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Abstract: A Lagrangian formulation for the dynamics of unsteady point vortices is proposed.
This Lagrangian is shown to be equivalent to the previously constructed Lagrangian in terms of
yielding exact same dynamics for vortices of constant strength. However, different dynamics is
obtained in the case of unsteady point vortices. The resulting Euler-Lagrange equation derived
from the principle of least action based on the proposed Lagrangian exactly matches the Brown-
Michael evolution equation for unsteady point vortices, which was derived from a completely
different point of view that was based on conservation of linear momentum. The resulting dy-
namic model of time-varying vortices is applied to two cases of unsteady point vortices, namely
the starting vortex and the vortex generated by a pitching flat plate. Validation of the results of
the proposed Lagrangian are determined by comparing resulting aerodynamic coefficients with
those of other models and experiments.

1 INTRODUCTION

Reduced-order modeling of unsteady aerodynamics has been a topic of research interest result-
ing in the consequent formulations of Prandtl [1] and Birnbaum [2], Wagner [3], Theodorsen
[4], Leishman [5, 6] and Peters [7, 8]; and the more recent models of Ansari et al. [9, 10], Taha
et al. [11] and Yan et al. [12] among others. Another significant approach that has been taken
for unsteady aerodynamic modeling is the unsteady vortex lattice method (UVLM) [13–19]
or the discrete vortex method (DVM) [20]. Although this method is used to develop effi-
cient numerical algorithms to solve for aerodynamic quantities associated with unsteady ma-
neuvers, it requires shedding point vortices at each time step, which increases the number of
degrees of freedom considerably as the simulation time increases. As a remedy, it has been
suggested to replace the continuous shedding of constant-strength point vortices with discon-
tinuous/intermittent shedding of varying-strength point vortices.

One issue that is associated with varying-strength (unsteady) point vortices is the non-uniqueness
of their dynamics. In particular, they cannot convect with the Kirchhoff velocity because this
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will lead to spurious forces on the branch cut between the point vortex and the shedding edge. In
other words, the linear and angular momenta may not be conserved, as pointed in Prandtl’s lec-
tures [25] and analyzed by Brown and Michael [26], and independently noted by Edwards [27].
Brown and Michael [26] proposed a general model for the dynamics of unsteady point vortices
shed from sharp edges that removes the spurious force resulting from the time-derivative of the
vortex strength. Later on, Cheng [28] and Rott [29] introduced the same concept for two di-
mensional flows with vortices of variable strengths. This model in conjunction with the above
intermittent shedding criterion constituted the basis for the more recent efforts on reduced-order
modeling of unsteady aerodynamics of maneuvering airfoils by Cortelezzi and Leonard [24] and
Michelin and Smith [30].

Recently, Tchieu and Leonard [32] proposed an alternative model to Brown-Michael’s for the
dynamics of unsteady point vortices. The model sets the convection velocity of the unsteady
vortex such that the resulting impulse is the same as that of a surrogate constant-strength vortex
moving with the Kirchhoff velocity. They applied it to the problem of impulsively started flat
plate and showed that the model results in a lift behavior that is closer to Wagner’s lift [3] than
that of Brown-Michael’s [26]. Wang and Eldredge [33] generalized the model proposed by
Tchieu and Leonard [32] and named it the impulse matching model. They applied this model to
the cases of pitching and perching of flat plate. Both the Brown-Michael model and the impulse
matching model are intrinsically concerned only with conservation of the linear momentum, i.e.
they permit unbalance of the angular momentum [32, 33].

Variational principles have been shown to be useful physical-based approaches for deriving
governing equations of both solids and fluids [36, 37]. These equations are obtained by setting
the first variation of the action, which is the time integral of a candidate Lagrangian function,
to zero. For the vortex motion, Bateman [39], followed by Serrin [41], showed that the equa-
tions of motion of vortex lines could be obtained from a variational approach with the ability
to regularize the infinite velocity at the vortex center (Sec. 4 in Ref. [39]). These variational
principles were also used to derive governing equations for the cases of fluid motion with dis-
tributed vorticity [42] or point vortices [43] with no boundaries, and for the case of a fluid-body
interaction [44] that considered constant strength vortices only. These advances point to the pos-
sibility of developing a variational principle governing the dynamics of unsteady point vortices
interacting with a circular cylinder or a body conformal to it (e.g., airfoil), which is the objec-
tive of this work. Such a formulation will allow satisfaction of conservation laws by adding
constraints to the variational problem. In addition, it will enable compact and efficient coupling
with other variational principles governing rigid body and structural dynamics for coupled un-
steady flight dynamics and/or aeroelastic analysis. To date, there have been no developments
for variational principles governing the dynamics of unsteady point vortices interacting with
solid bodies enclosed by a non-zero total circulation.

In the present work, we present a new Lagrangian function for the dynamics of point vortices
that is more general than Chapman’s [45]. We examine the relation between the proposed La-
grangian and Chapman’s Lagrangian for the cases of constant strength and time-varying point
vortices. We compare the derived equations of motion to the governing equations derived by
other approaches such as the Biot-Savart law for the case of constant strength vortices and the
Brown-Michael model [26, 50], and the impulse matching model [32, 33] for the time-varying
vortices. We apply the resulting dynamic model of time-varying vortices to the problem of an
impulsively started flat plate and compare it to the numerical results obtained using UVLM.
Also, we discuss coupling the variational principle for unsteady point vortices with other varia-
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tional principles governing body and/or structure dynamics for aeroelastic and/or flight dynam-
ics applications.

2 LAGRANGIAN DYNAMICS OF POINT VORTICES

2.1 Proposed Lagrangian of Point Vortices

We postulate a new Lagrangian function for the motion of point vortices in an infinite fluid in
the z-plane in the most basic form as

L(zk, z
∗
k, żk, ż

∗
k) =

1

i

n∑
k=1

Γkz
∗
k żk +W (1)

where the first term is the bilinear function in variables zk and żk, and the second term is the
Routh stream functionW = − 1

2π

∑
k,l,k 6=l ΓkΓl ln(zk−zl)(zk−zl)∗. It has to be pointed out that

the variable zk and its conjugate z∗k are treated as an independent variables. The bilinear nature
of the first term ensures that the resulting equations of motion will involve only time derivatives
of the first order. The same concept was introduced by Chapman whose Lagrangian is written
as

L′(zk, z
∗
k, żk, ¯̇zk) =

1

2i

n∑
k=1

Γk(z
∗
k żk − zk ¯̇zk)−

1

2π

∑
k,l,k 6=l

ΓkΓlln(zk − zl)(zk − zl)∗

= Io +W

(2)

where I0 is one of the constants of motion associated with the motion of vortices of constant
strengths in an infinite fluid. Chapman’s Lagragian has been used in different contexts [51,52].

It is interesting to note that the proposed Lagrangian L and Chapman’s Lagrangian are related
via a gauge symmetry for the case of constant-strength vortices. That is, we have

L′ = L− 1

2i

d

dt

n∑
k=1

Θk (3)

where Θk = Γkz
∗
kzk is the angular momentum of the kth vortex about the origin. Note that the

gauge symmetry between any two Lagrangian functions such as L and L′ implies that they add
up to a total time derivative of some function, i.e., we have

L′ = L+
d

dt
[F (q, t)]

where q are the generalized coordinates. As such, it is said that L and L′ are related by a gauge
symmetry or a gauge transformation and that both are gauge invariant [53, 54].

On the other hand, using Eq. (3), one may explain Chapman’s Lagrangian L′ as a constrained
version of our proposed Lagrangian L to satisfy the constraint that the total angular momentum
of the vortices about origin is conserved; i.e., d

dt

∑n
k=1 Θk = 0.

3



IFASD-2017-237

2.2 Dynamics of a Constant Strength Point Vortices

To obtain the equations of motion for the case of vortices of constant strength, we define the
action to be the integral of the Lagrangian

S =

∫ t2

t1

L(zk, z
∗
k, żk, ż

∗
k)dt (4)

Applying the principle of least action, i.e., setting the first variation of the action integral S to
zero, the corresponding Euler-Lagrange equation, which is written as

d

dt

(
∂L

∂żk

)
− ∂L

∂zk
= 0 , (5)

yields the Biot-Savart law [19, 55, 56] that governs the motion of point vortices and is given by

ż∗k =
1

2πi

∑
k,l,k 6=l

Γj
zk − zl

(6)

It should be noted that the same result can be obtained using Chapman’s Lagrangian L′ [45].

2.3 Dynamics of Unsteady Point Vortices Interacting with a Conformal Body

For a single point vortex of constant strength Γ, the Lagrangian proposed in Eq. (1) is written
as

L(z, z∗, ż, ż∗) =
1

i
Γz∗ż +W (z, z∗) (7)

whereW (z, z∗) is the Kirchhoff-Routh function, which is a measure of the instantaneous energy
in the flow [57] while accounting for the presence of the body. Allowing for a time-varying
vortex strength (i.e. Γ = Γ(t)), a term that depends on the time rate of change of circulation (i.e.
Γ̇)) is added to ensure that the derivatives resulting from the bilinear function are coordinate-
independent. As such, the Lagrangian is written as

L(z, z∗, ż, ż∗) =
1

i

(
Γz∗ż + Γ̇z∗0z

)
+W (z, z∗) (8)

where z0 is the coordinate of an arbitrary point on the body as shown in Figure 1. The La-
grangian of n point vortices of time-varying strengths is then written as

L(zk, z
∗
k, żk, żk

∗) =
1

i

n∑
k=1

(
Γkz

∗
k żk + Γ̇z∗0kzk

)
+W (zk, z

∗
k) (9)

where z0k is the coordinate of a reference point on the body, which is usually the coordinate of
the edge from which the vortex is shed [26, 30, 32, 33].

Applying Euler-Lagrange equations (5) associated with minimizing the action integral based on
this transformed Lagrangian (9), we obtain the dynamics of an unsteady point vortex as

żk +
Γ̇k
Γk

(zk − z0k) = (
i

Γk

∂W

∂zk
)∗ (10)

which reduces to the Biot-Savart law given by Eq. (6) if Γ̇ is set to zero.
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Figure 1: Conformal mapping between a sharp-edged body and a circular cylinder.

The right hand side of Eq. (10) can be represented in terms of the regularized local fluid velocity
(Kirchoff velocity) w∗(zk), as shown by [56], which is expressed as

(
i

Γk

∂W

∂zk
)∗ = w∗(zk) (11)

Combining Eq. (10) and Eq. (11), we write

żk +
Γ̇k
Γk

(zk − z0k) = w∗(zk) (12)

which is exactly the same equation obtained by Brown and Michael [26] who used a completely
different approach that was based on the conservation of linear momentum.

It is interesting to note that while both the proposed Lagrangian L and Chapman’s L′ [45] yield
the exact same dynamics for constant-strength vortices, (the Biot-Savart law) they yield differ-
ent dynamics for unsteady point vortices. Adding a similar term to Chapman’s Lagrangian L′

to obtain a coordinate-independent expression for the vortex absolute velocity and minimizing
the action integral based on this transformed Lagrangian, the resulting equation of motion is

żk +
Γ̇k
2Γk

(zk − z0k) = w∗(zk) (13)

which differs from that of Brown-Michael by the factor of one half that multiplies the Γ̇-term.

Next, we apply the variational principle approach as defined above and evaluate the performance
of both postulated and Chapman’s [45] Lagrangians in predicting flow quantities. For validation
purposes, we compare time histories of the circulation and lift coefficient to those obtained using
the impulse matching model by Wang and Eldredge [33] and Wagner’s function [3].
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3 IMPULSIVELY STARED FLAT PLATE (THE STARTING VORTEX PROBLEM)

We consider a flat plate of semi-chord c/2 mapped from a circle of radius R, as shown in Fig.
1, according to the conformal mapping

z(ζ) = zc + g(ζ)eiα (14)

where the mapping function, g, is defined as

g(ζ) = ζ +
R2

ζ
(15)

The derivative of z with respect to ζ is

dz

dζ
= g′(ζ)eiα (16)

We also consider the case where the flat plate is moving with a constant speed U∞ , inclined to
the x-axis by an angle α. A vortex of strength Γv is shed from the trailing edge as shown in Fig.
1. For this flow, the complex potential in the circle plane is written as [30, 56, 58]

F (ζ) = φ(ζ) + iψ(ζ) = V (ζ − g(ζ)) +
R2V̄

ζ
+

Γv
2πi

[
ln(ζ − ζv)− ln(ζ − ζ(I)v )

]
(17)

where φ is the velocity potential, ψ is the stream function, V = −U∞eiα is the velocity of
the flat plate in the plate-fixed frame, and ζIv = R2/ζ∗v denotes the position of the image vortex
within the circle. The first term inside the brackets (ζ−g(ζ)) ensures that the complex potential
will contain only ζ with negative power (see Sec. 9.63 [56] , Sec. 4.71 [55], Sec. 4 [58], Sec.
3.2 [30]).

3.1 Dynamics of the Starting Vortex

Taking the origin at the mid-chord point and assuming that the starting vortex shed from the
trailing edge (ẑv0 = −c/2), we write the evolution equation of the starting vortex according to
the Lagrangian dynamics as

żv +
Γ̇v
βΓ

(zv − zv0) = (
i

Γ

∂W

∂zv
)∗

= (
i

Γ

∂W

∂ζv
(
dz

dζ
)−1zv )∗

= w∗(zv)

(18)

where β is a factor used to differentiate between the equation obtained from the proposed La-
grangian L (β = 1) or Chapman’s Lagrangian L′ (β = 2). Also, we have

W (zv) = Γvψo +
Γ2
v

4π
|ln(ζv − ζ(I)v )|+Γ2

v

4π
ln|dz
dζ
|zv (19)

and

ψ0 = Im

(
V (ζ − g(ζ)) +

R2V ∗

ζ

)
(20)
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Transforming Eq. (18) to the circle plane, the first term in the left hand side is written as

żv = U∞ + g′(ζv)e
iαζ̇v (21)

and the right hand side of Eq. (18) is re-written as

w∗(ζ) =
eiα

[g′(ζ)]∗

[
V (1− g′(ζ))− R2V̄

ζ2
− Γv

2πi

1

ζ − ζIv
− Γv

4πi

g′′(ζ)

g′(ζ)

]∗
=

eiα

[g′(ζ)]∗

[
V − R2V̄

ζ2
− Γv

2πi

1

ζ − ζIv
− Γv

4πi

g′′(ζ)

g′(ζ)

]∗
− V e−iα

(22)

Recalling that V = −U∞eiα, we write

w∗(ζ) =
eiα

[g′(ζ)]∗

[
V − R2V̄

ζ2
− Γv

2πi

1

ζ − ζIv
− Γv

4πi

g′′(ζ)

g′(ζ)

]∗
+ U∞ (23)

The evolution equation is then re-written in terms of the circle-plane variables as

ζ̇v +
Γ̇v
βΓv

(g(ζv)− 2R)

g′(ζv)
=

1

g′(ζv)[g′(ζv)]∗

[
V − R2V̄

ζ2v
− Γ

2πi

1

ζv − ζIv
− Γv

4πi

g′′(ζv)

g′(ζv)

]∗
(24)

A more general form of Eq. (24), for β = 1, for a flat plate moving and rotating in space can be
found in Michelin and Smith [30].

4 NUMERICAL RESULTS

Next, we implement the proposed Lagarngian to two problems, namely the starting vortex and
the vortex generated by a pitching plate. In the integration of the equations of motion, we used
the Matlab solver ode23s with a fixed time step of ∆t = 10−5c/U∞. This solver showed a better
performance than others because of the stiff nature of the evolution equation. For the first time
step, instead of integrating the equations of motion analytically along with the Kutta condition
as in Refs [30, 59], we used an appropriate initial condition for the position of the vortex , i.e.
x(0) = c/2 + ε, where ε ≈ 10−4c.

4.1 Impulsively Started Flat Plate

First, similarly to the classical unsteady thin airfoil theory (e.g., Wagner [3], Theodorsen [4],
and Von Karman and Sears [60]), we assume that the starting vortex moves along the x-axis and
the local fluid velocity is U∞ (i.e., w(zv) = U∞). As such, the evolution equation (18) in the z
planes is given by

ẋv +
Γ̇v
βΓv

(xv − xv0) = U∞ (25)

The evolution equation of the impulse matching model [32, 33] can also be simplified to

ẋv +
Γ̇v
Γv

(x2v − x2v0)
xv

= U∞ (26)

Figure [2] shows the time variations of the normalized vortex strength Γ, the lift coefficient
CL, and the time-variation of the normalized vortex location x for the case of α = 5o. Plots
from simulations based on (i) the proposed Lagrangian dynamics (β = 1 Brown-Michael),
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(a) Time variation of the normalized vortex strength
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(b) Time variation of the lift coefficient CL
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Figure 2: Time variations of (a) the normalized circulation, (b) lift coefficient and (c) normalized position of the
starting vortex for α = 5o and the vortex is assumed to move only in the x direction. The time is
normalized using the airfoil speed U∞ and chord c.

(ii) Chapman’s Lagrangian (β = 2), (iii) the impulse matching model of Wang and Eldredge
[33], (iv) Wagner’s [3] step response function, (v) and the UVLM are presented for the sake of
comparison. The plots show that all models agree qualitatively with Wagner’s exact potential
flow solution with the UVLM showing the best agreement. Note that in the three models, the
infinite sheet of wake vorticity is approximated by a single vortex. On the contrary, in UVLM
model, a vortex is shed at each time step and that vortex is allowed to move in the plane. As
expected, the correction to the Kirchhoff velocity (taken as U∞ here) in the case of β = 2 is
half of that in the case of β = 1 yields slightly higher transient lift.

Next, we consider increasing the angle of attack to α = 10◦ to relax the flat wake assumption.
Thus, allowing the vortex to move in the plane, i.e. with two degrees of freedom. Figure [3]
shows the resulting time variations of the normalized circulation Γ, lift coefficient CL, vortex
position along the x-axis, and the slope of the vortex trajectory θ as a function of x. The
singular value of the lift at t = 0, which corresponds to the added mass effect, is removed
to highlight the difference between results from different models. Again, the results based
on L′ (β = 2) predict a larger vortex strength (airfoil circulation) and a slightly higher lift,
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than those predicted by the two other models. Figure [3d] shows that the slope of the starting
vortex asymptotically approaches a line parallel to the incident free stream (i.e. θ ≈ α = 10o).
As shown, the proposed Lagrangian (Brown-Michael model) yield lift and circulation values
that do not match Wagner’s function. In addition, the impulse matching results in a slower
downstream convection. Consequently the development of circulation takes place at a slower
rate with an overall effect of reduced lift coefficient that matches Wagner’s function. We note,
however, that the Wagner’s response should not be considered as a reference for comparison in
this case because of the flat-wake and shedding by U∞ assumptions that may not be appropriate
for this relatively high angle of attack.
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(b) Time variation of the lift coefficient CL
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(c) Vortex position xv versus non-dimensional time
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Figure 3: Time variations of (a) the normalized circulation, (b) lift coefficient, (c) normalized position of the start-
ing vortex, and the slope of the vortex trajectory for α = 10o and the vortex is allowed to move freely in
the plane of the airfoil. The time is normalized using the airfoil speed U∞ and chord c.

In Figure [4], the lift coefficient versus angle of attack is shown for an airfoil pitching at a
reduced frequency k = 0.2, and compared to the experiment carried out by Granlund et al. [34]
at Reynolds number Re = 20, 000. In this case, two vortices are shed from the leading and
trailing edges. The same trend as in the case of the starting vortex is noted. Moreover, the
difference is maximum when the angle of attack reaches 45o and approaches zero when the
angle of attack reaches 90o. We also noted that while both proposed and Chapman’s Lagrangian
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yielded similar dynamics for the case of the starting vortex, they yielded different dynamics for
the case of pitching flat plate. The proposed Lagrangian (Brown -Michael) yielded a better
agreement with the experimental results than Chapman’s Lagrangian.
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Figure 4: Lift coefficient versus angle of attack for pitching airfoil at reduced frequency k = 0.2 and Reynolds
number Re = 20, 000.

5 POTENTIAL AND FUTURE ADVANCEMENTS

The main contribution of this effort is providing a successful Lagrangian function that governs
the dynamics of unsteady point vortices. Having this Lagrangian invokes the development of
variational principles that govern flight dynamics and/or aero-elastic systems. There have been
several successful variational principles governing structure dynamics (e.g., the principle of
minimum potential energy). The dynamics of the aeroelastic system is typically written as

d

dt

(
Ltot
∂q̇s

)
− ∂Ltot

∂qs
= Q (27)

where qs are the structural generalized coordinates, Ls is the Lagrangian function of the struc-
tural system, and Q represents the non-conservative applied loads. In this typical formulation,
the aerodynamic loads (of unknown nature) are incorporated in the right hand side as non-
conservative loads; due to the lack of an aerodynamic Lagrangian and/or variational principle
for unsteady fluids even within the framework of potential flow.

Using the proposed Lagrangian L for unsteady aerodynamics, we can, for the first time, write
a single Lagrangian Ltot governing the dynamics of the whole aero-elastic system; providing a
single variational principle for both the fluid flow and structure, which has been the subject of
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interest for decades [61]. As such, the aerodynamic loads will be naturally accounted for in a
similar fashion to the structural restoring forces in the left hand side of Lagranges equations

d

dt

(
Ltot
∂q̇

)
− ∂Ltot

∂q
= 0 (28)

where q = [qs qa] and qa represents the generalized coordinates of the aerodynamic system
(e.g., position and strength of the shed vortices). The variational equation (28) will invoke
discovery of conserved quantities and more compact analysis of aeroelastic systems.

6 CONCLUSIONS

We investigated the potential of implementing variational principles to derive governing equa-
tions for the interaction of unsteady point vortices with a solid boundary. To do so, we postu-
lated a new Lagrangian function for the dynamics of point vortices that is more general than
Chapman’s. We showed that this function is related to Chapman’s Lagrangian via a gauge sym-
metry for the case of constant-strength vortices. In other words, both Lagrangian functions
result in the same governing equation, i.e. the Biot-Savart law is directly recovered from the
Euler-Lagrange equations corresponding to minimization of the action integral with these two
Lagrangians. We also found that, unlike Chapman’s Lagrangian, the principle of least action
based on the proposed Lagrangian results exactly in the Brown-Michael model for the dynam-
ics of unsteady point vortices. We implemented the resulting dynamic model of time-varying
vortices to the problems of the staring vortex and pitching airfoil and compared the results to
those of the Wagner solution, UVLM, and experiments from the literature. The results showed
that the proposed Lagrangian yields better agreement than Chapman’s with numerical and ex-
perimental results.
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