hz| [ms™!] % %
zero 16 4 0.0747 5.80 || 3.133 | 6.827 58% |-3.694 6.4%
zero 24 6 0.0745 5.78 || 4.114 | 10.465 5.5% | -6.352 21.3%
zero 48 12 0.0790 6.13 || 3.085 | 8.471 -22.4% |-5.385 -15.9%
opt 16 4 0.0821 6.37 | 3.02 6.672 3.4% |-3.652 5.2%
opt 24 6 0.0800 6.21 || 4.683 | 9.92 0.0% |-5.237  0.0%
opt 48 12 0.0800 6.21 || 4.509 | 10.914 0.0% | -6.406 0.0%
DOE 16 4 0.0800 6.21 || 2.981 | 6.453 — -3.472 —
DOE 24 6 0.0800 6.21 || 4.684 | 9.92 — -5.237 —
DOE 48 12 0.0800 6.21 || 4.509 | 10.915 — -6.406 —

Table 4: Results of the combined optimisation problem using DSS control parametrisa-

tions of different basis size. Percentage values are in respect to the optimal control only
case (DOE).

As shown in Tab. 4, using a DSS parametrisation and starting from a zero initial
torque always leads to a more flexible, thus potentially better, design. However, the
stiffness reduction is not as large as expected: a minimum value of I3 = 0.0745 m is
achieved (N, = 24 case), while the DOE shows that a global optimum is expected in
the region [3 < 0.070 m. For the N. = 24 case, the [3 size is reduced until f, ~ 6 Hz,
such as to excite the bending mode. Once this is in resonance, however, the control force
and the structural design lock into a local minimum. Further changes in the structure
lead to a degeneration of performance (as we move away from a resonance condition) and
vice-versa: changes in the My, and thus in its frequency content, mean a reduction in
resonance as well. A local minimum is, thus, found by the gradient-based optimisation.
A similar phenomenology can be seen for the N, = 16 case: here the f; is close but not
yet inside the control range: however, as also seen in Sec. 3.2, the bending mode can
still be excited, thus leading to locking. The N, = 48 is, in this sense, the worse case:
here, the control f,,,. is already larger then the first bending mode frequency: the locking
occurs very early in the optimisation, and the structural design does not change much.
The bending mode is excited but the beam flexibility does not increase as expected.

The last case also underlines issues related to the dependency of the results on the
path taken by the optimiser. While, in fact, the structural design is not significantly
changed, performance is worse then in the pure optimal control case, with a final cost
16% higher. The difference in the optimal My for these cases is underlined in Fig. 14,
where the magnitude of the sine waves used to parametrise the solution is plotted against
their frequency. In particular, the co-design solution tries to minimise the final cost by
pointing towards a control that excites less the rigid body motion and returns, therefore,
a smaller penalty factor P. This behaviour is linked to both the form chosen for the cost
function itself — as the penalty term appears explicitly — and the poor time-frequency
resolution of the DSS parametrisation, which introduces noise in the design space. While
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Figure 14: DSS coefficients of the optimal torque deriving from co-design and optimal
control only cases.

the beam characteristic frequencies vary smoothly during the simulation (due to the large
deformations) and the optimisation, the parametrisation, having a fixed frequency step
fo =0.25 Hz, can excite very differently two similar designs.

The locking phenomenon becomes more evident when the IC for My is that obtained
via optimal control solution. Here the structural design almost never changes and the
optimisation stops at the very beginning. The N, = 16 case, in spite the slight change in
structural design, also follows the same trend. The initial torque, in fact, exploits the rigid
body modes only: the structural design is, therefore, driven towards a stiffer structure,
such that all the energy is used for the rigid body motion. The poor progress obtained
using as IC the My found via optimal control solution also proves the potential disadvan-
tages of using a sequential design for this class of problems. If a sequential optimisation
was carried on, in fact, the optimisation would stop progressing as the gradient, in this
case, would be the same as per the co-design case, but without the terms related to the
sensitivity with respect to the control parameters.

I.C. Nc fmax lg fb P Ux I
[Hz] [m]  [Hz] [ms™!] % %

zero 19 4 0.0550 4.27 || 6.080 | 12.73 99.3% | -6.65 90.5%
zero 27 6 0.0690 5.35 || 4.588 | 10.866  7.0% | -6.278 27.4%
zero 51 12 | 0.0817 6.35 | 1.378 | 5.182 -60.3% | -3.805 -47.0%
opt 19 4 0.0886 6.88 || 2.963 | 6.636  3.9% |-3.673 5.2%
opt 27 6 0.0800 6.21 || 5.197 | 10.124 -0.3% | -4.927 0.0%
opt 51 12 0.0800 6.21 || 5.862 | 13.046 0.0% |-7.184 0.0%

DOE 19 4 0.0800 6.21 || 2.896 | 6.386 — -3.49 —
DOE 27 6 0.0800 6.21 || 5.226 | 10.155 — -4.929 —
DOE 51 12 | 0.0800 6.21 || 5.862 | 13.046 — -7.184 —

Table 5: Results of the combined optimisation problem using B-spline control parametri-
sations of different basis size. Percentage values are in respect to the optimal control only

case (DOE).

Tab. 5 shows the analogous results obtained using B-splines to parametrise the control.
When the IC is set to zero and the f,,4. of the control is below the bending mode natural
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Figure 15: Comparison of results from co-design (IC zero) and pure optimal control of
the unchanged pendulum using B-splines (N, = 51).

frequency f;, the combined optimisation is capable of driving the structural design to a
configuration where the control (with its limitations in terms of maximum frequency reso-
lution), can fully exploit the physical properties of the system. In both the N, = 19 and
N. = 27, in fact, the flexibility of the structure is increased until the natural frequency
of the bending mode enters within the maximum frequency range of the control. As for
the DSS parametrisation, here locking occurs and the optimisation stops. Nonetheless,
the new design shows good improvement, particularly for the N, = 19 case, where the
final pendulum tip velocity almost doubles and the system flexibility is fully exploited.
When f, < faz, as in the N. = 51 case, locking happens at the very beginning
of the optimisation, leading to a solution in which only the bending mode resonance
is exploited (Fig. 15). This poses a real issue when co-design is attempted with basis
functions localised in time, as one needs to ensure that global effects, i.e. low frequencies
determined behaviours, are captured as well. The analogous optimal control case (DOE
in Tab. 5), on the other had, reaches a good solution: the fixed structural properties,
thus, add an extra constraint in the enlarged structural-control design space that avoids
the solution to get stuck in the local minimum solution showed in Fig. 15a and 15b.
Even with B-splines based control, the co-design starting from an optimal control
solution shows not to progress from the IC used (N. = 24,51). As for the DSS cases, due
to the presence of resonance, structural design and control start from a locked position,
thus no descending path is found. Only the non-resonant case (N, = 17) shows some
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progresses. The dynamics, however, does not change from rigid to rigid-flexible, and the
solution is only refined. As per the DSS analogous case, the structure is stiffened, such
to limit the energy input in the flexible mode and increase the energy transferred to the
rigid body mode.

Overall, regardless the parametrisation used, the combined optimisation starting from
a zero torque IC led to an improved design whenever the initial bending mode of the
pendulum was outside the frequency range of the control. In these cases, the process
was able to drive the pendulum towards a design compatible with the control features.
Improvements are more modest using a DSS parametrisation (final cost decreases up to
21%) and much larger using B-splines, where the basis local nature allowed to better
exploit the resonance. The increase in performance was, however, limited by the locking
phenomenon. This contributed to the poor performance of the co-design cases starting
from zero torque IC when the control could excite the bending mode of the pendulum
from the very start. For these cases other issues, namely the basis locality for B-splines
parametrisation and the poor frequency resolution of the DSS, were found. The form of
the cost function, moreover, has been seen to allow path dependent solutions. Locking
also prevented the co-designs started with an optimal torque IC to progress, proving the
unsuitability of a sequential approach for this problem. As for the optimal control cases,
global basis seem to be more robust, as they never failed in our investigation to capture
the rigid-flexible dynamics of the system. Local spline basis, on the other hand, can
achieve better performance.

4 CONCLUSIONS

The control vector parametrisation technique has been used to solve the nonlinear optimal
control problem — aiming to maximise the tip velocity of an elastic pendulum actuated
at its hinge — of a very flexible structure and to carry out a co-design of the open-loop
control and the structural properties of the system. The pendulum has been modelled
using a GEBM with coupled flexible-rigid body dynamics. The problem, while fully
deterministic, has been chosen to represent key features of the trajectory control of a
very flexible aircraft, particularly in terms of the nonlinearities introduced by the coupled
rigid-flexible body dynamics. In all cases, a gradient method has been used to drive the
optimisation. The control has been modelled using B-splines and DSS, to test the effect
of using local and global sets of basis functions. In both the optimal control and the
co-design cases the time-frequency resolution of the parametrisations has been shown to
be the most relevant factor driving the design.

The optimal control application has been tested for two beams of different stiffness
to investigate the effect of an increasing rigid-flexible body dynamics coupling on the
optimisation. The DSS basis proved to better extrapolate the global system behaviour,
but offers a poorer time-frequency resolution. In this sense, when the basis size was
large enough, B-splines showed to provide better performance, particularly when large
deformations caused the system properties to change during the trajectory. As the system
nonlinearity increases, a dependency of the optimal control on the path taken by the
optimiser has been, furthermore, shown.

In the co-design problem, a number of factors were found to influence the final outcome
of the process. Whenever the control maximum frequency resolution, f,,.., was below the
initial characteristic flexible frequency of the physical system f;,, the combined optimisa-
tion always managed to drive the structural design in a region where the control system
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could correctly exploit the coupled rigid-flexible dynamics. Particularly when using B-
splines, performance were found to increase considerably. Improvements in the design
showed, however, to be limited by the fact that structural and control design parameters
tend to lock the system around local minima whenever structure and control tune on
the same resonance/excitation frequency. This issue is linked to the use of a gradient
based method and, possibly, to the deterministic nature of the system, as no external
excitations (with the characteristic frequencies connected to them) influence the system
dynamics. Due to the locking, co-design attempts starting from a previously computed
optimal control solution (which can be shown to be equivalent to a sequential design
approach) showed no relevant design improvement. The quality of the solution was also
compromised in the co-design cases starting from a zero IC if the control frequency reso-
lution would allow to capture the flexible behaviour of the physical system from the very
beginning of the optimisation. Here locking was most noticeable when using a B-splines
parametrisation, where the control could not capture the global, low frequency driven,
behaviour of the system. The DSS parametrisation showed, instead, to be more robust.
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