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Abstract: In the present work, different nonlinear reduced-order modeling (ROM) approaches
are employed to assess their performance and efficiency for unsteady aerodynamic computa-
tions. The ROM techniques are applied to a complex aircraft model in order to indicate their
potential for industrial applications. On the one hand, a neurofuzzy-model-based ROM is em-
ployed to compute the aerodynamic response due to small-amplitude motions across variable
angles of attack. On the other hand, the unsteady surface pressure distribution is predicted
by combining system identification methods with the proper orthogonal decomposition (POD).
For demonstrations purposes, NASA’s common research model (CRM) configuration is inves-
tigated at transonic flow conditions, while forced-motion computational fluid dynamics (CFD)
simulations are carried out to obtain the aerodynamic responses induced by structural mode-
shape-based deflections. It is shown that the presented methods can be applied to speed-up
multidisciplinary analyses with respect to industry-relevant configurations.

1 INTRODUCTION

In recent years, a lot of effort has been invested in the development of ROMs to accelerate un-
steady aerodynamic and aeroelastic analyses. This progress is driven by the need to incorporate
the fidelity of CFD approaches into multidisciplinary simulation frameworks. It is unquestion-
able that the CFD-based aerodynamic modeling significantly enhances the accuracy of aeroelas-
tic predictions at transonic flow conditions in comparison to potential-flow-theory-based meth-
ods. However, the advantage in fidelity comes along with a drastically increased computational
effort. As a possible remedy, ROMs have been developed and applied to overcome this limi-
tation. The general functionality of system-identification-based ROMs, which are in the focus
of this investigation, is the exploitation of CFD-generated training data in order to obtain a
black-box model of the physical system under investigation. In the context of aeroelastic com-
putations, the system inputs are the structural and rigid body degrees of freedom, whereas the
outputs are represented by the motion-induced generalized aerodynamic forces [1,2]. The appli-
cation of the ROM with respect to the production simulations is far more efficient than solving
the full-order CFD equations. In this way, a significant speed-up can be achieved. Below, a brief
overview of selected identification-based ROM approaches in the context of unsteady aerody-
namic and aeroelastic applications is given.
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Dowell and Hall [3] and Lucia et al. [4] recapitulated several established ROM concepts. Specif-
ically, approaches based on the Volterra theory [5,6] and the POD [7,8] are discussed. Moreover,
numerous methods developed within the system identification and control community have been
adopted for aerospace applications, e.g., the eigensystem realization algorithm (ERA) [9–12]
and the auto-regressive moving average (ARMA) model [13]. Under the assumption that the
system’s response is linearly related to the respective inputs, the aforementioned identifica-
tion techniques are well-suited to obtain a black-box model of the underlying aerodynamic
system. For the prediction of large amplitude motions (inducing aerodynamic nonlinearities)
or nonlinear parameter influences such as varying freestream conditions, however, nonlinear
system identification strategies must be developed and employed. In this regard, the use of
multilayer-perceptron (MLP) neural networks has been proposed by Faller and Schreck [14],
Voitcu and Wong [15] as well as Mannarino and Mantegazza [16], whereas radial basis function
(RBF) neural networks were successfully employed by Zhang et al. [17] and Winter and Bre-
itsamter [18]. Moreover, some recently developed nonlinear identification techniques yielded
promising results for unsteady aerodynamic reduced-order modeling tasks [1, 19, 20]. Besides,
the combination of identification-based approaches with the POD has been investigated by Park
et al. [21], Lindhorst et al. [22,23], and Winter and Breitsamter [2] in order to model surface or
field quantities of the flow. ROMs that are able to deal with nonlinear parameter variations, i.e.,
the Kriging-interpolation-based approaches of Glaz at al. [24] and Liu et al. [25] as well as the
neurofuzzy-model-based methodologies of Winter and Breitsamter [1, 26], have been shown to
be suited for efficient and accurate aerodynamic computations across varying freestream con-
ditions. Nonetheless, most of the previously outlined research focuses on the introduction of
novel approaches, whereas the application is demonstrated by means of a low-complexity test
case. In contrast, the aim of this work is the application of recently developed ROM approaches
towards a more realistic aircraft configuration.

In the present work, two ROM approaches originating from the Chair of Aerodynamics and
Fluid Mechanics of the Technical University of Munich (TUM-AER) are applied to assess their
performance and efficiency with respect to a complex configuration. On the one hand, the
neurofuzzy-model-based ROM robust to varying freestream conditions [1, 26] is employed. In
this way, the aerodynamic response due to small-amplitude motions is modeled across different
angles of attack with a single ROM. The resulting aerodynamic dataset can be utilized for clas-
sical aeroelastic stability considerations, i.e., flutter onset estimation. On the other hand, the
unsteady surface pressure distribution is predicted by combining system identification methods
with the POD, see [2] for instance. The second ROM approach is well-suited for the effi-
cient computation of the steady and unsteady air load distribution. For demonstration purposes,
NASA’s CRM configuration [27, 28] is considered at transonic flow conditions. In order to
obtain the training data, forced-motion CFD computations are carried out yielding the aero-
dynamic responses induced by structural-eigenmode-based deflections. Therefore, the mode
shapes from the FERMAT configuration [29] are adopted. Subsequently, the ROMs are condi-
tioned, tested, and evaluated. Concerning the latter task, a comparison with the full-order CFD
solution is presented for performance and efficiency classification.
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2 THEORY AND COMPUTATIONAL METHODS

2.1 Aeroelastic Simulation Framework

Computational models of aircraft structures are commonly obtained by means of the finite-
element method (FEM), [30]. As complex structures may involve a large number of elements
and, consequently, many degrees of freedom, the models constructed in physical space are
usually transferred into generalized coordinates to reduce the computational costs. According
to [1], the well-known equations of motion for a multi-modal structural system can be written
as

Mgen q̈(t) + Cgen q̇(t) + Kgenq(t) = q∞l
3
ref · fgen(t) with fgen(t) = ΦT f(t). (1)

A modal analysis provides the respective generalized mass, damping, and stiffness matrices,
Mgen , Cgen , and Kgen , as well as the modal matrix Φ = [φ1,φ2, . . . ,φN ]. In Eq. 1, q(t) ∈ RN

denotes the modal or generalized coordinates with N being the number of considered eigen-
modes. Since the CFD computations are performed using nondimensional quantities in this
context, the generalized aerodynamic forces fgen are considered as normalized by q∞l3ref . Taking
only pressure-based aerodynamic loads into account, the ith generalized force vector element
can be expressed as

fgen,i(t) =

∫
S

cp(t) φi · dS. (2)

Considering Eq. 2, the local pressure coefficient cp is integrated over the surface S and weighted
with the ith mode shape φi. By assuming a linear relation between the structural excitation and
the unsteady air loads, the well-known linear frequency domain flutter equation can be obtained:

[
− ω2Mgen + iωCgen + Kgen − q∞l3ref ·GAF(ikred)

]
· q0 = 0 (3)

Equation 3 introduces the angular frequency ω, the reduced frequency kred = (ω · cref )/U∞ and
the complex-valued GAF ∈ CN×N matrix representing the linear aerodynamic transfer func-
tion in the frequency domain. Since the GAF matrix can be computed by both the CFD solver
and the neurofuzzy ROM approach [1], the datasets are suited for comparison and verification
purposes.

2.2 Computational Fluid Dynamics Solver – AER-Eu

In the course of this investigation, the inviscid CFD solver AER-Eu is employed to compute the
training data needed for ROM construction. Besides, AER-Eu is used to generate the reference
solution for the application tests in order to evaluate the accuracy of the ROM approaches. The
CFD code AER-Eu developed at TUM-AER solves the Euler equations in conservation form
by utilizing a shock-capturing finite-volume method based on multi-block-structured grids [31].
Therefore, Roe’s flux-difference splitting is utilized for the spatial discretization, whereas the
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monotonic-upstream-scheme-for-conservation-laws (MUSCL) extrapolation is used for retain-
ing the total variation diminishing property. The temporal integration is carried out with Jame-
son’s implicit dual-time-stepping scheme, while the embedded pseudo-time iterations are com-
puted by means of the lower-upper symmetric successive over-relaxation. Furthermore, several
deforming mesh approaches have been implemented. For example, a user-defined time law
can be specified to interpolate between a reference grid and various amplitude grids. Further
information about the CFD solver framework can be found in Refs. [11, 31–34].

2.3 Nonlinear System Identification

In general, identification methods are used to obtain a model by processing a set of known
input/output data that are representative for the underlying system. For this purpose, a well-
known approach is to approximate the dynamic system via a function of current and previous
inputs in combination with time-delayed system outputs [35]. In the literature, this principle
is referred to as the external dynamics approach or recurrence framework. Here, the system
input is the generalized coordinate vector q, while the outputs y can be represented either
by the generalized aerodynamic forces fgen or the POD coefficients b, [1, 2]. Moreover, a
static parameter θ can be included to account for varying freestream conditions, e.g., different
incidence angles α0. With k being the current discrete time increment (tk+1 = tk + ∆t), the
external dynamic filter can be generalized to:

ỹ(k) = N

[(
θ,qT (k), . . . ,qT (k −m),yT (k − 1), . . . ,yT (k − n)

)]
= N

[
uTi
]

(4)

In this way, the identification problem is essentially reduced to a static function approximation
task accompanied by the determination of the dynamic delay-orders m ∈ N and n ∈ N, n > 0
for the respective inputs and outputs; see also [2,35] for instance. As the unknown functionN is
expected to be nonlinear for the cases under investigation, neural-network-based methodologies
are employed to approximate this functional relationship on the basis of given training data. In
the present work, the local linear neuro-fuzzy model developed by Nelles [35] is applied for that
purpose. The mathematical framework of a neuro-fuzzy model with NLLM local linear models
can be written as:

f̃i =

NLLM∑
j = 1

[
wj0,i + wj1,i · (u1,i − cj1,i) + . . .+ wjp,i · (up,i − cjp,i)

]
·Ψj,i(ui) (5)

Ψj,i(ui) =
exp

[
−1

2

(
(u1,i−cj1,i)2

σ2
j1,i

+ . . .+
(up,i−cjp,i)2

σ2
jp,i

)]
∑NLLM

k = 1 exp
[
−1

2

(
(u1,i−ck1,i)2

σ2
k1,i

+ . . .+
(up,i−ckp,i)2

σ2
kp,i

)] (6)

In Eqs. 5-6, ul,i symbolizes the lth element of the model input vector related to output f̃i,
whereas the coefficients wjl,i denote the linear model parameters. Besides, Ψj,i represents the
fuzzy validity function that depends on the centers cjl,i and the basis function widths σjl,i.
Consequently, the validity functions realize a weighting of the respective local linear models
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based on the model input regime. In order to obtain the a priori unknown model parameters, the
training data are exploited using the local linear model tree (LOLIMOT) algorithm [35]. As a
detailed review of the LOLIMOT training procedure is beyond the scope of this work, the reader
is referred to the work of Nelles [35] and Winter and Breitsamter [1, 2] for further information.

2.4 Proper Orthogonal Decomposition

The POD snapshot approach originally proposed by Sirovich [36] can be employed to approx-
imate multi-dimensional data by means of a comparatively small set of POD modes; see also
Iuliano and Quagliarella [8], Lindhorst et al. [22], and Winter and Breitsamter [2] for instance.
In terms of the applications in this work, the snapshot vector Wi is composed of the pressure
coefficients cp for all CFD surface elements, while subscript i denotes the considered time step.
Based on an unsteady simulation involving NTrn training samples, the snapshot matrix Y can
be expressed as:

Y =
[
Ŵ1,Ŵ2, . . . ,ŴNTrn

]
, Ŵi = Wi −A, A =

1

NTrn

NTrn∑
i = 1

Wi (7)

Given the snapshot matrix, the objective of the POD is to obtain M � NTrn basis vectors
that approximate Y optimal in the least-squares sense. For that purpose, the singular value
decomposition (SVD) of Y is computed; see Eq. 8.

Y = UΣVT = U


σ1 · · · 0
... . . . ...
0 · · · σNTrn

0 · · · 0

VT (8)

Hence, the first NTrn column vectors of U result to be the full set of possible POD modes. As
the influence of the higher-order POD modes becomes small for practical applications [8], the
modes M + 1, . . . , NTrn are not taken into account yielding a reduction of the degrees of free-
dom for the underlying problem. With respect to the specification of the number of dominant
modesM , the relative information content (RIC ) criterion is employed [2,8]. Consequently, the
resulting POD modes ϕ are taken as a subset of matrix U (first M column vectors). According
to Eq. 9, the full-order system can be approximated utilizing the computed POD modes.

W(t) ∼= A +
M∑
i = 1

bi(t) ϕi (9)

Nonetheless, prior to ROM construction the coefficients bi(t) associated to POD mode i have
to be determined based on the training data. Therefore, a least-squares solution is computed to
obtain the matrix of POD coefficients B = [b(t1),b(t2), . . . ,b(tNTrn

)]. Thus, the system inputs
(structural excitations) connected with the corresponding POD coefficient time series can be
exploited to generate a model via the system identification approaches outlined in the previous
subsection.
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3 UNSTEADY AERODYNAMIC REDUCED-ORDER MODELS

Supported by the schematic overviews presented in Figs. 1 and 2, the aerodynamic ROM
methodologies proposed in [1] and [2] are briefly recapitulated. As both approaches are based
on system identification methods, a set of training data has to be initially provided to construct
the ROMs. In this regard, the training data must be representative for the intended use of the
models, i.e., the range of amplitudes and frequencies that is of primary interest has to be excited
during the training simulations. Hence, adequate signals for structural excitation have to be
specified by the user; see [1, 12, 35] for further information.

ROM
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Figure 1: Schematic of the unsteady aerodynamic ROM approach robust to varying freestream conditions.

Based on a priori conducted steady simulations, unsteady forced-motion CFD computations are
carried out for the freestream conditions under consideration; see also Figs. 1 and 2. Therefore,
the selected training signals are assigned for the excitation of each degree of freedom. Hence,
the body shape is given by the superposition of the reference grid and the eigenmode-based
deflected grids weighted by the respective training signal. Following the aforementioned pro-
cedure, it is possible to excite all degrees of freedom simultaneously within a single simulation.
In this work, however, each modal deflection is computed within a separate unsteady CFD run
in order to exploit the parallel computing resources. As a result of each unsteady CFD compu-
tation, a time-series of the integral forces as well as the surface pressure coefficients is obtained.
If field or surface information with respect to the flow quantities have to be taken into account,
the POD-based ROM approach [2] should be considered. Therefore, the snapshot matrix Y has
to be constructed on the basis of the available unsteady training data. Consequently, the POD
modes and the associated POD coefficient time series are obtained.

Combining the input signals with the CFD response, the merged input/output dataset is used
to calibrate the neuro-fuzzy model in order to realize a nonlinear identification. In case of the
ROM robust to varying freestream conditions [1], the integral forces (aerodynamic coefficients
or generalized aerodynamic forces) at several static flow conditions are used for model training,
while the static input parameter θ introduced in Eq. 4 is taken into consideration. For the POD-
ROM approach [2], in contrast, the transient POD coefficients serve as the model output. As the
ROM proposed in [2] is formulated for fixed flow conditions, the parameter θ is not included
within the model input vector. After arranging the data according to the external dynamics
approach, the ROM can be trained via the LOLIMOT algorithm.
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Figure 2: Overview of the aerodynamic ROM involing neuro-fuzzy models and the proper orthogonal decomposi-
tion.

Finally, the ROM can be used for time-marching simulations with respect to arbitrary excitation
signals. Therefore, the model outputs such as the estimated integral forces or the predicted POD
coefficients have to be fed back iteratively to the model input vector for each time step. It is
important to emphasize that the discrete time step size embedded in the training data must be
respected for all ROM-based simulations. Hence, the obtained integral forces can be used for
aeroelastic investigations, whereas the ROM-generated POD coefficients can be employed to
reconstruct the unsteady surface pressure distribution caused by the user-defined motion.

4 RESULTS

4.1 Test Case: Common Research Model

The ROM approaches recapitulated in the previous section are demonstrated based on the CRM
configuration [27,28], which has been developed by NASA’s subsonic fixed wing aerodynamics
technical working group in collaboration with the drag prediction workshop (DPW) organizing
committee. The CRM variant investigated here is the wing/body/horizontal-tail (WBH) con-
figuration with supercritical wing design that has been in the focus during the 4th AIAA CFD
DPW [37]. The configuration is based on a transonic commercial transport aircraft with a cruise
Mach number of Ma∞ = 0.85 and a design lift coefficient of cL = 0.5. Important geometrical
properties of the CRM configuration are listed in Table 1.

Reference area Aref 383.69 m2

Wing span b 58.763 m
Wing reference chord cref 7.0053 m
Aspect ratio AR 9.0
Quarter chord sweep angle ϕ1/4 35◦

Taper ratio λ 0.275

Table 1: Geometric properties of the CRM configuration.
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Figure 3: Structured surface grid of the CRM configuration involving 67856 surface elements.

In contrast to the half-model considered within the DPW 4, the full aircraft is investigated here
to enable time-marching aerodynamic simulations of symmetric as well as antisymmetric mo-
tions. For ensuring the independence of the solution from the mesh resolution, a grid sensitivity
study has been conducted yielding a block-structured grid containing 5,864,752 finite volume
cells. In Fig. 3, the surface discretization of the CRM configuration is shown. With respect to
the structural modeling, the FERMAT configuration introduced by Klimmek [29] is utilized.
This finite element model has been developed to obtain a generic aircraft test case on the basis
of the CRM geometry. However, as the vertical stabilizer, the pylon, and the engines included
in the FERMAT model are not part of the underlying aerodynamic model, the associated struc-
tural elements have been also neglected within the FE model for the present purposes. Here,
the elastic mode shapes represented by FERMAT mass case C2 (maximum take-off weight with
100% fuel) are adopted for conducting the forced-motion aerodynamic simulations.

Figure 4: Steady-state pressure coefficient distribution for the CRM configuration at Ma∞ = 0.85 and cL = 0.5
(AER-Eu).

In the course of this investigation, neither static aeroelastic deformation nor trimming is taken
into account. Hence, a generic test case incorporating increased geometric complexity is ob-
tained, whereas the modeling strategy is kept as simple as possible. It should be emphasized that
the aim followed here is not the comparison between different CFD solvers, aeroelastic mod-
eling approaches, or a fit evaluation exploiting experimental data but to provide a clean ROM
testing framework. Nonetheless, all challenging aspects regarding a ROM performance assess-
ment are included, e.g., the presence of realistic structural eigenmodes as well as an overall
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complex geometry, the necessity to model a wide excitation frequency bandwidth, the consid-
eration of both symmetric and antisymmetric motions, and the ability to capture aerodynamic
nonlinearities caused by strong shocks along the wingspan (see Fig. 4 for instance).

Elastic mode 1, f = 1.0574 Hz Elastic mode 2, f = 1.4547 Hz

Elastic mode 11, f = 3.6033 Hz Elastic mode 24, f = 10.6024 Hz

Figure 5: Surface deformation based on selected structural eigenmodes of the FERMAT configuration [29]. For a
clearer presentation, the deflections have been exaggerated.

Given the baseline CFD grid of the CRM model and the FERMAT database, the interpolation of
the elastic-mode-shape-based deflections onto the surface grid has been achieved via the thin-
plate spline (TPS) method. Four deformed surface grids are depicted exemplarily in Fig. 5. In
contrast to the visualized deflections, however, the actually considered deformations have been
scaled to maximum amplitudes of Amax = 0.1% cref . In this way, dynamic linearity around
the (nonlinear) reference state is ascertained. However, nonlinear ROM techniques are required
due to freestream condition variations [1] or the application of the POD procedure [2].

4.2 ROM Application Across Angle of Attack Variations

According to the ROM process outlined in Fig. 1, steady CFD simulations corresponding to
the training freestream conditions have been conducted. Here, the freestream Mach number
is considered fixed at Ma∞ = 0.85, while angles of attack of αTrn = [0.5◦, 1.0◦, 1.5◦, 2.0◦]
are taken into account for the training dataset. Subsequently, the aerodynamic responses due
to forced mode-shape-based excitations have been computed by means of the AER-Eu solver
for all freestream conditions as well as elastic eigenmodes. Therefore, an amplitude-modulated
pseudo-random binary signal (APRBS, [1, 35]), which has been a posteriori smoothed, is uti-
lized as the training excitation signal; see Fig. 6. Based on the pre-defined discrete time step size
of ∆τ = 0.05 and the smoothed APRBS depicted in Fig. 6, 1200 training samples of the aero-
dynamic response in terms of fgen are obtained for each combination of αTrn and qi. Following
the nonlinear identification procedure, the LOLIMOT algorithm has been applied to obtain the
ROM on the basis of the available training data. Thereby, the dynamic delay orders are opti-
mized to be m = 8 and n = 3 for the respective inputs qi and GAF outputs fgen according to
the procedure discussed in [2].
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Figure 6: Smoothed APRBS time series for the forced-motion excitation of the structural degrees of freedom (num-
ber of training samples: 1200, ∆τ = 0.05).

Finally, the trained ROM can be used to simulate the time-domain aerodynamic response at a
range of freestream conditions. In [1] it has been shown that the GAF matrix known from
classical stability analysis can be constructed by applying harmonic excitations in each general-
ized coordinate. Within this study, the freestream condition characterized by Ma∞ = 0.85 and
αSim = 1.13◦ (corresponding to the design lift coefficient cL = 0.5 for the underlying Euler-
equation solution) is set into focus. This angle of attack was not explicitly included in the train-
ing dataset. Here, various reduced frequencies kred ,ROM = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0]
have been simulated with the ROM. In contrast, the CFD reference solution was computed for
the following reduced frequencies: kred ,CFD = [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]. In order to neglect
the initial transient response, three oscillation cycles are simulated with the ROM as well as the
AER-Eu solver. Subsequently, the obtained time-domain responses can be transferred into the
frequency domain by means of a Fourier analysis with respect to the third excitation cycle. The
complex valued GAF matrix resulting from this procedure is visualized for selected excitation
and generalization degrees of freedom in Fig. 7 as a function of the reduced frequency. In this
regard, the real part is denoted by Re, whereas the imaginary part is symbolized by Im. As it can
be seen from Fig. 7, generally a very good agreement is ascertained for the present case. This
applies, especially, to the diagonal of the GAF matrix. Except from some discrepancies at low
excitation frequencies (see the imaginary part of GAF 24,11 or GAF 24,19 for instance), a high
accuracy is achieved using the ROM-based modeling. The present errors can be traced back
to the training signal, which does not optimally excite the lower frequency band. Nonetheless,
the results demonstrate that this ROM approach [1] can yield very promising results even for
full-size aircraft configurations involving realistic structural eigenmodes.
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Figure 7: Real and imaginary parts of the frequency-domain GAF matrix computed by the ROM [1] as well as the
AER-Eu solver (Ma∞ = 0.85, αSim = 1.13◦, CRM configuration, FERMAT structural model).
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4.3 ROM Application for Modeling Surface Pressure Distributions

In contrast to the workflow followed in the previous subsection, a single freestream condition
(Ma∞ = 0.85, αSim = 1.13◦) is considered here for the application of the POD-based ROM
procedure [2]; see also Fig. 2. Therefore, the unsteady forced-motion AER-Eu simulations have
been performed for all excitation degrees of freedom qi (i = 1, . . . , N) at αSim = 1.13◦ uti-
lizing the smoothed APRBS visualized in Fig. 6. Again, a nondimensional time step size of
∆τ = 0.05 has been employed. Exploiting the surface pressure data (1200 samples × 67856
surface elements) obtained for each of the N unsteady CFD simulations, the POD procedure
was executed yielding the POD modes and the associated POD coefficients. In Fig. 8, a selected
number of POD modes originating from the unsteady cp surface distribution is shown. Depend-
ing on the excited structural mode shape, between 34 and 42 POD modes were found to be
sufficient for the approximation of the training data, i.e., yielding a RIC > 0.95. Subsequently,
a LOLIMOT-algorithm-based identification with respect to the POD coefficients was carried
out, while the dynamic delay orders were set to m = 25 and n = 10; cf. to the method in [2].

1st POD mode (Exc.: elastic mode 1) 4th POD mode (Exc.: elastic mode 1)

1st POD mode (Exc.: elastic mode 24) 4th POD mode (Exc.: elastic mode 24)

Figure 8: Visualization of selected POD modes which have been extracted from forced-motion unsteady CFD
simulations. The excitation (exc.) degree of freedom for the corresponding POD mode set is specified
within the parenthesis.
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Harmonic exc.: Mode 1, kred = 0.1 Harmonic exc.: Mode 24, kred = 1.0

Harmonic exc.: Mode 1, kred = 5.0 Harmonic exc.: Mode 24, kred = 5.0

Figure 9: First harmonic of the pressure coefficient response (upper surface). Due to the symmetric response
for symmetric-eigenmode-based excitations, only the half-model results are shown. The ROM result is
shown for y > 0, whereas the reference result is depicted for y < 0. Ma∞ = 0.85, α = 1.13◦, CRM
configuration, FERMAT structural model.
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Harmonic exc.: Mode 2, kred = 0.5 Harmonic exc.: Mode 2, kred = 5.0

Figure 10: First harmonic of the pressure coefficient response (upper surface). Due to the antisymmetric-
eigenmode-based excitations, the full configuration is shown. The ROM result is shown at the top,
whereas the reference result is depicted at the bottom. Ma∞ = 0.85, α = 1.13◦, CRM configuration,
FERMAT structural model.
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Harmonic exc.: Mode 12, kred = 5.0 Harmonic exc.: Mode 12, kred = 5.0

Figure 11: First harmonic of the pressure coefficient response visualized for the upper surface. Due to the
antisymmetric-eigenmode-based excitations, the full configuration is shown. The ROM result is shown
at the top, whereas the reference result is depicted at the bottom. Ma∞ = 0.85, α = 1.13◦, CRM
configuration, FERMAT structural model.
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After finishing the POD-ROM training process, the obtained model can be utilized to conduct
quasi-steady or unsteady simulations [2]. In the course of this investigation, again harmonic
motions characterized by several reduced frequencies kred ,ROM = [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]
are simulated with respect to the excitation of the generalized coordinates. Therefore, three os-
cillation cycles have been computed with the POD-based ROM as well as the CFD solver. For
a more compact representation, a Fourier analysis with respect to the third excitation cycle was
performed to yield the real and imaginary part of the first harmonic surface pressure distribution.
However, the time-domain information is available and can be analyzed as well. Moreover, also
integral quantities can be computed a posteriori based on the surface information. In Fig. 9, the
surface cp response caused by the excitation of selected symmetric eigenmodes is visualized.
The contour plots exhibit a generally good agreement between the ROM and the reference,
although the influence of the shock can not be represented accurately by the ROM. This be-
comes obvious especially in the region of the wing root and has been already noted for the
LANN wing [2]. Beside small-scale topological mismatches, the overall flow characteristics
are in good accordance. As already discussed in the previous subsection, the ROM perfor-
mance at lower kred is not as good as for larger reduced frequencies due to the non-optimal
training signal design. Furthermore, also the aerodynamic response induced by antisymmetric
excitations can be reproduced with sufficient accuracy as can be seen from Figs. 10-11. It can
be concluded that the ROM approach [2] can be equivalently applied towards more complex
configurations. However, due to the increased size of the problem, the data handling as well as
the data input/output can be cumbersome and may exceed the memory/computing limits. The
achievable speed-up and the applicability of the method, however, is generally not restricted by
the complexity of the test case.

5 CONCLUSIONS

In this paper, two recently developed nonlinear ROM approaches have been applied to assess
their performance for unsteady aerodynamic computations. For this purpose, the CRM con-
figuration combined with the FERMAT structural model was investigated in order to study
the ROM’s characteristics with respect to geometrically more complex test cases. First, a
neurofuzzy-model-based ROM was employed to compute harmonic aerodynamic responses due
to structural-eigenmode-based excitations across variable angles of attack. It was demonstrated
that the approach yielded very promising results along with a speed-up of about 2-3 orders
of magnitude compared to the fully CFD-based process, depending on the intended number of
computations. Second, the unsteady surface pressure distribution was predicted by a POD-based
ROM approach. Thereby, it was shown that the ROM reliably predicts the dominant unsteady
pressure field topologies, although the resolution of small-scale structures requires further at-
tention. Nonetheless, the potential of the ROMs towards the application on industry-relevant
configurations was indicated.
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