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Abstract: The basis of linear piston theory in unsteady potential flow is used in this work to
develop a quantitative treatment of the validity range of piston theory. In the limit of steady flow,
velocity perturbations from Donov’s series expansion for the supersonic flow over an airfoil are
used to assess the contributions of nonlinear terms relative to linear terms in the full perturbed
potential equation. The range of Mach number and flow turning angle for which linear terms
dominate is put forward as the analytical validity range for linear piston theory as based in
potential flows. The range of validity of single-term nonlinear extensions to the linear potential
equation into the transonic and hypersonic regions is treated. A brief review of the development
of related aerodynamic methods for supersonic flows which share a similar form with piston
theory is given; where applicable, the piston theory coefficients for the methods are given. The
differences in the theoretical bases between the methods are highlighted. A discussion of the
role of higher-order terms in piston theory and the validity limits of local piston theory is given.

1 INTRODUCTION

The simple formulation of piston theory in relating aerodynamic pressure and structural motion
through a point-function relation has made it a popular analytical tool for aeroelasticians. The
point-function relation is simple to implementation computationally, and thus piston theory
has been used in several commercial tools for aeroelastic analysis, such as the ZAERO range
of codes and Nastran. Piston theory has received renewed attention in recent literature [1–
3], particularly in the use of local piston theory with CFD to reduce the computational cost
of high-fidelity unsteady aerodynamic computations. The use of higher-order piston theory is
widely used [4] in investigations of fluid-structure interactions of flexible panels and hypersonic
vehicles. Lower-order piston theory shares a common form with other related aerodynamic
methods, and the coefficients from methods with a different theoretical basis are often used in
a piston theory formulation [5]. The aim of this work is two-fold: (1) to highlight the roots of
piston theory and related aerodynamic methods in a common theoretical basis, and (2) to give
an analytical treatment of the validity range of linear piston theory. This will serve as a basis for
the treatment of extensions to nonlinear regions. A discussion of the role of higher-order terms
in piston theory and of parameters influencing the validity of local piston theory will follow.
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2 THEORETICAL BASIS

2.1 The piston analogy

The origins of piston theory lie in the analysis of hypersonic flows. The hypersonic equiva-
lence principle is a concept which is central to the majority of aerodynamic methods for high
supersonic speeds, and is the intuitive basis from which piston theory stems. The essence of the
principle lies in the equivalence between steady flow in n spatial dimensions, and unsteady flow
in n−1 dimensions; the reduction in the spatial dimension of the problem being compensated
for through the exchange of one of the spatial variables for the time variable. This is essentially
achieved through a Galilean transformation; the steady flow in an Euler reference frame then
becomes unsteady flow in a plane which is normal to the direction of the Galilean transform.
With this interpretation, the reduction in spatial dimension of unsteady flows is also possible.

The piston analogy lies in considering the cross-section of the body in the unsteady flow plane
as a piston; the unsteady flow plane being the cylinder. The variation in the cross-section of
the body in the direction of the Galilean transform is perceived as expansion or contraction
(and in general, change of shape) of the piston. Rigid-body motion may then be perceived as
additional translation of the piston within the plane. Furthermore, it may be seen that applying
the Galilean transform in a direction which is not colinear with the freestream velocity vector
effectively results in an additional steady “freestream” in the unsteady plane. The early use of
the terms “piston” and “cylinder” in applying the unsteady analogy can be traced to Lighthill [6]
and Hamaker et al [7].
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Fig. 1 The piston analogy in the hypersonic equivalence principle.

An important assumption made in the hypersonic equivalence principle is that the variation of
the flow variables normal to the unsteady plane (i.e., in the direction of the Galilean transform) is
negligible compared to variations in the unsteady plane. Hayes [8] formalized this assumption,
and generalized the hypersonic equivalence principle of Tsien [9] to three-dimensional flows
including shocks and flow rotationality, stating that in the limit of

M� 1, θ � 1, K & 1, (1)

the steady flow in three-dimensions is equivalent to unsteady flow in a plane perpendicular to
the steady motion of the body; here M is the freestream Mach number, θ is the local surface
inclination to the undisturbed flow, and K = Mθ is the classical hypersonic similarity parame-
ter. The basis for this generalization was that disturbances at two points on the same streamline
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were in phase – Hayes’ noted that this would be valid for large local Mach number of the flow;
it may also be stated as a requirement that the Strouhal number must be small. Hayes thus laid
the foundation for the piston analogy to be made for hypersonic flows. This was extended to
three-dimensional unsteady flows by Hamaker et al [7] through potential flow analysis. Further-
more, Hamaker et al offered a review of research [10] into the validity range of the hypersonic
similarity parameter K = Mθ . To estimate the validity range of the parameter, surface pressures
on cones and ogives were calculated by the method of characteristics for a range of Mach num-
bers and body thickness ratios; the range of parameters for which the surface pressures could
be collectively described to within a specified error bound by K was defined as the range of
validity for the similarity law.

2.2 Lighthill’s piston theory

Applying Hayes’ equivalence principle, Lighthill [6] reasoned that in the absence of strong
shocks, the pressure on the surface of an oscillating airfoil could be modelled, by physical
analogy, using the pressure equation for a piston producing simple waves. In Lighthill’s appli-
cation, a number of assumptions were made, namely that the Mach number is sufficiently high
(and shock and Mach angles are sufficiently small) that

1. gradients in flow quantities in the x-direction are “small” compared to gradients in the
z-direction,

2. û is “small” compared to w,

where x is the direction of the undisturbed flow; z is perpendicular to x; û is the perturbation to
the x-component of velocity, u; w is the z-component of velocity. In applying the simple wave
pressure equation, Lighthill further assumed that the piston velocity remained subsonic. This
was cast as

K
[
1+
( z0

θc

)
k
]
< 1, (2)

k ≡ ωc
U

, (3)

where c is the chord, z0 is the amplitude of oscillation, U is the freestream velocity, ω is the
angular frequency of oscillation, and k is the reduced frequency or Strouhal number. This leads
from the equation for the downwash at the airfoil surface,

wa =U fx + ft , (4)

where wa is the downwash, f is the equation describing the z-coordinate of the airfoil surface,
and subscript notation denotes differentiation. Finally, the pressure equation for Lighthill’s
piston theory [6] is

p
p∞

=

[
1+

γ−1
2

(
wa

a∞

)] 2γ

γ−1

, (5)

where p is the pressure at the surface of the airfoil, p∞ is the freestream pressure, and γ is the
adiabatic exponent.

The general point-function relation for pressure for piston theory and similar theories is, up to
third-order downwash terms,

p
p∞

= 1+ γ

[
c1

(
wa

a∞

)
+ c2

(
wa

a∞

)2

+ c3

(
wa

a∞

)3
]
, (6)
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for which expansion of Eq. (5) yields

c1 = 1, c2 =
γ +1

4
, c3 =

γ +1
12

. (7)

The classical review paper of Ashley and Zartarian [11] gives the validity limit of linear piston
theory as any one of the following:

M2� 1, kM2� 1, k2M2� 1. (8)

2.3 Similar methods

2.3.1 Point-function relations in planar flows

The basis of Lighthill’s [6] piston theory, as was seen in the previous section, lies in a physi-
cal argument based on Hayes’ [8] hypersonic equivalence principle, with a pressure equation
modelling simple waves. However, the general point-function relation for pressure of piston
theory, as given by Eq. (6), is shared by other aerodynamic methods. The basis for these meth-
ods does not lie in Hayes’ equivalence principle, and the methods are developed from general
theory rather than by analogy. The works of Donov [12] and of Van Dyke [13] are considered,
along with the relations for oblique shocks in the hypersonic limit. The methods listed were
developed for steady flows, but may be expected to apply in the quasi-steady limit of k� 1.

Donov [12] developed a thorough treatment of the steady flow at the surface of a curved wall in
supersonic flows through analysis by method of characteristics; the basis of his analysis is thus
the Euler equations. The analysis assumes that shocks remain attached, and that the flowfield is
everywhere supersonic. Whilst Donov presented detailed expressions for the flow velocity and
pressure on the airfoil surface, accounting for the shock at the leading-edge and leading-edge
curvature, a simplified form of the equations up to third-order in flow deflection θ is presented
here. The truncated form of Donov’s [12] expression for the flow velocity at the airfoil surface
is

q
U

= 1+b1θ +b2θ
2 +b3θ

3 for θ > 0, (9)
q
U

= 1+b′1θ +b′2θ
2 +b′3θ

3 for θ < 0, (10)

where q is the local flow velocity, and θ > 0 is associated with flow compression, and

b1 = b′1 =−
1
m
, (11a)

b2 = b′2 =−
1

m4

(
1
2
+

γ−1
4

M4
)
, (11b)

b3 =−
1

m7

[
1
6
+

1
2

M2 +
3
4
(γ−1)M4 +

3γ2−12γ +5
24

M6 +
(γ +1)2

32
M8

]
, (11c)

b′3 =−
1

m7

[
1
6
+

1
2

M2 +
3
4
(γ−1)M4 +

2γ2−5γ +3
12

M6
]
, (11d)

where m2 = M2−1. Donov’s [12] expression for the pressure was given as a series in powers
of the flow deflection, θ ; for small perturbations such that sinθ ≈ θ and q≈U , it follows that

w
a∞

=
q

a∞

sinθ ≈Mθ , (12)
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and hence Donov’s pressure relation may be coaxed into the general form of Eq. (6). The
corresponding piston theory coefficients for Donov’s analysis are then

c1 =
M
m
, (13a)

c2 =
(γ +1)M4−4m2

4m4 , (13b)

c3 =
1

12Mm7

[
8−12M2 +9(γ +1)M4 +

(
3γ2−10γ−4

2

)
M6 +

(
3γ2 +6γ +8

8

)
M8
]
(13c)

c′3 =
1

12Mm7

[
8−12M2 +10(γ +1)M4 +

(
2γ

2−7γ−5
)

M6 +(γ +1)M8
]
, (13d)

where c3 is for compression, and c′3 is for expansion. It may be seen that up to second-order
in flow deflection, the pressure relation is the same for compression and expansion; this is
expected, as the effect of entropy from the shock is only introduced from third-order terms.

Van Dyke’s [13] treatment of second-order supersonic flow is formulated from the basis of
steady potential flow. Van Dyke’s expression for the surface pressure on a curved wall may also
be written in the form of Eq. (6) for small angles such that tanθ ≈ θ , and the corresponding
piston theory coefficients from Van Dyke’s second-order supersonic theory are

c1 =
M
m
, c2 =

(γ +1)M4−4m2

4m4 . (14)

It is seen that the coefficients agree with those given by Donov [12]. The potential flow re-
sult is in agreement with that of the method of characteristics up to the introduction of flow
rotationality through terms of order θ 3.

Finally, the pressure behind an oblique shock for small wedge angles in the hypersonic limit (as
is exploited in the tangent-wedge approximation and “strong shock piston theory”) is given [14]
by

p
p∞

= 1+ γK2

γ +1
4

+

√(
γ +1

4

)2

+
1

K2

 . (15)

This equation may be expanded in powers of K and be correlated to Eq. (6) to give piston theory
coefficients as

c1 = 1, c2 =
γ +1

4
, c3 =

(γ +1)2

32
. (16)

Comparison of the above coefficients to those obtained for expansion in the hypersonic limit, as
given by Eq. (7), shows agreement up to second-order, with the difference due to rotationality
in the third-order term noted.

2.3.2 Hypersonic small parameter expansions

Hypersonic small disturbance theories and expansions in small parameters are a class of meth-
ods which stand distinct from the methods considered thus far. The methods share commonality
in the applicability of the hypersonic equivalence principle (unsteady analogy), but are different
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in the approach taken in the analysis. The previously mentioned works of Donov [12] and Van
Dyke [13] are related, in that these works assume small disturbances to the flow parameters. In
the methods that are to be discussed in this section, the smallness of some parameter in the flow
(or of a geometric ratio of the body) is exploited in reducing the complexity of, typically, the
Euler equations.

An early development of hypersonic small disturbance theory contemporary of Van Dyke [14]
was that of Il’yushin [15]. Il’yushin offered a rigorous development of the hypersonic equiv-
alence principle, which was named the law of plane sections; as noted by Hayes and Prob-
stein [16], it was only published in accessible literature in 1956, despite being authored earlier.
Furthermore, a hypersonic small disturbance theory was developed [15], and subsequently tied
to linearized aerodynamic theory and to piston theory. In Il’yushin’s work, the Euler equations
were used in treating the flow over a slender body with assumptions similar to Lighthill’s, but
more rigorous, in that

M� 1, w≈ θu, θ � 1. (17)

Following these assumptions, Il’yushin [15] showed that up an accuracy of θ 2+1/M2, the mass
of fluid between two planes perpendicular to the x-direction remains unchanged as it passes over
the body, and that the pressure is dependent only on motion of the fluid in planes perpendicular
to the x-direction. The relative smallness of order θ + 1/M of pressure gradients and of order
θ of velocity gradients in the x-direction compared to gradients in the z-direction follow from
his analysis. The applicability of strip theory for three-dimensional bodies was also treated. In
formulating the equations for the surface pressure, Il’yushin distinguished between expansion
and compression of the flow, resulting in the hypersonic forms of the pressure equation for
Prandtl-Meyer expansion and oblique shocks, respectively (although up to the second-order in
θ , these are equivalent). As such, Il’yushin gave a rigorous framework for the derivation of the
piston theory pressure equations at hypersonic speeds from the basis of the Euler equations.

A further significant development to hypersonic small disturbance theory was the formulation
for slender bodies at high angles of attack due to Sychev [17]. Sychev noted that with increasing
angle of attack, flow perturbations are no longer small; however, Sychev showed that a useful
simplification of the equations of motion is achieved if the thickness and aspect ratio of the body
is considered a small parameter. Sychev further assumed that the crossflow Mach number is
hypersonic, and thereby neglected the influence of the lee-side flow. The following assumptions
were made:

δ � 1, Mδ & 1, M sinα � 1, α > δ . (18)

Here, δ represents the ratio of the largest transverse dimension of the body to the chord length,
and α is the angle of attack. After simplification through neglecting terms of second-order
and higher in δ , Sychev [17] obtained the large-incidence formulation for hypersonic flow, and
noted that the flow solution depends on two parameters: K1 = δ cotα and K2 = M sinα; for
small angles of attack such that α ∼ δ , the large-incidence formulation agrees with that of
small-disturbance theory (cast as K = Mδ ). The formulation was developed from the Euler
equations and shock relations, and Sychev applied the unsteady analogy (equivalence principle,
law of plane sections) in planes perpendicular to the body axis; this formulation resulted in the
piston having a velocity of U sinα in addition to velocity due to rigid body motion and local
surface deformations.
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Barnwell [18] expanded on Sychev’s [17] work, noting that the Sychev parameter K1 = δ cotα

appears in the equations of motion without any assumptions regarding Mach number and with-
out the use of shock relations. Barnwell showed that the second Sychev parameter K2 = M sinα

enters through the shock boundary conditions, and argued that Sychev’s similarity parameters
are in fact valid for any supersonic, slender-body flow, provided that the crossflow Mach num-
ber is supersonic (M sinα > 1). Barnwell further remarked that Sychev’s formulation holds for
subsonic crossflow Mach numbers provided that the flow is conventionally hypersonic; Barn-
well’s [18] extension of Sychev’s conditions is then

δ � 1, M� 1, Mδ & 1, for M sinα < 1, (19)
δ � 1, for M sinα > 1. (20)

The successful correlation of a range of experimental data for sharp-edged delta wings and
slender bodies using Sychev’s similarity parameters by Hemsch [19] gave empirical evidence
that the validity of Sychev’s parameters extends well into the subsonic crossflow range (in
certain cases down to M sinα = 0.2). Barnwell [18] also briefly considered a linearized potential
flow formulation for bodies at angle of attack, and noted that the resulting equation cannot be
expressed simply in terms of the Sychev similarity parameters. Reduction of the number of
parameters in the equation is only achieved for M sinα � 1, resulting in the classical linear
potential flow equation.

The extensions to Sychev’s [17] theory for slender bodies at large angles of attack were sum-
marised by Voevodenko and Panteleev [20], who investigated the validity of and error in apply-
ing the law of plane sections (the hypersonic equivalence principle) to delta wings of varying
aspect ratio and angle of attack. For delta wings with shocks attached to the windward edges,
the error in calculated surface pressures in applying the law of plane section relative to an exact
shock solution was found [20] to increase with increasing leading-edge sweep; it was noted that
this was due to the decrease in the Mach number of the flow normal to the leading edge. Sig-
nificantly, Voevodenko and Panteleev estimate the validity range in applying the law of plane
sections in terms of angle of attack and leading-edge sweep angle; flows with shocks attached
or detached from the wing leading-edges are considered, and it was noted [20] that for low
leading-edge sweep angles, the dependence of the solution of the spanwise coordinate dimin-
ishes, and the transition to strip theory occurs (effectively further reducing the dimension of the
unsteady analogy to a one-dimensional piston).

2.4 Extensions to piston theory

Returning to consideration of flows of more general Mach number, it has previously been
shown [21] that in the for highly unsteady flows, linearized unsteady potential flow yields the
same pressure relation as linear classical piston theory; in the quasi-steady limit, linearized su-
personic theory is obtained (which may also be described in a piston theory formulation). The
linearization of the equation for potential flow and of the boundary conditions allows for sim-
plifcation of the analytical formulation; in particular, it allows the differential equation to be
solved in the frequency domain. The planar linearized potential equation for simple harmonic
motion in the time-domain may be written [21] as

(
1−M2)

φ̄xx + φ̄zz =−
ω2

a2
∞

φ̄ +2iM
ω

a∞

φ̄x, (21)
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where φ̄ is the amplitude of the harmonic potential function, and a∞ is the speed of sound in the
freestream. The Laplace transform of the above equation is written as

d2Φ

dz2 = µ
2
Φ, (22)

µ
2 ≡

(
M2−1

)
ξ

2 +2iM
ω

a∞

ξ − ω2

a2
∞

, (23)

where Φ is the Laplace transform of the harmonic potential function, ξ is the Laplace transform
of the streamwise coordinate (x), and µ represents elements of the potential equation associated
with streamwise derivatives and unsteady terms. The solution for the potential function in the
time domain is then given [21] by

φ̄(x, z = 0) =−
∫ x

0
w̄a(χ)L

−1
{

1
µ

}
dχ, (24)

where w̄a is the downwash at the airfoil surface, χ is a dummy integration variable for x, and
L −1 represents the inverse Laplace transform. The inversion of the solution back to the time
domain results in the introduction of non-trivial integrals [21], and the physical interpretation
of the result becomes obscured. Dowell and Bliss [22] recently revisited the linearized potential
flow treatment and considered the result of expanding the 1/µ term in powers of ξ prior to
inversion. The resulting power series in terms of ξ yields [22] a series of successive streamwise
integrals upon inversion to the time domain. The first terms in the series represent classical lin-
earized piston theory, with successive terms representing corrections which improve the piston
theory approximation of the potential flow solution through accounting for upstream influence
in the unsteady terms; as is noted by Dowell and Bliss, classical piston theory results from
neglecting these upstream influences. The basis for the “extended piston theory” remains lin-
earized potential flow.

The assumption of small flow perturbations, which is inherent in the linearization of potential
flows, was exploited in creating what has become known as local piston theory (LPT). The
essence of local piston theory is the use of linear piston theory to model unsteady (or steady)
perturbations about an existing solution of the mean steady flow. The chief merit of LPT lies
in the characteristic point-function relation between surface pressures and perturbations to the
surface geometry; it allows for computationally inexpensive modelling of perturbed pressures
to an existing flow. Furthermore, it allows for the modular use of other, more accurate aerody-
namic methods in the computation of the steady flow, which typically dominates the solution
of flows with small reduced frequencies. Works representative of developments in LPT include
those of: Yates and Bennett [23], who investigated supersonic and hypersonic flutter using LPT
to model unsteady perturbations about a shock-expansion solution; Ericsson [24], who con-
sidered viscous perturbations to inviscid flows, and modelled the effect of change in the slope
of the inviscid flow due to the boundary layer using a first-order LPT over a tangent-wedge
solution – this laid the foundations for a “viscous local piston theory”; Zhang et al [1], who
used LPT to model unsteady perturbations about a mean steady Euler solution, and achieved
excellent agreement to fully unsteady Euler computations for reduced computational cost; Han
et al [25], who extend on the approach of Zhang through providing a viscous correction to the
LPT contribution.

In closing, it is noted that in applying local piston theory, its basis as a perturbation to a mean
flow must be considered; the perturbation is relative to the local “cylinder” conditions, with the
“cylinder” oriented normal to the mean local flow. This is elaborated on in [26].

8
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3 VALIDITY RANGE

3.1 Objectives

The relation of piston theory to linearized unsteady potential flow was noted in the previous
section; particular attention is drawn to the fact [21] that the general formulation in terms of
arbitrary reduced frequency k is equivalent to linear piston theory in both the quasi-steady limit
(k → 0) and in the limit of highly unsteady flow (k → ∞). Dowell and Bliss [22] note that
the classical piston theory limit results as the streamwise dependence is neglected (ξ → 0 in the
frequency domain). The frequency-domain analysis from which the “extended piston theory” of
Dowell and Bliss [22] stems is dependent on the linearization of the unsteady potential equation.
Similarly, local piston theory depends on this linearization.

It is thus of merit to consider the conditions under which linearization of the equation for un-
steady potential flow becomes invalid. The validity range for piston theory, as based in a poten-
tial flow formulation, may then be quantitatively estimated as being the portion of the parame-
ter space for which the contribution of nonlinear terms in the full perturbed unsteady potential
equation is negligible. It should be noted that the aim of the present work is not to explore the
validity of the law of plane sections (hypersonic equivalence principle); rather, in the spirit of
the categorization of the applicability of particular methods to particular flow regimes made by
Voevodenko and Panteleev [20], the aim is to establish a range of applicability for the linearized
potential-flow formulation of piston theory. The validity of other related methods which may
be cast in a piston theory formulation is not investigated.

The analytical development which follows is based on the use of Donov’s [12] series for the
velocity at the surface of a smoothly curved wall to correlate the magnitude of velocity pertur-
bations with Mach number and flow turning angle. The contributions of nonlinear perturbations
in the potential equation relative to linear perturbations may then be estimated. Nonlinear con-
tributions are considered negligible if they are smaller than a specified multiple of the linear
contribution; the variation of the validity range of the linearization with the smallness of the
chosen factor may then be explored. The use of Donov’s series limits the study to steady flows;
thus, the conclusions are limited to cases in which the reduced frequency of the flow is very
small. Furthermore, in keeping with the potential flow analysis and small perturbations basis
of Donov’s [12] expansion, it is assumed that the flow is everywhere supersonic, and that the
wall curvature is small; the small curvature of the wall is consistent with the assumption of
low reduced frequency in the unsteady analogy. Finally, it is assumed that the flow is turned
smoothly; that is to say, the body is free of corners, and the flow behind the leading-edge shock
or expansion-wave is considered.

3.2 Analytical formulation

The full pertubed potential equation for steady planar flows may be written as

(Lx−Nx) φ̂xx +(Lz−Nz) φ̂zz−B = 0, (25)

where the following groupings of terms have been made: linear terms are grouped as

Lx = a2
∞−U2, (26a)

Lz = a2
∞, (26b)
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and nonlinear terms are grouped as

Nx = X1/e+X2/e+Z, (27a)
Nz = X1 +X2 +Z/e, (27b)

B = 2
(
U + φ̂x

)
φ̂zφ̂xz, (27c)

with the symbols denoting the following terms:

e =
γ−1
γ +1

, (28a)

X1 = (γ−1)U φ̂x, (28b)

X2 = (γ−1) φ̂x
2/2, (28c)

Z = (γ−1) φ̂z
2/2. (28d)

In the preceding equations, Li represents terms in linearized pertubation theory, Ni represents the
nonlinear terms, B represents terms relating to flow curvature, and e is the density ratio across a
shock in the hypersonic limit [16]; terms of the form φ̂i represent perturbation velocities. In the
following analysis, it is assumed that B may be discarded, assuming small flow curvature.

In relating Donov’s [12] expansion for velocity to pertubation velocities, the following prelimi-
naries are noted:

u =U + φ̂x = qcosθ , (29)

w = φ̂z = qsinθ , (30)

cosθ ≈ 1−θ
2/2, (31)

sinθ ≈ θ −θ
3/6. (32)

Hence, up to third-order in flow turning angle, the perturbation velocities are estimated from
Donov’s series as:

φ̂x/U = b1θ +(b2−1/2)θ
2 +(b∗3−b2/2)θ

3 +O(θ 4), (33)

φ̂z/U = θ +b1θ
2 +(b2−1/6)θ

3 +O(θ 4), (34)

in which b∗3 refers to b3 or b′3 depending on the direction of flow turning, and where the co-
efficients are defined as in Eq. (11); the notation O(θ 4) denotes terms of fourth-order in flow
turning angle. The following expressions are obtained for the nonlinear contributions in the
potential flow equation:

X1/U2 (γ−1) = b1θ +(b2−1/2)θ
2 +(b∗3−b2/2)θ

3 +O(θ 4), (35)

X2/U2 (γ−1) =
(
b2

1/2
)

θ
2 +b1 (b2−1/2)θ

3 +O(θ 4), (36)

Z/U2 (γ−1) = (1/2)θ
2 +b1θ

3 +O(θ 4). (37)

A preliminary observation may be made regarding the boundedness of these terms. When
considering the asymptotic behaviour of the coefficients given by Eq. (11), it is seen that as
M→ ∞, the second-order terms b1,b2→ 0 and for expansion b′3→ 0. However, the third-order
term for compression flows becomes unbounded as b3∼ (γ +1)2 M/32. Thus, in the hypersonic
limit of M→ ∞, the nonlinear contributions of Eqs. (36, 37) up to and including O(θ 3) remain

10



IFASD-2015-004

bounded; the boundedness of the nonlinear contribution of Eq. (35) is determined at O(θ 3) by
whether the flow is compressive or expansive.

Having thus obtained expressions for the nonlinear terms in the potential equation as a function
of M and θ , what remains the treatment of negligibility. The mathematical notion of the symbol
� in asymptotics, whilst powerful in gaining insight to the physical problem, does not offer
much help in quantifying when a parameter is “small enough.” Similarly, the big-O notation of
O(1) strictly relates to boundedness, rather than to a sense of “order of magnitude.”

The treatment of negligibility which is adopted in this work is intended as a framework for quan-
titatively assessing the relative importance on terms, and for quantifying the adjective “small.”
If the parameter ε is introduced as a measure of smallness, then negligibility may be defined by

X1� X2, if
∣∣∣∣X1

X2

∣∣∣∣< ε. (38)

Some insight may be gained into the degree of nonlinearity in the flow through variation of the
smallness parameter ε .

3.3 Relative contributions of terms

The nonlinear contributions Nx and Nz, given by Eqs. (27a, 27b), to the full perturbed potential
equation are functions of the perturbation velocities through Eqs. (28b – 28d). The variation of
the dimensionless perturbation velocities with Mach number for a flow turning angle of 15◦ is
given in Figure 2.
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Fig. 2 Variation of dimensionless perturbation velocities with Mach number for: (a) expansion (b)
compression.

As was noted previously regarding the boundedness of Eqs. (35 – 37), the dimensionless veloc-
ities remain bounded in the limit of M→ ∞, with the exception of φ̂x/U in compression flows.
A further observation from Figure 2 is that for compression flows, φ̂x and φ̂y are of opposite sign
for all (supersonic) Mach numbers for which the flow remains attached; in the case of expansion
flows, however, the sign of φ̂x changes at some intermediate Mach number, above which it is
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of the same sign as φ̂y. This behaviour is a function of the flow turning angle, and leads to the
possibility of discontinuous ranges of M and θ over which the contribution may be neglected.

In considering the contribution of the nonlinear terms relative to linear terms in Eq. (25), the
distinction must be made between the coefficients of φ̂xx and of φ̂zz, as differences enter through
the scaling of the density ratio e and through differences in Lx and Lz. The contributions of the
nonlinear terms in the coefficient of φ̂xx are shown in Figure 3 for a flow turning angle of 15◦;
the coefficient of φ̂zz is shown in Figure 4
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Fig. 3 Relative contribution of nonlinear terms in Nx for: (a) expansion (b) compression.
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Fig. 4 Relative contribution of nonlinear terms in Nz for: (a) expansion (b) compression.

Regarding nonlinearity in φ̂xx, Figure 3 shows that for both expansion and compression flows,
the nonlinearity is dominated by the contribution from the term (X1/e). Furthermore, it is
noted that over the Mach range shown, the nonlinearity dominates in the low supersonic range;
for compressive flows, the nonlinearity will also grow in the hypersonic limit, as noted from
previous remarks regarding the boundedness of X1/U2.
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The nonlinearity in φ̂zz, as shown in Figure 4, exhibits different behaviour. As previously noted,
the sign of the contribution from X1 changes in expansion flows; however, for the depicted range
of Mach numbers for this turning angle, the nonlinearity in expansion flows is dominated by the
contribution from Z/e. The nonlinearity is significant, and grows with increasing Mach number
from the transonic limit. In considering expansion flows, the contributions of X1 and Z/e are
seen to always be of opposite sign; in addition, there is a range of Mach numbers over which the
contributions are of similar magnitude, and therefore have no net contribution. For compressive
flows, the nonlinearity in the coefficient of φ̂zz is thus nontrivial.

3.4 Validity range of linearization

From consideration of the variation in nonlinearity in the coefficients of φ̂xx and φ̂zz with M
and θ , the range of validity of linearization may be established as those values of M and θ

for which the relative nonlinear contribution is smaller than a parameter ε . It should be noted
that the overall contribution of the nonlinear terms is considered; in the framework adopted for
considering the smallness of the contributions, this is an important distinction. As observed
for expansion flows in Figure 4(a), individual contributions may be of similar magnitude, but
opposite sign; thus, whilst the contribution of the individual terms may not be negligible, the net
contribution of the terms will be. In the case of contributions having the same sign, neglecting
the net contribution becomes a stronger limiting condition than the limits on individual terms;
in the case of terms with opposite signs, the limiting condition in neglecting the net contribution
poses a relaxed restriction on smallness of the individual terms.

The linearization of the potential equations is defined by the following conditions:

Nx� Lx, if
∣∣∣∣Nx

Lx

∣∣∣∣< ε, (39a)

Nz� Lz, if
∣∣∣∣Nz

Lz

∣∣∣∣< ε, (39b)

leading to the linearized potential equation in the form of

Lxφ̂xx +Lzφ̂zz = 0. (40)

Linearization requires that Eqs. (39a, 39b) be simultaneously satisfied. Each equation has con-
tribution from three terms, leading to six individual conditions for smallness of parameters
which must be met. These equations may be considered separately to determine if the nonlin-
earity is dominated by an individual contribution, in order that the number of conditions to be
met may be reduced to the strongest restrictions.

To consider satisfying Eq. (39a), the validity range of neglecting individual contributions to
Nx, along with the validity of neglecting Nx collectively, is shown in Figure 5 for a smallness
parameter ε of 0.10. For both expansion and compressive flows, it is evident that for the range
of M and θ considered, the nonlinearity Nx is dominated by the contribution from X1/e, as
was noted in the discussion of Figure 3; once again it is seen that the nonlinearity for small
flow turning angles is significant at low supersonic Mach numbers. The dominant condition to
satisfy Eq. (39a) is thus (X1/e)� Lx. It is also of significance that for flow compression, there
is a moderate limiting flow turning angle above which the flow is nonlinear for all supersonic
Mach numbers. In flow expansion, it is seen that for flow turning angles greater than 20◦, the
band of Mach numbers for which the flow may be linearized diminishes rapidly.
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Fig. 5 Validity of neglecting contributions to the coefficient of φ̂xx for: (a) expansion (b) compression.

The regions in which nonlinear terms in the coefficient of φ̂zz become significant up to ε of 0.10
are shown in Figure 6. The greater complexity of the nonlinearity is immediately evident in the
disparity between the individual ranges of negligibility of X1 and Z/e and the range of validity
in neglecting the net contribution Nz.

Flow Turning Angle, θ [◦]

Negligible if < ε |Lz| ; ε = 0.10

R
ef

er
en

ce
M

ac
h

N
um

be
r,

M

−25 −20 −15 −10 −5 0

2

4

6

8

10

Nz
Z/e

X2

X2

X1

(a)
Flow Turning Angle, θ [◦]

Negligible if < ε |Lz| ; ε = 0.10

R
ef

er
en

ce
M

ac
h

N
um

be
r,

M

0 5 10 15 20 25

2

4

6

8

10

NzZ/e
X1

X2

(b)

Fig. 6 Validity of neglecting contributions to the coefficient of φ̂zz for: (a) expansion (b) compression.

In considering flow expansion, the discontinuity in the range of negligibility of X1 that was
explained in the discussion of Figure 4 is observed. The insignificance of the contribution by
X2 is evident; in determining the dominant contribution, Figure 4(a) provides more insight. It
may be expected that for the specified smallness parameter of ε = 0.10, the nonlinearity is
mostly dominated by Z/e over the Mach range in Figure 6 for θ > 10◦ from M > 2. However,
the generalization is dependent on the value of ε chosen. In conclusion, it is noted that for
expansion flows, the restriction of Eq. (39b) is not readily simplified.
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Consideration of the linearization of the coefficient of φ̂zz for compression flows in Figure 6(b)
shows that restrictions on the smallness individual contributions to the nonlinearity Nz are in
fact too severe. Once again, for the portion of the parameter space considered, the contribution
from Z/e is somewhat larger than that from X1 (as per Figure 4(b)), and it is concluded that
Eq. (39b) is not readily simplified.

Having considered Eqs. (39a, 39b) separately, the validity range of linearization by requiring
simultaneous satisfaction of both equations is now shown for various smallness parameters ε in
Figure 7.
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Fig. 7 Range of validity of linearization of the potential flow equation for: (a) expansion (b) compression.

Referring of Figure 5 and Figure 6, it is seen that for both expansion and compression flows, the
restriction on linearization at higher Mach numbers is from the coefficient of φ̂zz via Eq. (39b);
the restriction in the transonic limit is from the coefficient of φ̂xx via Eq. (39a), or essentially via
(X1/e)� Lx. The growth in the range of validity of linearized potential flow with relaxation of
the severity of the smallness parameter ε is evident.

3.5 Extension to nonlinear regions

The previous consideration of individual terms dominating the nonlinearity in the discussions of
Figure 5 and Figure 6 allows for extensions to be made to nonlinear regions through the addition
of single terms. Whilst the nonlinearity violates the frequency-domain analysis basis of piston
theory, it provides insight into the nonlinearity which may be used to guide the development of
more detailed approximate models of the flow.

As previously noted, in the transonic limit, nonlinearity is dominant in the coefficient of φ̂xx, and
this nonlinearity is dominated by the contribution of X1/e. If this contribution in not neglected
in favour of the linear term Lx, then a transonic approximation for potential flow may be made
as

Lxφ̂xx +Lzφ̂zz = (X1/e)φ̂xx. (41)
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subject to the conditions

X2/e+Z� Lx−X1/e, if
∣∣∣∣ X2/e+Z
Lx−X1/e

∣∣∣∣< ε, (42)

Nz� Lz, if
∣∣∣∣Nz

Lz

∣∣∣∣< ε. (43)

The resulting extension to the transonic region is shown in Figure 8, and the validity range of
the transonic approximation is shown in Figure 9.
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Fig. 9 Range of validity of the transonic approximation to the potential flow equation.

A similar extension to the hypersonic range may be attempted, but as remarked in the discussion
of Figure 4, the nonlinearity Nz in the coefficient of φ̂zz is nontrivial due to the similar magni-
tudes of X1 and Z/e. Whilst the validity region will not be explored in this work, an outline
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of a hypersonic approximation involving a single term will be given. If the ratio between the
dominant nonlinear is taken as r, where

r =
X1

Z/e
, (44)

and r is taken to be constant, then a hypersonic approximation for potential flow may be made
as

Lxφ̂xx +Lzφ̂zz = (rZ/e)φ̂zz. (45)

subject to the conditions

Nx� Lx, if
∣∣∣∣Nx

Lx

∣∣∣∣< ε, (46)

X2� Ly− rZ/e, if
∣∣∣∣ X2

Ly− rZ/e

∣∣∣∣< ε. (47)

The chief difficulty in applying this approximation lies in the variability of r with M and θ ,
which is shown in Figure 10. The range of Mach numbers over which r may be approximated to
accuracy of ε as a constant is seen to be greatest for large turning angles in expansion flows, and
for small turning angles in compression flows; the latter is consistent with classical assumptions
of small incidence in hypersonic flows.
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Fig. 10 Ratio of dominant nonlinear terms in the coefficient of φ̂zz for: (a) expansion (b) compression.

4 DISCUSSION

4.1 Relation of analysis to previous work

The preceding analytical treatment of the validity of linearization for steady potential flow
serves to provide a quantitave estimate of the range of Mach number and flow deflection angle
in which linear piston theory – as stemming from linearized potential flow – may be applied
in the quasi-steady limit. The survey by Hamaker et al [7] in studying the accuracy of Hayes’
hypersonic parameter (K = Mθ ) in correlating surface pressures on bodies of revolution from
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method of characteristics solutions represents an early attempt at establishing a validity range
for piston theory (as rooted in Hayes’ hypersonic equivalence principle). The work of Voevo-
denko and Panteleev [20] represents an approximate categorization of the parameter space for
delta-wing flows at hypersonic Mach numbers into regions across which various hypersonic
aerodynamic methods apply. The present work may be viewed partially as an extension of the
categorization of Voevodenko and Panteleev [20] to include potential flows, and in adding an
extra parameter in the form of Mach number variation; the work is also similar in it’s approach
to that of Hamaker et al [7], but provides deeper insight into the validity of the linearization,
the range of validity, and the sources of nonlinearity. The potential flow treatment, by exten-
sion, provides a range of validity for the extended piston theory of Dowell and Bliss [22] at low
reduced frequencies.

4.2 Higher order terms

The contribution of terms nonlinear in θ may be correlated to nonlinearities, or “large pertur-
bations” in the flow. As is evident from the preceding analysis, these nonlinearities typically
become important with increasing flow turning angle and with decreasing Mach number; that
is, for large geometric perturbations (through surface slope or motion) and at low supersonic
speeds (due to the sensitivity of the flow to derivates in the x-direction in the transonic limit).
The nonlinearity in the z-direction derivatives observed at high Mach numbers for even slen-
der bodies is characteristic of hypersonic flows; the large perturbation results due to the high
Mach number of the flow, rather than the sensitivity of the solution to high-order terms in θ .
The nonlinearity through higher-order terms may affect the validity of the law of plane sec-
tions for bodies which are no longer slender – in this regard, the reader is referred to the work
of Voevodenko and Panteleev [20]; within the validity of the law of plane sections, the valid-
ity of a frequency-domain solution of linearized flow is breached when higher-order terms are
important.

4.3 Local piston theory

The assumption of small perturbations is central to the notion of local piston theory (LPT);
linear piston theory is used to model the perturbations about a mean steady flow. In applying
LPT, the reference Mach number M becomes the local Mach number of the unperturbed mean
steady flow; the flow turning angle measures the perturbation about the mean steady geometry.
As may be deduced from the preceding analysis, the strength of a perturbation is a function
of the Mach number and the flow turning angle, and for small perturbations may be taken
as K = Mθ , where M and θ are defined as above for LPT. The dynamic linearization of the
flow and independence of the solution on streamwise influence also implies that the reduced
frequency k of the flow is small. Under these conditions, the analysis developed in the present
work may be used as a guideline for estimating the validity range of local piston theory. The
use of LPT with viscous corrections or with CFD is outside the scope of the present analysis;
however, it is expected that the validity of viscous LPT will require weak viscous interaction
and the preclusion of flow separation.

5 CONCLUSIONS

The theoretical basis of piston theory and of related aerodynamic methods has been reviewed
and used to provide a quantitative estimate for the validity range of linear piston theory. The
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work stands as a complement to similar categorizations of method validity ranges in literature,
with extension to potential flow for M > 1 and small reduced frequency k. The use of linearized
potential flow in the development of the analysis provides a consistent analytical validity range
for recent extensions to piston theory. Nonlinearity is shown to be important for moderate
deflections (θ > 5◦) at all Mach numbers. Nonlinearity in the x-direction dominates in the tran-
sonic limit, whilst the hypersonic limit produces nonlinearities in both directions. The validity
range of a transonic extension to the linearized equation is provided; challenges in extension to
hypersonic flows are highlighted. The basis of local piston theory as a perturbation flow is used
in guiding the estimation of the validity limits for the theory.
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