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Abstract: This work presents results from free-vibration analyses on tapered wing box made

of composite material. The analyses are performed through a refined one-dimensional model

based on the Carrera Unified Formulation. The displacements over the beam cross-section are

evaluated using polynomial expansions. In this way, no geometrical approximations are intro-

duced in the problem and a three-dimensional result can be obtained. Two simple tapered wing

boxes have been considered and different laminations have been taking into account. The re-

sults are compared with a shell model achieved by a commercial code. The results demonstrate

the good accuracy of the model and his use in tailoring analyses.

INTRODUCTION

In the aeronautical field, due to their rigid requirements regarding weight and stiffness, the

tapered thin-walled structures are widely used. Thanks to their proprieties and the materials

which they are made of, these structures provide a high stiffness/mass ratio and make them

attractive. Tapered beams are investigated with different methods. Assuming that stiffness co-

efficients are a function of the beam axis, the classical theories, such as Eulero-Bernulli [1],

provide not accurate results due to their assumption even if, ensure a low computational cost.

Cicala [2] and Timoshenko-Goodier [3] proposed analytical methods which include the shear

stress giving more accurate results. An easy way to analyze tapered beam concerns the use of

several rigidly joined prismatic sections to approximate the tapered shape. The accuracy of the

results increases with the number of subdivisions. An example of this stepped of piece-wise

approach can be found in work by Ji Yao Shen et al.. [4]. With the introduction of the Finite

Element Methods by Turner et al. [5] new approaches have emerged. As before said, the thin-

walled structure, TWS, are very attractive for the aeronautical application. Typical TWS have

closed cross-section make them good structures to deal with bending and torsional loads. Their

complex behavior and the non-classical geometries such as tapered shape, make the classical

theories incapable for analysing this topic providing accurate results. Some works about the ex-

tension of the classical theories are proposed by Bruhn [6] or Vlasov [7]. The Carrera Unified

Formulation (CUF) presented by Carrera et al. [8] is an advanced numerical tool which allows

1-D, 2-D and 3-D refined structural models to be derived in a compact form. Different classes

of refined one-dimensional models have been obtained in the past years. The 1-D CUF models

are able to describe 3-D problems without introducing geometrical approximations. Through
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different types of expansion polynomials, these models approximate the cross-sectional dis-

placements. The first class of models is represented by the TE model which uses the Taylor

Polynomials to describe the cross-section. The work by Carrera et al.. [9] about this topic is

suggested. More recently the Lagrange polynomials are introduced to describe the displace-

ment field over the beam cross-section as presented by Carrera and Petrolo [10]. Other classes

of models have been proposed using other expansions such as Carrera et al. [11]. This work

has the aim to explore the capabilities of a refined 1-D Finite Element model based on CUF

for the free-vibration analysis of tapered structures made of composite material . This paper

is subdivided into two main parts. The first part concerns the mathematical approach and the

second part investigates the modal behavior of two tapered boxes. In the end, some conclusions

are listed.

BEAM PRESENT MODEL

In this section, an overview of the mathematical approach used in this work is introduced. The

first part concerns the explanation of the basis to define the displacement, stress and strain fields.

After some preliminaries, the Carrera Unified Formulation for 1-D models is presented followed

by the FEM solution which is used to solve the problem.

Preliminaries

Using the present 1-D model, a multi-component structure can be described at element level

with several beam formulations. The structure is oriented respect a global reference frame

(xG, yG, zG). Each beam formulation used to describe the structure or a component, is referred

to its own local reference system (x, y, z). This last frame can be translated and rotated respect

the global one. y is the local beam axis while x, z is the plane where the beam cross-section

lies. These frames are figured in Figure 1.

xG

x
zG

yG

y

z

Figure 1: Reference system representation.

Each point has a local displacement vector u defined as:

u
T (x, y, z) = {ux uy uz} (1)

The strain ǫ and the stress vector σ can be written as follows:

σ
T (x, y, z) = {σxx, σyy, σzz, τxy, τxz, τyz} (2)
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ǫ
T (x, y, z) = {ǫxx, ǫyy, ǫzz, ǫxy, ǫxz, ǫyz} (3)

To define the geometrical relations the differential operator b (a 6 × 3 matrix) is introduced to

obtain the following linear strain-displacement relation:

ǫ = bu (4)

The explicit formulation can be found in the book by Carrera et al. [8].

Using the linear form of the Hooke’s law, the stress vector is obtained as:

σ = Cǫ (5)

Here, C is the 6×6 material stiffness matrix. It contains the elastic coefficients and it is referred

to a material reference system (1, 2, 3). The material properties can be arbitrarily rotated of an

angle θ around the axis 1 that correspond with the z-direction. When θ = 0 the longitudinal

direction of the material corresponds with the beam axis. The problem is represented in fig.2.

x

Z=1

2

3

y

Figure 2: Material reference system.

C is a symmetric matrix, then Cij = Cji. It is composed by 21 independent elastic coefficients

if a anisotropic material is considered. If an orthotropic material is considered, the coefficients

are reduced to 9 components. Other information about this topic such as the explicit form of

C can be found in the books by Tsai [12] or Reddy [13]. Having regard to the possibility of

having an arbitrary direction of the material frame, a transformation matrix T is introduced as

follows:

T =

















cos2θ sin2θ 0 0 0 sin2θ
sin2θ cos2θ 0 0 0 −sin2θ
0 0 1 0 0 0
0 0 0 cosθ −sinθ 0
0 0 0 sinθ cosθ 0

−cosθsinθ cosθsinθ 0 0 0 cos2θ − sin2θ

















(6)

A transformed material stiffness matrix C̃ is introduced and it is obtained as

C̃ = TCT
T (7)
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After that, the Hooke’s law can be re-written

σ = C̃ǫ (8)

If the material has the same behavior in all directions, it is a isotropic material. In this case,

there is no need to define a material reference system and a rotation matrix. The performance of

the material can be described with only one value of the Poisson ratio and of Young’s modulus.

These assumptions lead to have

C11 = C22 = C33 C12 = C13 = C23 C44 = C55 = C66 (9)

Cross-sectional kinematic approximation

In the beam models based on the Carrera Unified Formulation, the displacement field u can be

written as the product of two terms. The first term describes the displacement field over the

cross-section while the second one along the beam axis. The displacement field can be write

through the following form:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2 . . .M, (10)

where uτ is the displacement vector, Fτ represents a function expansion used to approximate the

behavior of the beam cross-section. M is the number of the expansion terms. The present work

uses the Lagrange polynomials to describe the beam cross-section with high-order elements.

The Lagrange Elements introduce as unknowns only translational displacements. In this way,

an accurate description of the cross-section geometry is possible and a 3-D description of the

structure behaviour can be achieved. Several sets of Lagrange Elements, more or less refined,

are available. More details can be found in [14] or [8]. If a nine-point element (L9) is used over

the cross-section, the formulation of the displacement becomes:

ux = F1ux1
+ F2ux2

+ F3ux3
. . .+ F9ux9

uy = F1uy1 + F2uy2 + F3uy3 . . .+ F9uy9

uz = F1uz1 + F2uz2 + F3uz3 . . .+ F9uz9

(11)

where ux1
. . . ux9

represent the components x of the displacement field of each node of the L9

element.

Finite Element formulation

The Finite Element model is used to solve the one-dimensional problem. Introducing the shape

functions Ni the vector u can be written as

u(x, y, z) = Fτ (x, z)Ni(y)uτi (12)

where uτi is the nodal displacements vector. The index i indicates the ith node of the beam

element. The used shape functions are reported in [8]. The governing equations can be achieved
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using the PVD (Principle of Virtual Displacements). It is expressed with the following form

where the term δ denotes the virtual variation:

δLint = −δLine (13)

The two member of 13 can be written as follow:

δLint =

∫

V

δǫTσdV (14)

δLine =

∫

V

δuTρüdV (15)

From 14 and 15 the stiffness matrix K and the mass matrix M are obtained in terms of fun-

damental nucleus (FN), a 3x3 block with fixed form. Its components are reported in [15]. A

complete description of the FN derivation and its use to achieve the global matrices are pre-

sented in [8].

Knowing the form of K and M , the 13 can be rewritten as follows:

Mü+Ku = 0 (16)

that is the undamped dynamic problem. Considering harmonic solutions and using the classical

eigenvalue problem, the natural frequencies ωk can be obtained.

(−ωk
2
M +K)uk = 0 (17)

where uk is the kth eigenvector.

Rotation and Assembling Procedure

Each beam description can be rotated and translated in the space. In this way, by imposing the

congruence of the displacements in some nodes defined by the geometry, a complex structure

can be obtained. For more details, [16] is proposed.

RESULTS

Two wing boxes are presented in this section. The two structures are made of CFRP: Carbon

Fiber Reinforced Polymer. This composite has the following proprieties: ELL = 50e9 Pa,

ETT = EZZ = 10e9 Pa, G = 5e9 Pa, Poissons’s ratio ν = 0.25 and density of 1700 kg/m3.

ELL is referred to the fiber direction. Each structure is characterized with a 2-ply laminate. The

laminate will be defined from the inner layer to the external one. If a lamination of ’90◦/0◦’
is considered, it identifies the inner layer with fibers rotated of 90-degree respect the Xm0-axis

and, the external one, with no rotation. The results are compared with results obtained from

shell models achieved by the commercial code NASTRAN. The CQUAD elements are used to

describe the structures.
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Tapered box with no sweep angle

Here, the tapered box shown in 3 is investigated. The box is simplified using only four panels

to describe the geometry. The structure has the following dimensions: L = 2, H1 = 0.22, H2 =
0.12, R1 = 0.42 and R2 = 0.2. The dimensions are expressed in metres. The thickness of the

laminate is equal to 1 cm in order to avoid the presence of many shell-like modal shapes. In

this way, the presence of global modes is facilitated. Each layer is composed of the orthotropic

material before introduced. The structure is described using the layer-wise approach. In this

way a three node beam element is used to describe each layer as a separated component, for

a total of eight beam element. The B3 elements are placed over the thickness of the layer.

The Lagrange polynomials are used to describe the cross-section of the beam, so in this case,

the tapered shape of the panel. More details about the use of Lagrange elements and the use

of the present formulation to describe tapered structure is given in [16]. Figure 3a shows the

description used in the corners.

Y
G

X
G

Z
G

L

Shared Nodes

(a)

X
G

R1

R2

H2

(b)

Figure 3: Tapered Box with no sweep angle.

Figure 4 shows the fiber direction (Xm-axis) of the panels. The fiber will be rotated of an

angle equal to θ respect Xm0-axis. For each panel the positive rotation of the fiber are made

considering the Zm-axis perpendicular to the panel and oriented towards the outside of the

structure.

Xm

Xm0

Figure 4: Fiber direction.

Table 1 shows the first ten modes obtained with the present model. Three laminations are take

into account: 90◦/0◦, 60◦/−30◦ and 45◦/−45◦. The first angle of the lamination is referred to the

internal layer. The frequencies obtained from the present model show a good correspondence

with those obtained from the commercial code. Figure 5 shows the modal shapes of the mode

3,8 and 9 with the three laminations considered.

Using the first lamination, the modal shapes are well defined. The first two frequencies are pure

bending mode in the plane yz and in plane xy. The next bending modes are characterized by

a shell-like behavior of the horizontal panels. This can be see in 5a. Then, the model detects

6



IFASD-2017-230

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

90◦/0◦ lamination (byz) (bxy) (byz, s) (s) (t) (s) (byz , s) (s) (t) (byz, s)
Present Model 56,24 90,23 181,53 192,64 196,09 235,62 240,47 278,89 282,68 292,42

Nastran Shell 56,00 90,09 174,50 182,82 192,46 222,06 221,65 260,48 278,52 266,88

60◦/−30◦ lamination (byz , bxy) (bxy, byz) (byz, s, bxy) (s, t) (t) (s, t) (byz , s, bxy) (s, t) (s, t) (byz, s, bxy)
Present Model 44,63 72,67 175,41 183,05 194,12 229,64 232,35 272,55 278,38 286,11

Nastran Shell 44,39 72,33 168,70 173,30 188,82 216,47 213,18 268,35 256,58 261,97

45◦/−45◦ lamination (byz) (bxy)) (byz, s) (s) (t) (s) (byz , s) (t) (s, t) (byz, s)
Present Mode 41,93 68,70 170,48 179,56 188,33 226,56 230,67 269,79 272,24 288,60

Nastran Shell 41,72 68,37 164,29 169,89 182,26 213,63 210,91 260,16 255,00 262,47

Note: b=Bending Mode, t=Torsional Mode, s: Shell-Like Mode. The bending modal shapes are divided in bending mode in the plane yz and in the plane xy.

Table 1: First 10 modes of the tapered box with no sweep angle with different laminations. The results are obtained

from the present model (11844 Dofs) and from the Shell model(150000 Dofs).

(a) Mode 3 90
◦/0◦ (b) Mode 3 60

◦/−30
◦ (c) Mode 3 45

◦/−45
◦

(d) Mode 8 90
◦/0◦ (e) Mode 8 60

◦/−30
◦ (f) Mode 8 45

◦/−45
◦

(g) Mode 9 90
◦/0◦ (h) Mode 9 60

◦/−30
◦ (i) Mode 9 45

◦/−45
◦

Figure 5: Modal shapes of the mode 3,8 and 9 with different lamination.

three pure shell-like modes and two pure torsional modes. Introducing the second lamination,

the present model correctly provides the alteration of the modal shapes. A coupling effect

between the two bending behaviors can be noted in the figure 5b. A coupling torsional effect

can also be individuated in the shell-like modes. With the third lamination, these effects become

weaker, and the modal shapes are very similar to those of the first case. On the contrary, mode

9 and mode 10 are more influenced, and the alteration of the modal behavior is shown in 5.
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Figure 6: Tapered Box with sweep angle.

Wing box with tapered edge and sweep angle.

The second structure represents a tapered wing box with a sweep angle and no variation in the

box thickness. The geometry are shown in figure 6 and the geometrical characteristics are the

following: L = 2 m, R = 0.4 m, r = 0.2 m, h = 0.08 m and t = 0.01 m. The structure is

made of the same previous laminate, and the same description at the corners is introduced. In

this problem, the first four modes are investigated varying the lamination in a range of 180◦. An

angle of 90◦ is maintained between the two layers. The orientation frames of the material are

the same introduced in the previous case. In some points, the results are compared with those

provided by the Nastran Shell Model. The degrees of freedom of this case is equal to those of

the previous case.

The figure 7 shows the behavior of the first four modes. The lamination changes from 90◦/0◦ to

−90◦/−180◦. As the graph shows, the bending modes are characterized by the lowest frequency

with a lamination of 45◦/−45◦. In this case, there is no fiber parallel to the wingspan (or no fiber

parallel to the chord direction). On the contrary, for the torsional mode the highest frequencies

are obtained with the 45◦/−45◦ lamination, as shown in figure 7d. In the control points, the

frequencies are very close to those obtained from the commercial code and, the present model

introduces an average error less than 5%.

Figure 8 shows the deformation at the tip in the first three modes in the first half of the range.

From the previous pictures can be noted that in this case the behavior is symmetric. Figure

8a and figure 8b show the effects of the lamination in the first bending mode. The range of

lamination is subdivided in two figure for a better representation. Due to the sweep angle, in the

first bending mode with 90◦/0◦ lamination a torsional effect can be noted. The torsional effect

is deleted if the lamination is shifted to 45◦/−45◦ Figure 8b represents the second range of the

laminations. Can be noted the slight difference in the deformation between 90◦/0◦ and 0◦/−90◦.
Figure 8c shows the deformation of the second mode. The coupling with a bending effect on the

plane yz can be appreciated. Figure 8d represents the deformation in the third bending mode.

A shell-effect can be noted on the top and bottom panels. In this case, a bending effect on

the plane xy is added at the global deformation. In the second and third mode, the lamination

90◦/0◦ and 0◦/−90◦ are not reported because the results are very close to those with a 45◦/−45◦

lamination and they would be confused on the pictures.
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(b) 2
nd Mode: Bending xy-plane
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(c) 3
rd Mode: Bending xz-plane+Shell-like
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Figure 7: Comparison of the first 4 modes.
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CONCLUSIONS

In this work the modal behaviour of tapered thin-walled boxes is investigated using a refined 1-

D model derived in the framework of the Carrera Unified Formulation. The study is performed

with structures made of a 2-ply laminate. The first 10 modes of a tapered box with no sweep

angle are evaluated. Three different type of lamination are considered and the difference in the

frequencies and in modal shapes are presented. In the second structure the tapered shape is

limited to the horizontal panels and a sweep angle is introduced. In this case the lamination

varying in a range of 180◦ maintaining a 90◦ angle between the two layer of the composite.

Considerations are made on the first four frequency in terms of frequencies and modal shapes.

The results provide some main remarks:

• This 1-d model correctly detects the modal behaviour of thin walled structures and detects

shell-like modal shapes too;

• the performed analyses show good values of frequencies compared with those obtained

from a shell model of a commercial code;

• using the layer-wise approach each layer can be separately individuated and the lamina-

tion can be defined at the layer level;

• as expects, the lamination deeply influences the behaviour of the structure, and the present

model is able to detect the alterations.

In short, the present models can be used as an accurate tool in the design process and in the

definition of a lay-up that can satisfy the requirements.
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