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Abstract: A theoretical analysis model is established to simultaneously investigate the flight 

dynamics and aeroelastic stability of the flexible flying wing. The coupling effects between 

the rigid motion and structural elastic motion tend to be significant and strongly affect the 

aircraft’s stability when the structure is flexible. In this paper, common body coordinate 

system is utilized to conveniently describe the large deformation and flight dynamics for very 

flexible flying wing. Small disturbance hypothesis is adopted to establish the stability analysis 

model. The rigid/elastic motions coupling stability analysis results indicate that the difference 

between the rigid mode frequency and the elastic mode frequency tends to be unclear when 

the structural flexibility is significant. This may induce rigid/elastic motion coupling 

instability problems. 

 

1 INTRODUCTION 

 

For very flexible flying wing, which are sensitive to aerodynamic loads and deformations, 

analyzing aeroelastic and flight dynamics is quite important in the primary design stage. The 

extreme length and low stiffness of the wings result in natural vibration frequencies on the 

order of the flight dynamics such that the aircraft experiences instability characterized by the 

interaction between the vehicle flight dynamics and the structural vibrations[1]. Therefore, the 

aeroelastic analysis of these flight vehicles results in aeroelastic mode shapes that have strong 

components of wing vibration and vehicle body motion. This is the typical rigid/elastic 

coupling stability problems for very flexible aircrafts, which should consider the flight 

dynamic feature and aeroelastic feature simultaneously.  

 

Early work addressing flexible wing structural flight dynamics and aeroelasticity was 

performed by Van Schoor and von Flotow[2]. Their results demonstrated the critical 

importance of considering the aircraft structural dynamics when analyzing the aircraft flight 

dynamics of very flexible aircraft [3]. The flight dynamics and aeroelasticity should be 

analyzed in a unified framework, as suggested by Friedmann[4], Livne and Weisshaar [5], 

and Livne [6]. Waszak and Schmidt[7] [8]utilized an energy method to establish the dynamic 

equations for elastic aircraft based on the mean axis, including those for the aircraft’s rigid 

motion and elastic vibration mode. More recently, Hodges[9], Patil[10] and Cesnik 

[11][12]focused on analyzing the nonlinear aeroelasticity and flight dynamics of flexible 

aircraft. Their work [13] revealed a significant difference between the short-period and 

phugoid modes of a very flexible aircraft compared to those of rigid-body, linear aeroelastic, 
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and nonlinear aeroelastic dynamics. However, most of the researches are based on the 

nonlinear beam[14] element, which is not convenient for modeling and analyzing in industry. 

The rigid/elastic coupling stability analysis for engineering application need further study. 

 

The objective of this paper is to establish a state space model via flight dynamic equations 

based on common body coordinate to analyze the nonlinear flight dynamics and stability 

characteristic of flexible flying wing. Based on the small disturbance hypothesis, the 

equations for stability analysis can be greatly simplified. Therefore, it is convenient for 

researchers to investigate and understand the special characteristics of flexible aircraft. In a 

simple flying wing example, state space model is used to analyze the differences between the 

dynamic stability characteristics to illustrate the significant stability problems caused by the 

rigid/elastic coupling of a very flexible flying wing.  

 

2 THEORETICAL DEVELOPMENT 

 

2.1 Structural Geometric Nonlinearity 

 

The structural geometric nonlinearity roots form the nonlinear geometric equation, which 

includes the quadric term of the displacement differential, and requires the nonlinear force 

equilibrium equation established on the deformed state of the structure. The structural 

geometrically nonlinear problem in this study is solved by ULF[16] method, and the primary 

equations are presented briefly below. 

 

The relationship between the nonlinear Lagrange/Green strain and displacement is  
1

, , , ,2
( )t t t t t

ij i j j i k i k ju u u u                                                    (1) 

where 
,

t

i ju  is the partial derivative of displacement component iu to coordinate jx at time t.  

Despite a large elastic deformation, the material remains within the elastic limitation for a 

small strain, and thus, the conjugate Kirchhoff stress tensor 
jiS  at time t satisfies 

,

t t t t t

ji j i j jS n ds x dT                                                      (2) 

where t

jn  is the direction cosine of a small area element ds  at time t, and 
jdT  is the 

corresponding surface force in which the follower force effect is considered.  

Thus the final element-governing equation can be expressed as[17]: 

( ) .t t t t t

L NL A

  K K u Q F                                                   (3) 

where t t
Q  is the incremental outer force, including the aerodynamic force, engine thrust, and 

gravity at the new time step. The stiffness matrix in Eq.(3) can be decomposed into a linear 

part t

LK  and nonlinear part t

NLK .  

 

The assumption of a small amplitude vibration around the static equilibrium state is suitable 

for many dynamic problems, including the dynamic stability of flexible aircraft:  

 u u x                                                                    (4) 

where u  is the large-deflect equilibrium deformation from Eq.(3), and x is a small-vibration 
deformation. According to Eq. (4) and the static equilibrium condition, the linearized 

structural quasi-mode can be obtained by generalized diagonalization, and the vibration 

equation of the system under steady forces reduces to 

T T 0 M x K x                                                       (5) 

where 
TM  is the inertial matrix of the structure at the nonlinear static equilibrium 

configuration, and 
TK  is the corresponding stiffness matrix. Both of these parameters are 
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nonlinear functions of u and vary under different equilibrium states, which is a key feature of 

geometric nonlinear structures. The mode shapes and frequencies under different equilibrium 

states can be deduced from Eq.(5). 

 

2.2 Rigid/Elastic Coupling Dynamic Equation 

 

This paper uses the flat geodetic reference frame (OXYZ) as the inertial frame and the 

common body coordinate system (oxyz) as the body-reference frame. The origin of the body-

reference axes is constrained to an arbitrary pointed position in structure. For the symmetric 

longitudinal case we will discuss, we define the ox axis along the undeformed airframe 

pointing towards the back, and the oy axis vertical to the longitudinal symmetry plane of the 

undeformed aircraft pointing to the right. Figure 1 shows the relationship and position of the 

two-frame system. 

 
Figure 1. Inertial and body-reference frames 
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Figure 2. The position of the mass elements under two coordinate frames 

 

The position of an arbitrary mass element of an elastic aircraft can be written in terms of its 

position relative to the local reference system oxyz and the position of this local reference 

system relative to the inertial reference frame OXYZ. If the body-reference axes oxyz are 

translating and rotating relative to inertial space with velocity V  and angular velocity ω  and 

if the position in the mean axes frame can be expressed by the original position r and 

deformation u (i.e.,   0R R r u ), then the absolute velocity of the mass element is  

 
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0
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ddd

dt dt dt
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                                           (6) 
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The kinetic energy of the body can be written   

1
[ ( ) ][ ( ) ]

2
o o

m

T dm       v ω r + u u v ω r + u u                           (7) 

The expended kinetic energy expression is complicated but it can well reflect the kinetic and 

dynamic characteristics of very flexible aircraft under large deformation. The gravity force 

can be treated as out force and the elastic potential energy is only related with elastic 

deformationu . 

 

As expressed in the body-reference frame, ,R V andω are defined as
T[ ]m m mX Y ZR , 

T[ ]u v wV and
T[ ]p q rω , respectively. The usual Euler angles 

T[ ]  θ are 

used to define the rotational relationship between the inertial axes and body-reference axes, 

which is consistent with the analysis of rigid aircraft. The vector ω  can be written as  

0
0 0

d

dt
  

R
V R ωR                                                     (8) 

 

If we select
0R  , θ  and u  as the generalized coordinates of the system, according to Lagrange 

function wecan get  

                   
0

0 0

ˆ ˆ
; ;R u

d L L d L L d L L

dt dt dt


        
         

         
Q Q Q

R R θ θ u u
                          

                            (9) 
Substitute kinetic equation and kinetic energy expression into Eq.(9), then we can obtain the 

translate equation, rotation equation and elastic equation. 

 +S S+2S
o

T

o o v

m

M dm M    R
v ω u v ω ω Q                      (10) 

 
1

( ) 2 ( )
o

T

o total o total o

m m

S dm dm S
 

       
 

  θ R
v J ω r + u u r + u u v ωJ ω D Q R Q     (11) 

      2
T T T

o odm dm dm dm k        
u

v r u ω u v ω r u u ω u u Q           (12) 

Thus the flight dynamic equation under common body coordinate system for very flexible 

aircraft is obtained. 

 

      

+S S+2S

( ) 2 ( )

2

T

o o v m

m

o total o total m

m m

T T T

o o

M dm M

S dm dm S

dm dm dm dm k

   

 
      

 

        



 

u

v ω u v ω ω F

v J ω r + u u r + u u v ωJ ω M

v r u ω u v ω r u u ω u u Q

      (13) 

According to the virtual work principle, the generalized force can be expressed as, 

   

0

1

o

m R
V

m

T

V
o

dV

dV




  

 

θ RD Q

F Q f

M r uQ fR
                        (14) 

These equations demonstrate that Fm is the total external force acting on the elastic structure 

in the body-reference frame and that Mm is the total external moment in the body-reference 

frame. The generalized force includes gravity G aerodynamic force A and the engine thrust T.  
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To express the specific location of the aircraft in the inertial frame, R can be written as 
T[ ]E E EX Y ZR in the inertial frame. Thus, the translate velocity of cg can be expressed by 

the cg position in space via common translation matrix.  
TR L V                                                                   (15) 

In general, the kinetic equations can be expressed as  
T

-1





R L V

θ D ω
                                                                  (16) 

Introduce rigid motion mode (
tΦ for translate motion and 

rΦ for rotation mode) into common 

body coordinate system. With the grid force expression, the final rigid/elastic coupling 

dynamic equations are  

 

      

T

T

T

-1

+S S+2S

( ) 2 ( )

2

( )

( )

T

o o v

m

o total o total

m m

T

t G A T

r G A

T T

G To o

T

A

M dm M

S dm dm S

dm dm f fdm dm k f

   

 
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

 
 

   



 

     







 

v ω u v ω ω

v J ω r + u u r + u u v ωJ ω

v r u ω u

Φ f f f

Φ f f

v ω r u u ω u u

f

R L V

θ D ω

       (17) 

The equilibrium equations for static aeroelastic analysis under qusi-steady assumption can be 

obtained. Geometrically nonlinear trim analysis can be executed with Eq.(18). 

    

T

T

+ )S

)

S (

(

t G A T

r G A T

G A T

T

o o

o o

T T

o o

M M

S S

dm f fdm dm k f

  

   

      

 

 

 

Φ fv ω v ω ω ω

v Jω v

f f

Φ fω ωJω

v r

f f

u ω v ω r u ω u

              (18) 

 

2.3 Rigid/Elastic Coupling State Space Modeling and Stability Analysis 

 

Considering the geometrically nonlinear large structural deformation, the nonlinear trimmed 

state is selected as a benchmark state for stability analysis. Then the existed large deflection 

under trim state can be expressed as frozen deformation r  in common body coordinates to 

represent the variation of cg and rotational inertia. Thus the small elastic deformation around 

equilibrium state can be expressed with mode obtained via Eq. (5). 

1

( , ) ( ) ( ) ( ) ( )
n

i i

i

t q t t


 u r ψ r ψ r q                                           (19) 

 

Then the Eq.(18) can be rewritten in matrix form as[18], 

  

2

2

2

G G q m

G G q m

T T T T

q q q u

M M M M

M M

           
          

            
                     

0 0I r P v ω ωr P v 0 F

r J H ω r ω ωJ H ω 0 M

P H M q P H M q Kq Q

         (20) 

 

Select the straight flight state as benchmark to linearize Eq.(20) by small disturbance 

assumption, then 0( ,0,0)o uv ， 0 0 0 0o    ω ωv θ ， 0 0 0( ) (0 0 0)    q 0 . 

For stability analysis, the elastic deformation caused by small disturbance is quite small. The 

configuration and cg almost remain unchanged. Thus the center of common body coordinates 
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can be transferred to the cg of benchmark state, in which the large deflections have already 

been considered.  Then the simplified dynamic equations for stability analysis are[18], 

oM M             
           

    
           
                        







0 0I 0 0 v 0 v 0 Fv 0

0 J 0 ω 0 0 0 ω 0

0 0 M q 0 0 0 q K

M

q Q

                      (21) 

 

As for the unsteady aerodynamic modeling, nonplanar doublet lattice method and rational 

function fitting strategy are utilized as routine. So here we give the final aerodynamic model 

results. 
2

0 0 1 1 2 22
( ) [( ) ( ) ( ) ( )]S A SS S SC SS S SC SS S SC at q s

L L

V V


 

      Φ f δ δ δ xA q A A q A A q A D   (22) 

Now we can rewritten Eq.(21) as[18] 

0 0 1 1 1

2 2

2 0 1 22 2

( )

( )

ref ref

S S S S S S SS R SS R S SS S

ref ref ref

SS S SC SC C SC a

q q

q q q q q

c c

2V 2V

c c c

4V 2V 4V

 

 

    

  

    

      

M V B V K R L L R V

V δ δ M δ x

A A A

A A A A D

    (23) 

Where 

3 3 0

3 3

3 3 3

3 3

3
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3

S

g
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S S

nc
ee g ee

C nc
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M

M M












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 

              
         


 
  

0 V

B 0
I 0 T

B
M I K 0

0
M M T K

M 0

M

  

Converting Eq.(23) into state space we can get[18] 

0 1

1

ae ae ae ae

S S S

ae S ae S S

a s R s a

ns nc

ae C C C
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
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 
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   
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 
   
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x A x B η

R L L
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D

                                        (24) 

Where 

2 2

1

2 22 2

1 1
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0 0 1 1
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    

   
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By analyzing the eigenvalues and eigenvectors of Eigen matrix aeA , the stability 

characteristics can be obtained. The rigid/elastic coupling dynamic state space modeling 
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above is derived from the large nonlinear deformation of elastic aircraft based on common 

body coordinate system. It well meets the demand of rigid/elastic coupling stability analysis 

under large deformation for very flexible aircraft. 

 

3 EXAMPLE 

 

Here gives a small analysis example in order to illustrate the theoretical modeling process and 

verify the applicability of the method established in this paper.  

 

3.1 Flying Wing  

 

The flying wing model used in this paper is a wind tunnel test semi-model, shown in Figure 3. 

In order to present the special coupled stability problem, the complete model is utilized to 

analyze the longitudinal coupled stability. There are two control surfaces at the tailing edge of 

each wing and one control surface at the trailing edge of fuselage. Considering the 

longitudinal symmetric flight condition, the outer control surfaces at each wing are defined as 

the elevators and others keep stable. The FEM model of the flying wing is constructed with 

beam elements and concentrate mass elements. Nonplanar Doublet lattice panel method is 

used to establish the aerodynamic modeling for flying wing. For longitudinal flight analysis, 

the three DOFs of side motion, roll and yaw are the constraints at the instantaneous center of 

gravity. 3 rigid modes and 7 symmetric elastic modes are utilized in stability analysis and the 

detailed information are shown in Table 1. 

        

a. structure model                          b. aerodynamic model 
Figure 3. Flying wing semi-model 

 
Table 1 Mode information used in stability analysis  

 
Mode 1 0.00 Hz 

 
Mode 2 0.00 Hz 

 
Mode3 0.00 Hz 

 
Mode 4 5.08 Hz 
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Mode 5 5.67 Hz Mode 6 16.90 Hz 

 
Mode 7 27.79 Hz 

 
Mode 8 31.33 Hz 

 

3.2 Nonlinear Coupled Stability Analysis 

 

The longitude stability characteristics under 1 g straight flight are discussed below. The 

nonlinear stability analysis was linearized at each nonlinear equilibrium state. In the 

rigid/elastic coupling state space modeling analysis, 3 rigid longitudinal motion modes 

(moving forward, plunging, and pitching) and 7 elastic vibration modes (Table 1) were 

selected. One lagging root was used to establish the rigid/elastic coupling state space model. 

By solving the eigenvalue of Eigen matrix aeA , the root locus of eigenvalue vs. flight speed 

can be obtained to determine the stability of the system. For comparison, the traditional flutter 

analysis was also implemented. The 3 rigid modes were included and treated as normal modes 

since the traditional flutter analysis cannot consider about the nonlinear coupling effects.  

 

The flutter analysis results obtained by pk method are shown in Figure 4. For clearance, only 

three modes that participated in the flutter are shown in the figure, which indicates that the  

pitching mode and bend mode tend to be coupled together and result in the critical flutter 

speed 36.5m/s.  
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Figure 4 Flutter analysis results 

The nonlinear coupled stability analysis was implemented in time domain via state space 

model established in this paper. The obtained results are shown in Figure 5. The develop trend 

of each mode along with the increase in flight speed is marked with a black arrow; the critical 

speed crossing the imaginary axis is marked with a red arrow. The mode 4 (vertical wing 

bend mode referenced in Table 1 ) cross the imaginary axis within the calculation range and 

results in the nonlinear coupled critical speed 32m/s. The Eigen vector of mode 4 at critical 

speed is shown in Figure 6. It can be clearly identified that the coupled pitching mode and 

wing bend mode makes the flying wing unstable, which is similar with the flutter results. 

However, the nonlinear coupled result is lower than the flutter results. This is because the 

flutter analysis can not reflect the dynamic coupling effect of flexible aircrafts. All modes 

have no mass inertial coupling and dynamic coupling. While in nonlinear analysis, the 
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complicated dynamic coupling effects are considered and the structural geometric 

nonlinearity is included. Since the state space model is linearized under different equilibrium 

stats, the obtained quasi-modes are varied. The frequency decline of wing bend make it closer 

to the rigid mode frequency and easier coupled with rigid mode. So the nonlinear dynamic 

coupled stability analysis is more close to reality and more reliable.  

 

-20 -15 -10 -5 0 5

0

100
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300

im
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 mode10

 mode9

 mode8

 mode7

 mode6

 mode5

 mode4

 mode3

32m/s

 

Figure 5 Nonlinear coupled analysis results 

 
Figure 6 Unstable mode 
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Figure 7 Frequency of mode 4 under different speed. 

4 CONCLUSION 

 

A theoretical nonlinear rigid/elastic coupling stability analysis state space model is 

established in this paper. For easy implementation and intuitionistic understandings, the small 

turbulence hypothesis is adopted for stability analysis. By transferring the center of common 

body system to the center of gravity under nonlinear large deformed equilibrium 

configuration, the inertia coupling can be eliminated for rigid/elastic stability analysis. A 
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flexible flying wing is selected as an example to illustrate the special rigid/elastic coupling 

stability characteristics. The rigid/elastic coupling instability becomes the main reason that 

seriously affects the aircraft’s envelope. The comparison of flutter analysis and nonlinear 

analysis results indicates that the structural geometric nonlinearity cause by large deformation 

may worsen the rigid/elastic coupling instability. Thus, for flexible flying wing, the 

geometrically nonlinear rigid/elastic coupling is inevitable in determining the aircraft 

envelope. The theoretical analysis model established in this paper is an acceptable way to 

analyze the special stability characteristics for flexible aircraft. 
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