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Abstract: This paper presents a framework of rigid&elastic coupling stability analysis of the 

hypersonic vehicles with complex configurations. Local piston theory based on CFD methods 

is introduced into the flight dynamic analysis process to take 3D effect into consideration. The 

flight dynamic equations considering elasticity are established in the coordinates of mean axes. 

Through the eigenvalue analysis of the state space equations, the longitudinal stability is 

discussed. And the influence of structural stiffness is discussed as well. 

1 INTRODUCTION 

The new generation of hypersonic vehicles is a hotspot for the moment in the fields of 

aerospace research on account of its important strategic value and economic benefit. And due 

to the wide use of lightweight multifunctional materials in modern hypersonic vehicles, the 

structural mass coefficient becomes smaller and the flexibility grows larger, which results in 

the coupling problem between rigid model and elastic model becoming much more obvious. 

The traditional rigid flight dynamics theory could no more satisfy the need of research. 

Schmidt and Chavez firstly brought up with the longitudinal dynamic model based on X-30 

considering the coupling of elasticity [2]. The recent researches are mainly focusing on the 

flight dynamic characteristics, modeling[3] and stability analysis considering the elasticity of 

hypersonic vehicles. But at present stage of research, the hypersonic vehicles are usually 

being simplified as equal-section Euler beam of uniform material while studying the elastic 

deformation. And the aerodynamic theory is mainly restricted to Newtonian impact theory, 

shock expansion wave theory and piston theory. In this way, it is difficult to deal with the 

complex 3D structures, and the engineering applicability is poor. A flight dynamic theory 

with wide applicability coupling rigid and elastic model is needed. 

In this paper, an effective method to calculate the aerodynamic forces and analyze the stability 

of the given model considering the coupling of rigid and elastic DOF is established. 

Considering the 3D effect and the hypersonic characteristics of model, a CFD-based local 

piston theory[5] is used as the method to calculate unsteady aerodynamic forces. Based on the 

mean axes and energy theory, the Lagrange equations of motion of the hypersonic vehicles 

are derived by the Hamilton’s principle. Then, by employing the mode superpositon method 

and the small-disturbance assumption, the small-disturbance equations of motion are derived. 

Finally, the state-space model is established for the flight stability analysis by combining the 

equations of small-disturbance and unsteady aerodynamic model. The stability of the given 

model is solved by eigenvalue analysis of the characteristic matrix. A certain model similar to 

SR-72 is studied in this paper. And the influence of structural stiffness is considered. 
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2 THEORIES  

2.1 Local Piston Theory Combined with CFD Results 

As an effective engineering calculation method of quasi-steady aerodynamic forces, piston 

theory is widely used in the fields of aeroelastic and aerothermoelastic analysis of hypersonic 

vehicles under certain conditions. In order to enlarge the application field of this classic 

method, which is limited by the airfoil shape, angel of attack and Ma number, local piston 

theory was proposed. For the perturbations[4] are small relative to the mean steady state, we 

could apply the classic piston theory to calculate the perturbations relative to the local flow 

field which is accomplished by solving the Euler equations. In this way, the limitations of 

piston theory are removed. To get the perturbations of each point of the aerosurface, we could 

calculate the downwash w  caused by the deviation of the moving surface which includes the 

deformation and vibration of each point. Then the formulation of local piston theory can be 

written as 

 2 2 31 1
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Where L
  is the local density, LC  is the local sound speed. And keep the first-order terms, 

the equations become 

 ( , , )   L Lp x y z C w  (2) 

To derive the downwash w  of any point on the three dimension aerosurface, we introduce the 

local coordinate system. Make the arbitrary point O  as the origin of the coordinate with the 

exterior normal   and the direction of LV  as  , the local coordinate O  is set up. 

 

 

Figure 1: the local coordinate system 

 

Assume the vibration of O  is ( , , )t   ,then the downwash could be expressed under this 

coordinate as 

 ( , , ) ( , , )m LW t V t
t
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Here we set up the structural coordinate system Oxyz , ( , , )Z x y t is the vibration of each point 

of the lifting surface. So, the downwash velocity in the structural coordinate is 

 
( cos cos )m L Lx Ly

Z Z Z Z Z Z
W V V V

t x y t x y
   
        

          
          (4) 

( , , )Z x y t     

In which LxV , LyV  is the local velocity in x  and y direction.   is the direction cosine of  and 

Z .And finally, the unsteady perturbation pressure of an arbitrary point on the three dimension 

lifting surface is 

 ( ) ( , , )L L Lx Lyp c V V Z x y t
t x y

 
  

    
  

 (5) 

As mentioned above, to use the local piston theory, firstly the steady local flow field is needed. 

Several engineering methods of aerodynamic force calculating are widely used to solve the 

steady flow, such as the shock-expansion theory and Newtonian impact theory. However, 

these methods are not sufficiently accurate during the calculations, and cannot consider the 

three dimensions effect of a complex flow field.  And if we use CFD (computational fluid 

dynamics) directly computing accurately unsteady loads, much time and resources are 

consumed, which apparently being not suitable for the engineering evaluation. So, the local 

piston theory combing with steady CFD results own the advantages of both methods by 

combing the accuracy of CFD and efficiency of engineering methods. The steady flowfield is 

computed by the CFD methods, then the unsteady aerodynamic could be solved by 

introducing the steady results into the local piston theory. 

2.2 Surface Splines for Aerodynamic/structure Coupling 

The surface spline[8] is used to transmit displacement and load between structure and 

aerodynamic models. 

During the process of displacement interpolation, the relationship of the structure girds S
X  

and the displacements s
U  could be described as  

 S SA C W
 (6) 

Where s
A  is consistent of the information of the structure girds, s

W  correspondingly contains 

the displacement information. And the coefficient matrix could be computed through the 

other two matrices based on the surface spline theory. Knowing C , displacements of the 

aerodynamic grids could be written as 

 -1

A A S SU A A W  (7) 

Ultimately, the interpolation relationship between structure and aerodynamic models yields 

 A SU GU
 (8) 
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where the spline matrix for displacement interpolation G  is obtained by removing the first 

four columns of -1

A SA A . 

While interpolating the forces, virtual work principle has to be satisfied: 

 T T

A A S S U F U F  (9) 

where ,A S U U  are arbitrary virtual displacement of aerodynamic grids and structure grids, 

respectively. Similarly, the relationship between load matrices of aerodynamic and structure 

models are 

  T

S AF G F  (10) 

2.3 Rigid/elastic Coupling Flight Dynamics  

As demonstrated in the introduction, the aeroelastic effects of hypersonic vehicles are 

becoming much more significant and frequency separation between the rigid-body flight 

modes and elastic modes are much more reduced, which makes inertial coupling occurring 

between rigid body degrees of freedom and elastic degrees of freedom. The coupled equations 

of motion considering elasticity have a complex form, and makes it hard and unclear to 

analyze during the research of flight dynamics. To minimized the coupling problem, the mean 

axes[7] are used in the process of developing motion equations. The mean axes of which origin 

is the instantaneous mass center of the deformed vehicle are defined such that the relative 

linear and angular momenta[6], due to the elastic deformation, are zero at every instant, which 

means 

 0
V V

dV dV
t t

 
 

 
  

r r
r  (11) 

In fact, by employing the assumption of small deformation and considering the location of 

mass center is invariant, the body-reference frame of a free-flight aircraft satisfies the mean 

axes constraints such that constitutes a mean-axis system, which means we could set the it as 

our analysis coordinate system. By using the Hamilton principle, the Lagrange’s function can 

be obtained 
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 (12) 

And normal vibration modes are assumed to be available from a finite-element analysis 

 
u Φ q e e  (13) 

Combine the above equations and use the Lagrange’s Equations, finally after some 

simplifications the motion equations of rigid/elastic coupling are obtained 
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Where T T T

t r e
Φ ,Φ ,Φ are the rigid translation mode, rigid rotation mode and elastic mode; 

, ,
ee ee ee

M B K are the generalized mass matrix, damping matrix and stiffness matrix. ,L D  are 

the transition matrices. 

2.4  State Space Modeling and Stability Analysis 

The dynamic equations obtained in section 2.3 are variable coefficient nonlinear differential 

equations, which makes it difficult to analyze the stability and other dynamic characteristics 

of the nonlinear system. By introducing the small-perturbation assumption, the variables can 

be expressed as the sum of the reference variable and the perturbation variable. While the 

longitudinal characteristics are more significant in the analysis of hypersonic vehicles, here 

we select the straight flight motion as the reference condition, which indicates 

0 0 0 0 0   V ω ω θ , 0 0 0( ) (0 0)    . If the ox axis of the mean axes frame oxyz  is 

defined parallel to the far field flow velocity vector, then we have 
T T

0 0 0 0[ ] [ 0 0]u v w V  V , which means 0 0 0   . Then the linearized small-

perturbation equations are obtained 

 

T

0

T

T

0 0

0

( )

( )

( )

t G A T

r G A T

ee e ee e ee e e G A T ec

M M        

      

        

    

  

V V ω Φ f f f

I ω Φ f f f

M q B q K q Φ f f f M δ

R L V L T θ

θ D ω

 (15) 

In which, 0 0
L ,D ,T are transition matrices 

 0 0

1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

V

V





     
     

   
     
            

L D T  (16) 

The right side of Eq.(15) are the generalized form of gravity, aerodynamic force and trust. In 

order to introduce the local piston theory to this analysis process, the method needs to be 

transformed to the generalized form. Substituting Eq.(13) to Eq.(5), the generalized form of 

aerodynamic forces can be written as 
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Where [   ]T T T T

t r e
Φ = Φ Φ Φ ; T T[ ] [ ]S R e t r e q q q q q q ; B,C  are the aerodynamic 

coefficient matrices based on local piston theory; S is the area-weighted matrix, 1 2 3A , A , A  

are the local parameters computed by CFD. And 0 1,R RL L  are transition matrices. 
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Substituting Eq.(17) to  Eq.(15) , and write it into the form of matrix, we finally obtain the 

small-perturbation dynamic equation in the state space form for elastic aircraft 
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 (19) 

By analyzing the eigenvalues of the state matrix Aae , the stability characteristics can be 

obtained. According to the stability criterion, if the real parts of all eigenvalues are negative, 

the system is stable; if the system contains the positive real parts of the eigenvalues, the 

system is unstable; and if the system has an imaginary eigenvalue and other eigenvalues have 

negative real parts, the system is critical stable. 

3 NUMERICAL RESULTS 

3.1 Structural Modeling  

The model similar to SR-72 is constructed in ABAQUS as Figure 3. Considering the design 

characteristics of the new generation of hypersonic vehicles, such as near-space long 

endurance cruise with a high Mach number and the need of recycling, thin wall structures 
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with multi-functional lightweight material are mostly used in the model. The FEM(Finite 

Element Mode) is basically constructed by the triangular and quadrangular shell element. The 

triangular element is mainly used around the holes of the fuselage bulkhead. The details of 

design parameters are listed in Table 1. 

 

 

Figure 2: The Shape of the Model Similar to SR-72 

 

 Parameters  Value  

Geometry 

Fuselage Length 30.00 m 

Fuselage Width 14.00 m 

Area 110.00 m2 

Aileron Size 2.00 m*1.10 m 

Flap Size 2.70 m*1.20 m 

Weight Net Weight 1.126E+04 kg 

Inertia 

Ixx 2.36E+05 kg*m2 

Iyy 2.98E+05 kg*m2 

Izz 6.97E+04 kg*m2 

Table 1: Design Parameters of the Hypersonic Vehicle Model 
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Figure 3 The Structural Finite Element Model 

In the flight quality evaluation of hypersonic vehicles, we focus more on the short-period 

characteristics. If the short-period mode eigenvalues have a high frequency and large damping, 

the vehicle responses more quickly to the input of the control face. So, we pick three 

longitude motions of rigid body (moving forward, plunging, and pitching) as well as six 

symmetrical elastic vibration modes for the analysis of coupling flight dynamics. The modal 

frequencies and shapes are listed in Table 2. 

Order Frequency/Hz Mode Name 

Mode 1 0.00 Rigid translation 

Mode 2 0.00 Rigid plunge 

Mode 3 0.00 Rigid pitching 

Mode 4 10.75 1st Wing Symmetric bending 

Mode 5 23.12 1st Wing Symmetric torsion 

Mode 6 35.63 2nd Wing Symmetric bending 

Mode 7 41.80 2nd Wing Symmetric torsion 

Mode 8 47.69 1st Fuselage Symmetric bending 

Mode 9 59.87 3rd Wing Symmetric torsion 

Table 2: Free-free Vibration Characteristics of Elastic Model 

 

 a. mode=4 b. mode=5 
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 c. mode=6 d. mode=7   

 

 e. mode=8 f. mode=9 

Figure 4: the first six symmetric modal shapes of elastic vibration 

3.2 Aerodynamic Modeling 

As demonstrated in section 2.1, steady flowfield is required in order to calculate the unsteady 

aerodynamics. In this article, the CFD methods are applied to get the local parameters of the 

aerodynamic configuration. Here we use Gridgen to generate the aerodynamic mesh (Figure 5) 

and accomplish the computation by solving inviscid Euler equations in Cart3D. The mesh 

quantity of the aerodynamic surface is about 220 thousand. Considering the typical cruise Ma 

number of such hypersonic vehicles, two typical conditions including, Ma=3.0 and Ma=6.0 

are calculated. The contour of pressure and Ma are shown in Figure 6 and Figure 7. The 

variation of lift coefficient, drag coefficient and lift-drag ratio at Ma=3.0 as AOA grows is 

shown in Figure 8. 

      
 

Figure 5: The Aerodynamic Mesh of The Model 
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Figure 6 Pressure contour and Ma contour at Ma=3.0, AOA=1 

 

 

Figure 7 Pressure contour and Ma contour at Ma=6.0, AOA=0° 
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Figure 8 Variation of Cl, Cd, K at Ma=3.0 as AOA grows 

3.3 Stability Analysis 

In this article, the longitudinal flight dynamic characteristics of Ma=3.0 and Ma=6.0 are 

obtained by solving the eigenvalues of the state space equations which are assembled by the 

structural and aerodynamic modeling data. The eigenvalues of the pure rigid modes and rigid 

modes coupling elastic modes are listed in Table 3 and Table 4 to show the difference.  

Mode 
Eigenvalues 

Rigid Model Coupling Mode 

Phugoid -8.474E-03±1.479E-02i -8.278±1.438E-02i 

Shortperiod -6.999±1.229i -6.099±3.317i 

1st Aeroelastic — -0.898±71.871i 

2nd Aeroelastic — -2.294±147.88i 

Table 3 Poles distribution comparison of rigid mode and coupling mode at Ma=3.0 
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Mode 
Eigenvalues 

Rigid Model Coupling Mode 

Phugoid -4.419E-03±7.962E-03 -4.418E-03±7.960E-03 

Shortperiod -4.405±3.217i -4.266±3.390i 

1st Aeroelastic — -0.287±54.921i 

2nd Aeroelastic — -1.097±117.11i 

Table 4 Poles distribution comparison of rigid mode and coupling mode at Ma=6.0 

By comparing the two tables, some conclusions can be drawn. As Ma number rises, both the 

real part and the imaginary part of the eigenvalues of phugoid decrease. For the real parts are 

both negative, the vehicle is stable in the phugoid mode. And the change of phugoid 

eigenvalues between the rigid model and coupling model is very little, which means in the 

freedom of plunge motion, no obvious coupling phenomenon occurs. Considering the 

phugoid mode possess a long period and the eigenvalues of the ae
A only present characteristic 

properties, detailed analyses are not discussed in this article. We focus more on the features of 

the shortperiod. 

From the tables, we could found the damping and frequency of shortperiod both increase in 

the process of Ma number rising, which indicates the model studied in this paper equip with a 

better control character at a higher Ma number. For the frequency of shortperiod grows and 

becomes closer to the 1st aero elastic frequency which makes the rigid and elastic mode 

coupling. The motion properties of attack angel and pitching angular velocity which mainly 

reflect in the short period change due to the influence of the structural vibration. At Ma=3.0, 

the imaginary part of the shortperiod eigenvalue changes a lot while applying the coupling 

model. At Ma=6.0, the increasement is not that much, but both conditions have shown that the 

structural elasticity has a significant impact on the shortperiod mode.  

To further illustrate the influence of the elastic mode, several conditions of different stiffness 

based on the original structural model at Ma=6.0 are computed. Open-loop zeros and poles of 

the short period mode and first four aeroelastic modes are drawn in Figure 9, and 

magnification of the short period mode is shown in Figure 10. It’s apparently that the 

frequency of the aeroelastic modes increases as the stiffness grows. And in Figure 10 we 

could found that the frequency of the short period becomes lower and the damping ratio 

grows larger while the stiffness grows. 
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Figure 9 Eigenvalues of five modes changes with the variation of stiffness 

 

 

Figure 10 Eigenvalues of short period change with the variation of stiffness 
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4 CONCLUSION 

In this paper, a framework of rigid&elastic coupling stability of hypersonic vehicles is 

established and a certain model similar to SR-72 is analyzed through the method. Local piston 

theory with CFD methods is applied to compute the unsteady aerodynamics of the complex 

aerodynamic configuration. Firstly, through the calculation of CFD, the body interference is 

taken into account and the precision of the steady flowfiled is guaranteed. And the unsteady 

flow field is solved by local piston theory using the CFD results to get the local parameters 

which are prepared for the AIC matrices. Based on traditional rigid flight dynamics, the mean 

axes are applied to decouple the rigid motion and elastic vibration. To analyze the 

longitudinal flight dynamic behaviors, three rigid modes and six elastic modes are picked to 

generalize the dynamic equations. And under the assumption of small-perturbation while the 

straight flight motion is selected as the reference condition the state space equations are 

established. Finally, by analyzing the eigenvalues of ae
A , the longitudinal stability 

characteristics can be obtained.  Through the research, the elastic modes have a significant 

influence on the short period eigenvalues. As the structural stiffness decreases, the frequency 

of the short period grows higher and the damping ratio becomes smaller. The present results 

are mainly focusing on confirming the efficiency of this analysis process. Further research 

about the flight dynamic properties of hypersonic vehicles will be studied in a more detailed 

and reliable model. 
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