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Abstract: Adjoint-based mesh adaptation is applied to the prediction of flutter with a direct,
Hopf bifurcation method. Adjoint variables are computed with respect to the objective of flutter
speed, and regarded as an a posteriori indicator of the relative importance of local conditions
to this objective. The magnitude of adjoint variables is then used to drive mesh adaptation
for improved accuracy. The methodology is demonstrated on the model problem of a one-
dimensional thin panel in supersonic flow. The structure is modeled using the von Kármán
plate theory, the fluid pressure distribution on the panel is modeled using piston theory, and the
combined system of equations is discretized using a finite difference method. Mesh adaptation
is used to take an initially uniform mesh and locally refine it to better resolve parts of the panel
that are judged to be relatively more important to flutter prediction. Three mesh-adaptation
criteria are compared and contrasted based on: (1) strict adjoint-based mesh adaptation using
the adjoint variables, (2) feature-based mesh adaptation using the solution curvature, and (3)
a relaxed adjoint-based mesh adaptation using a combination of the adjoint variable and the
solution curvature. The results show that for coarse meshes, criteria leveraging adjoints clearly
outperform feature-based adaptation for predicting the critical dynamic pressure at flutter onset.

1 INTRODUCTION

The accurate prediction of flutter is of utmost importance in aerospace vehicle design, as the
large-amplitude structural oscillations resulting from flutter may precipitate structural failure.
Whereas time-domain analysis is the most widely used method for predicting flutter onset in
numerical simulations involving Computational Fluid Dynamics (CFD), a direct method based
on bifurcation analysis [1–3] is advantageous in several aspects, such as searching over a multi-
parameter space [4], accounting for parametric uncertainties in the prediction [5, 6], and com-
puting sensitivities for design optimization [7, 8]. These advantages are gained by the precise
manner in which flutter points are computed through a linearized, frequency-domain approach
avoiding costly time integration.
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Whether flutter onset is computed with direct or time-domain CFD, reliably generating com-
putational meshes suitable for economical analysis is a significant challenge; i.e., confidently
forming meshes to meet a computational budget. The authors have not found much litera-
ture guiding analysts as to where to cluster mesh points to more accurately predict flutter while
bounding computational cost. The critical mode that destabilizes the aeroelastic system may not
be more effectively captured by clustering mesh points where an aerodynamicist might cluster
mesh points to more accurately predict, say, drag. The critical aeroelastic mode includes struc-
tural participation on length scales typically much larger than detailed aerodynamic features.
Clustering mesh points to resolve certain detailed features may place too much emphasis on
these features than warranted by their impact on the flutter mechanism, and take mesh points
away from regions whose integrated impact on flutter is relatively large. Furthermore, a mesh
ideal for resolving one mode of flutter may not be as effective for a different flutter mechanism
(e.g., wing flutter versus flutter of the aircraft empannage). Uniting mesh adaptation with dy-
namic aeroelasticity was initially studied by Bhatia and Beran [9] for generalized aerodynamic
forces used in flutter analysis, but did not investigate the explicit impact of clustering on flut-
ter. This paper examines a more direct link between mesh distribution and accuracy of flutter
prediction.

One of the challenges in mesh adaptation is finding a good criterion for adaptation. The most
widely used methods employ featured-based criteria, which employ solution gradients, solution
curvature, or pre-selected solution features to determine local mesh resolution. These methods
often result in some feature being over-refined while others are not refined enough [10]. On the
other hand, adjoint-based mesh adaptation is a promising technique of growing interest. Often
regarded as a “goal-oriented” approach, the adjoint-based approach examines the contribution
of each element of the computational mesh to the variation of a pre-defined simulation objective.
Recently, adjoint-based mesh adaptation was successfully applied to CFD and computational
structural mechanics (CSM) analyses in which the simulation objective is a functional of the
fluid or structure state variable, respectively [11, 12].

In this work, adjoint-based mesh adaptation is applied to direct flutter prediction by specifying
the simulation objective to be the flutter speed. Here, the use of a direct method is critical, since
adjoint variables weighting the relationship between local residuals and flutter speed variation
can be explicitly computed. The authors are not aware of any previous work considering flutter
speed as a basis for mesh adaptation.

2 METHODOLOGY AND PROBLEM FORMULATION

In this section, the basic strategy for directly computing flutter points and forming a system
adjoint is outlined. This method is applied to the model problem of a one-dimensional thin
panel in supersonic flow, which is described next. Finally, specific techniques for the general
approach of mesh adaptation are considered to modify the uniform meshes used for baseline
analysis of the panel.

2.1 Direct analysis of flutter points and computation of flutter adjoints

For most aeroelasticity models, the spatially discretized fluid and structural governing equations
can be written as a system of N first-order ordinary differential equations (ODEs) of the form

dx

dt
= f(x;λ), (1)
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where x ∈ RN denotes the aeroelastic state variable. Let λ be a model parameter of which the
critical value at flutter onset, λ∗ is of interest. In this context, λ∗ is a Hopf bifurcation point of
the dynamical system (1), satisfying:

f(x, λ) = 0, (2)
J(x, λ)p = iωp, (3)
qTp− 1 = 0, (4)

where J denotes the Jacobian matrix of f with respect to x, ω is a real number defining the purely
imaginary and critical eigenvalue of J, the critical mode p ∈ CN is the complex eigenvector
corresponding to ω, and q is a pre-defined normalization vector. The above three equations,
governing the flutter condition, can be collectively written as

fexp(xexp) = 0, (5)

where xexp = (x,p, λ, ω) ∈ RN+2 × CN . To obtain the flutter condition, (5) is solved in this
work using Newton’s method. See [13] for background on Hopf bifurcation analysis, and [8]
for details on the direct flutter prediction procedure used herein.

For the purpose of mesh adaptation, the simulation objective is defined as the Hopf bifurcation
point λ∗, i.e.

Iobj = λ∗. (6)

If it is momentarily assumed that the sensitivity of λ∗ with respect to θ (some arbitrary param-
eter) is of importance, than this sensitivity can be expressed in terms of the adjoint variables,
c:

∂λ∗

∂θ
= cT

∂fexp
∂θ

, (7)

where c is computed by solving the linear system(
∂fexp
∂xexp

)T
c =

∂Iobj
∂xexp

= [0,0, 1, 0]T . (8)

Here, the adjoint variables can be thought of as a weighting function for the importance of
the local sensitivity of the residual of the expanded bifurcation equations to the flutter point
prediction. Where the weighting function, ci, is large, local changes to the residual are expected
to have relatively large influence on λ∗. Thus, c is used as a function to indicate where mesh
refinements are of potentially greatest impact on prediction of λ∗.

It is also noted here that in the Equilibrated Complex Bifurcation (ECB) formulation of [8],
the adjoint variables are solved in a manner that condenses out the equilibrium states, such that
the adjoint variables are not explicitly associated with the equilibrium states x, but instead are
associated with p and ω. The adjoint variables instead are indirectly influenced by x through
the equilibration process.

2.2 Model problem of supersonic flow over a thin panel

The familiar problem of supersonic flow over a pinned, one-dimensional (1-D) panel of length
L and thickness h is considered [14]. See Figure 1. The aerodynamically loaded structure is
modeled by the large-deflection, von Kármán plate equation:

µ

λ

∂4w

∂x4
−Nx

∂2w

∂x2
+
∂2w

∂t2
= µ(p∞ − p) = µ

(
1

γM2
∞
− p
)
, (9)
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where the aerodynamic length scales L and freestream velocity, U∞, are used to place (9) in
non-dimensional form [15]. The scaled spatial and temporal coordinates are x and t. The lateral
displacement is w(x, t) and is constrained by the boundary conditions w = ∂2w/∂x2 = 0 at the
panel end points: x = 0 and x = 1. Other dimensional and non-dimensional quantities include:
the freestream density, ρ∞; the pressure, p (scaled by ρ∞U2

∞); the ratio of specific heats, γ (1.4);
the freestream Mach number, M∞; the structural density, ρs; the mass ratio, µ ≡ ρ∞L/ρsh.
Lastly, λ denotes a non-dimensional dynamic pressure parameter [15]: λ ≡ ρ∞U

2
∞L

3/D, where
D is the plate stiffness, D = Eh3/12(1 − ν2), E is Young’s modulus, and ν is Poisson’s ratio
(0.3). The panel is assumed to be free of structural damping.

𝑀"
Scaled	

deflection,𝑤(𝑥)

Scaled	
coordinate,𝑥

Dimensional	
length	scale,𝐿

𝑥=0 𝑥=1

Figure 1: Schematic of a thin, pinned panel in supersonic flow. Pressure loads are applied to the top side of the
panel, with no consideration of cavity pressure effects. Pressure loads are computed with piston theory
over the unit interval. Adapted from [15].

At dynamic pressures beyond critical, λ∗, (9) becomes dynamically unstable; small perturba-
tions grow until quenched by the nonlinear term Nx

∂2w
∂x2

, where the in-plane force Nx grows
with panel deflection and decreases with λ [15, 16]:

N(x) =
6µ

λ

(
h

L

)−2 (
1− ν2

) ∫ 1

0

(
∂w

∂x

)2

dx (10)

The plate is assumed to be subjected to supersonic fluid flow, and the fluid load is modeled
using the well-known piston theory:

µ

(
1

γM2
∞
− p
)

= −µ
β

(
∂w

∂x
+

(
M2
∞ − 2

M2
∞ − 1

)
∂w

∂t

)
. (11)

When tightly coupled with the structural equation, the airloads model (11) yields a single,
second-order partial differential equation for w(x). On a uniform mesh of Ng grid points,
the resulting equation is spatially discretized with second-order-accurate, central-difference ap-
proximations at interior points and for the derivative boundary conditions at end points. Implicit
handling of ghost points outside the mesh facilitate the construction of the discrete representa-
tion. On non-uniform meshes, Taylor-series expansions are used to construct finite-difference
approximations using computational stencils equivalent to that employed for uniform meshes.
A consequence of retaining the same stencils is the lowering of the formal discretization accu-
racy to first order on non-uniform meshes.

The spatially discretized equations are placed in state-space form with the definition x =
[w, s]T , where x is the state array, w = [wi]

T and s = [si]
T are the arrays of deflections

and velocities, respectively. For transient analysis, the equations are integrated in time using
the implicit backward Euler scheme using a time step of 0.1 (about 150 time steps per cycle for
the cases examined herein). Higher temporal accuracy can be gained with smaller time steps
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or improved methods, but were not considered in this study, as the focus of the investigation
was not on transient analysis. However, the authors have demonstrated the convergence of the
scheme in time, and compared with more accurate methods.

2.3 Mesh adaptation criteria

The mesh adaptation considered in this paper is driven by a discrete distribution function, Qi ,
which is used to transform a uniform mesh into a non-uniform mesh characterized by

xi+1 − xi = ∆xi = κ

(
δ +

1

Qi

)
, (i = 1, 2, . . . , Ng − 1) , (12)

where δ > 0 is a padding parameter to control the distribution of mesh points, and κ > 0 is a
scaling parameter. A distribution of mesh points is obtained by solving for δ and κ given two
constraints:

Ng−1∑
i=1

∆xi = 1, (13)

max

i (∆xi)

/
min

i (∆xi) = Γ, (14)

where Γ > 1 is a specified uniformity measure. With constraint (14), the padding parameter is
found to be a function of Γ and the extreme values of {Qi}:

δ =

 1
min

i (Qi)
− Γ

max

i (Qi)

/(Γ− 1). (15)

Three mesh distribution functions, Q(1)
i , Q(2)

i , and Q(3)
i , are evaluated (i = 1, 2, . . . , Ng − 1):

Q
(1)
i = ‖ci‖, (16)

Q
(2)
i =

∥∥∥∥(∂2P∂x2
)
i

∥∥∥∥ , (17)

Q
(3)
i = Q

(1)
i Q

(2)
i , (18)

Q
(1)
i is a strictly adjoint-based distribution function, Q(2)

i is a feature-based distribution function
determined from the local curvature of a modal response function Pi (approximated with a cen-
tral difference formula), and Q(3)

i is a distribution function that combines adjoint and solution
features. The modal response function could be evaluated in many ways, but here the following
expression was used:

Pi = |Re(wi)|+ |Im(wi)|+ |Re(si)|+ |Im(si)|, (19)

where wi and si are the local deflections and velocities at mesh points.

The mesh distribution function can exhibit relatively rapid variations in space whose presence
can degrade the accuracy of the model discretization. Generally, smoothing of Qi is beneficial.
This smoothing is accomplished iteratively through the formula

1

6

(
Qν+1
i−1 + 4Qν+1

i +Qν+1
i+1

)
= Qν

i , (i = 1, 2, . . . , Ng − 1) , (20)
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for J iterates. Here, a symmetric boundary condition is used for the first and last elements.

It should be noted that in this study, it is assumed that the solution and adjoint variables have
already been computed on a uniform mesh of equivalent size to the adapted mesh. As a con-
sequence, the adaptation process implemented in this study does not improve the efficiency of
the total flutter calculation, but indicates how the mesh should be adapted to achieve a more
efficient flutter prediction process. In a more practical context, the selected adaptation criterion
would be used to guide coarse-to-fine refinements, where a flutter solution on a fine mesh with
a uniform distribution is not computed. Also, a systematic study of modal response functions
and smoothing operators different than that described above was not conducted.

3 RESULTS

Results for the flutter of a thin panel in supersonic flow are now presented. First, the consistency
is established of values of λ∗ predicted by time integration and the direct ECB method, along
with comparison of these predictions with data reported in the literature. Then, modal responses
and adjoint variables are contrasted, and the implications of these differences on the selected
mesh distribution functions are discussed. Lastly, flutter solutions are computed on non-uniform
meshes created from the distribution functions, and the accuracy and convergence properties of
these different meshes are compared.

3.1 Accuracy of direct method predictions of flutter onset

The accuracy of the prediction of flutter onset is assessed in two ways: the internal consistency
of the current formulation between time-domain and bifurcation analysis, and the accuracy
of the λ∗ prediction in comparison to published literature. For both studies, a fine mesh of
81 points is selected; µ = 0.1, M∞ = 1.5, and h/L = 0.002 are specified. Convergence
of the bifurcation method for the panel problem on finer meshes is observed by the authors
(λ∗ → 384.3); the convergence properties of the ECB scheme (for bifurcation points and their
sensitivities) are examined in detail for a different problem in [8].

Predictions of λ∗ through bifurcation analysis and time-domain analysis are found to be in
excellent agreement. As expected, transient responses for values of λ below λ∗ are stable and
transient responses for values of λ above λ∗ are initially unstable and converge to limit cycles
if the simulation is carried out for a sufficient duration. The change in stability is shown in
Figure 2 for selected values of λ: 300 and 500, along with images of panel behavior within
a response cycle. As seen in the literature, panel responses are largest around the 3/4-chord
location, and the panel response for the unstable case converges to a stable limit cycle of small
amplitude.

The jump between the least stable aeroelastic response and the least unstable aeroelastic re-
sponse forms a “bracket” within which λ∗ should lie. Numerical experiments reduced the size
of the bracket containing λ∗ from [300, 500] to [380, 390], a tolerance of less than 3%, and
consistent with the value predicted with the direct method.

The value of λ∗ computed with the ECB method is also found to be in excellent agreement
with the early seminal work by Dowell [14], which employed a modal-based Galerkin method.
The comparison was conducted for a higher Mach number, M∞ = 10. For this condition,
λ∗ predicted with the current approach is 3425; Dowell predicted 3422, a discrepancy of less
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than 0.1%, and within plotting and scanning error (note that this comparison accounts for the
different definitions of λ used in the two studies).

Lastly, the authors note that subcritical limit-cycles were not observed, consistent with past
observations [14]. The variation of supercritical limit cycle amplitudes is discussed in Section
3.3.

3.2 Computation of flutter adjoint variables and mesh distribution functions

The adjoint variable c and the eigenvector p at flutter onset are shown in Figure 3. The different
behaviors of c and p in this example are remarkable. Specifically, c has larger magnitude,
gradient, and curvature within the left half of the spatial domain (0 < x < 0.5), while p exhibits
higher magnitude, gradient, and curvature in the right half of the domain (0.5 < x < 1.0). The
authors speculate that the divergence of the spatial distribution of c from that of p is a result
of the time-dependent and modal nature of flutter, where physical conditions upstream of a key
aeroelastic response play a particularly significant role in the mechanism.

These differences suggest that the panel is a good model problem in the sense that adjoint-based
and featured-based adaptation criteria will likely produce significantly different meshes. The
authors also note that the time-domain solution of this problem has been examined, and exhibits
the same spatial variation as p, which is not surprising given the weakly nonlinear nature of the
problem. This similarity suggests that a mesh adapted for flutter will likely produce superior
predictions of limit-cycle response in time-domain analysis, as will be explored below.

The three mesh adaptation criteria described in Section 2.3 are now applied to the generation
of non-uniform meshes. Distribution functions are computed using a consistent value of the
uniformity measure, Γ = 2, and a consistent number of smoothing iterations, J = 10. The

𝜆 = 300.0

100 𝑠
101 𝑠

102 𝑠

103 𝑠

104 𝑠

105 𝑠

106 𝑠
107 𝑠 𝜆 = 500.0

107 𝑠

108 𝑠

109 𝑠

110 𝑠

111 𝑠

112 𝑠
112.5 𝑠

𝜆 = 300.0 𝜆 = 500.0

Figure 2: Aeroelastic responses: (left) subcritical stable solution (λ < λ∗) and (right) supercritical limit-cycle
oscillation (λ > λ∗) established with time integration.
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resulting distribution functions and mesh spacings, after padding and smoothing, are shown in
Figure 4 for each of the mesh adaptation criteria assuming a fine mesh of 81 points. At this point,
where high values of Q can be visually correlated with small mesh spacing, some properties of
the adaptation become clear. For adjoint-based adaptation, the peak in Q(1) is quite large. For
curvature-based adaptation, the peak in Q(2) is also relatively large, but not to the extent of the
dominance in Q(1). As a consequence, the blended adaptation inherits two dominant peaks in
Q(3), with a more substantial rise in the region favored by Q(1).

Figure 5 shows the meshes generated using these criteria for different numbers of mesh points,
Ng, assuming Γ = 2 and J = 10 smoothing steps. For Ng = 41, it is readily evident that points
are clustered in the forward half of the domain for Q(1) owing to adjoint-based weighting,
clustered in the trailing half of the domain for Q(2) owing to curvature-based weighting, and
then clustered in two regions for Q(3) owing to weighting contributions from curvature and the
adjoint variables. For the coarsest grid, Ng = 11, the behavior imparted by Q(3) is somewhat
different than the other meshes: the mesh is more uniform with some bias in distribution towards
the adjoint-based result. The authors attribute this behavior to the relatively large impact of 10
smoothing steps on such a coarse grid. In particular, the strong peak in Q(3) shown in Figure 4
will be smoothed to a larger extent, thereby raising the value of Q(3) near the left boundary with
a concomitant decrease in mesh spacing.

Figure 3: Critical data at flutter: (left) deflection and velocity (real and imaginary) components of p, the neutrally
stable eigenvector of J and (right) similar components of the adjoint variables c.

Figure 4: Mesh distribution functions on top row and resulting mesh spacing on bottom row following padding
and smoothing for Ng = 81: (left) adjoint only, Q(1); (middle) curvature only, Q(2), and (right) ad-
joint*curvature, Q(3).
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3.3 Computation of flutter points and limit-cycle oscillations with non-uniform meshes

The accuracy of computing flutter onset using non-uniform meshes generated with different
adaptation criteria is now assessed. To provide an accurate basis for comparison, λ∗ = 384.3
was computed with an overkill mesh of 321 uniformly distributed points. This highly precise
result provides an excellent prediction of λ∗exact, the exact point of flutter onset for the panel
problem.

In general, adjoint-based adaptation methods (Q(1) and Q(3)) outperform the feature-based
method (Q(2)) in terms of the accuracy of flutter onset prediction for all meshes except the
finest, where the results are essentially equivalent. Errors in computed λ∗ are plotted in log-
arithm form in Figure 6 against a measure of average mesh spacing, and for the distribution
functions described in Section 3.2. Results are compared to those collected with a uniform
mesh, which are seen to converge in a second-order fashion, consistent with the discretization
order of accuracy. It is evident that the non-uniform meshes, for which Γ = 2 is imposed, con-
verge in approximately first-order fashion, again consistent with the discretization approach, but
eventually trend in a second-order fashion as more grid points are added. The authors speculate
that if second-order accuracy were to be preserved for the analyses conducted with non-uniform
meshes, then at least distribution Q(3) would provide higher levels of accuracy than analysis on
uniform meshes.

For the coarsest three meshes, the distribution combining adjoint and curvature biases, Q(3),
provides the best estimate of λ∗, even out-performing the uniform distribution for the fewest
mesh points (Ng = 11). As the mesh is refined once, the adjoint-based distributions become
as accurate as the uniform mesh, and then lose relative accuracy with further refinement. It is
noteworthy that the curvature-only distribution, Q(2), provides the worst results, even though
feature-based adaptation is a logical strategy for achieving economy in analysis of steady prob-
lems.

Finally, the ability of non-uniform meshes to predict limit cycle amplitudes is assessed. The
coarsest mesh is used in this study for two reasons: first, to accelerate the gathering of data,
and second, to highlight the differences between predictions obtained with the different mesh
distribution strategies. Results are shown in Figure 7. In this figure, the relative inaccuracies in
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Figure 5: Meshes produced by the three mesh adaptation criteria for different numbers of grid points, Ng .
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Figure 6: Comparison of error in predicted flutter onset (λ∗ − λ∗exact) as a function of number of mesh points for
uniform meshes and the three mesh adaptation criteria: adjoint only, Q(1); curvature only, Q(2); and the
product of adjoint and curvature,Q(3) (note that lines of slope 1 and 2 are shown for reference purposes).

the estimations of λ∗ are evident and are consistent with findings documented in Figure 6. The
most accurate prediction is obtained with the distribution Q(3). It is also clearly seen that limit-
cycle amplitudes obtained with the same Q(3) mesh are more accurate than those obtained with
the other distribution strategies. For values of λ near the flutter point, the discrepancies in limit-
cycle amplitude can be substantial, with the error in amplitude predicted with the Q(3) distribu-
tion (curvature-only) approximately doubling the error found with Q(3) (adjoint*curvature).

Figure 7: Comparison of limit-cycle amplitudes for the coarsest non-uniform meshes to reference, fine-uniform-
mesh solutions. (Limit-cycle amplitudes correspond to max(w(x)) over a full period of oscillation.)

4 CONCLUSIONS

A strategy was developed by which more accurate flutter speeds can be predicted using coarse
grids. The approach unifies two ideas. The first idea, explored in a companion paper, led to a
quadratically converging process for computing the discrete adjoint solution of the flutter state
through a direct approach. The adjoint corresponded to the objective of flutter onset. The second
idea, explored in this paper, was to use this flutter-tuned vector of adjoint variables as a basis
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for objective-driven mesh adaptation.

For the aeroelastic problem of supersonic flow over a 1-D panel, the strategy is found to be effec-
tive for coarse meshes, but dependent on the choice of adaptation strategy. The ability to assess
the results is also impaired by the lowering of formal accuracy of the selected discretization
scheme for non-uniform meshes. Within this limitation, it is found that a feature-based adapta-
tion driven by solution curvature diminishes accuracy of flutter onset prediction in comparison
to uniform meshes. In contrast, adaptation that balances objective-based and feature-based dis-
tributions yields increased accuracy on coarse meshes. The reason for this improvement appears
to be related to the increased activity of the flutter-tuned adjoint in the forward portion of the
panel, an area that would be less important in a feature-based adaptation strategy.

The authors expect the benefits of a mesh adaptation strategy to improve as more realistic prob-
lems are tackled, owing to increased dimensionality and the ability to resolve detailed flow
features that matter to the determination of flutter speed. The test problem considered herein
is very benign in terms of the solution structure, with restricted opportunity for mesh improve-
ment. For general application, however, a more versatile discretization strategy is required to
ensure the maintenance of formal accuracy on adapted meshes. The authors also comment that
meshes found to be superior for flutter are likely to be superior for conditions near flutter, thus
enabling adapted meshes to be recycled for a wider range of simulations, such as for limit-cycle
oscillation.
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