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Abstract: This paper presents several methods which are useful to reduce the number of 

small-disturbance CFD computations needed for the production of more accurate datasets for 

aeroelastic analyses in early aircraft development. 

 

The first method presented here is an AIC-correction technique using the results of a few 

small-disturbance CFD computations in order to generate downwash correction matrices for 

panel methods such as Doublet-Lattice or ZONA51 in MSC-NASTRAN [5]. 

 

The other two methods are based on a component-wise modal basis-technique similar to 

branch-mode techniques [3] and on the reuse of the modal basis of a given mass-state of an 

aircraft for dynamic and aeroelastic analyses at other mass states. 

 

All these methods are proven to be efficient, accurate and robust, and the authors show the 

potential reduction of the computational effort for concrete analysis cases by means of a 

generic MALE-configuration: OptiMALE. 

 

1 INTRODUCTION 

 

In a cooperation between the Technical University of Munich and Airbus Defence and Space, 

the small-disturbance CFD tool AER-SDNS has been developed. It is based on the analytic 

linearization of the fluid dynamic equations (Euler or RANS) around a nonlinear steady 

reference state.  It can generate first order harmonic aerodynamics out of modal deformations 

or of gust excitations. It generates generalized aerodynamic forces in the same form as 

classical aerodynamic tools as Doublet-Lattice Method (DLM) [4] or ZONA51 in MSC-

NASTRAN [5], as well as non-generalized results if needed. Thus the results can be used 

with actual aeroelastic certification requirements and linear analysis tools for static and 

dynamic aeroelastic stability and loads [1]. 

 

Small-disturbance CFD has proven to be a very efficient way for computing linearized CFD 

aerodynamics for aeroelastic analyses. However, despite its high efficiency compared to other 



IFASD-2017-205    

2 

CFD solutions, the generation of a complete AER-SDNS dataset can take from a few days to 

some weeks. An AER-SDNS computations can namely last several hours and the number of 

AER-SDNS computations required for the creation of a complete dataset equals namely the 

product of the number of Mach numbers, reduced frequencies and eigenmodes of interest for 

each flight condition considered (angle of attack, control surfaces positions). Especially 

during the development process of new airplanes, the main limitation of this approach is the 

computational effort needed to obtain the full AER-SDNS dataset in order to analyze the 

considered configuration(s). The present work intends to overcome this serious limitation and 

to smooth the ramp-up of the introduction of the CFD-dataset during early development 

phases of an aircraft. 

 

 

2 PROPOSED SMALL-DISTURBANCE CFD ACCELERATION METHODS 

 

2.1 AIC-correction 

 

In the past, several authors developed correction techniques (e.g. [2]) using mostly steady 

CFD or experimental data for a correction with multiplicative or additive correction matrices. 

Until now, most of the authors employ either diagonal or densely populated matrices. The 

authors developed a correction method based on a multiplicative approach for a DLM 

downwash correction using densely populated correction matrices with dominant diagonal 

entries. This approach enables the introduction of data from multiple modes at a time, 

increases the accuracy compared to other correction techniques, and it minimizes the 

qualitative change posed to the distribution of aerodynamic quantities.  

 

The correction technique is based on an identity of the corrected DLM forces and the small-

disturbance forces obtained with AER-SDNS normal to the DLM panels. Only the pressure 

disturbance part of the forces from AER-SDNS is considered here, since classical Doublet-

Lattice Methods do not consider other force components resulting from the steady pressure 

difference and the surface vector disturbance. An additive correction can be applied to 

account for such components, but is beyond the scope of the present paper. Due to the nature 

of the results of the aerodynamic methods, the correction matrix is complex and depends on 

reduced frequency, Mach number and flight condition. The identity of forces reads: 

 

𝑮𝑇𝑭𝑆𝐷 = 𝑺 ∙ 𝑨𝑰𝑪 ∙ 𝑪𝑊
𝑾

𝑈∞
      (1) 

 

In equation 1, Cw is the correction matrix correcting the downwash of the DLM. GTFSD are 

the normal parts of the AER-SDNS forces transformed to the DLM lifting points using 

Infinite Plate Splines. S is the diagonal matrix of the panel surfaces and W is the downwash 

vector. Cw consists of a diagonal part 𝜦 and off-diagonal entries 𝜟: 

 

𝑪𝑊 = 𝜦(𝑘𝑟𝑒𝑑 ,  𝑀𝑎∞) + 𝜟(𝑘𝑟𝑒𝑑 ,  𝑀𝑎∞)    (2) 

 

For shorter notation, it is 𝑾𝑎 = 𝑨𝑰𝑪−1𝑺−1𝑮𝑇𝑭𝑆𝐷 and 𝑾𝑏 = 𝑾/𝑈∞ in the following. First, the 

diagonal part is computed by solving the over-determined system  

 

𝑾𝑎 = [
𝜆1 0

⋱
0 𝜆𝑛

]  𝑾𝑏      (3) 
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with a least-squares approach (Gaussian Transformation). The remaining difference between 

the diagonal correction results and the small-disturbance forces from AER-SDNS is covered 

by the off-diagonal entries through a Moore-Penrose pseudo-inverse: 

 

𝜟 = (𝑾𝑎 − 𝜦 ∙ 𝑾𝑏) ∙ [(𝑾𝑏
𝐻 ∙ 𝑾𝑏)

−1]𝐻𝑾𝑏
𝐻    (4) 

 

The obtained matrix Cw can then be built using several “training eigenmodes”, or columns of 

Wa and Wb, simultaneously. Typically, one can use the flight mechanical eigenmodes of the 

configuration, elastic eigenmodes and also some control surfaces deformations in order to 

obtain an appropriate correction matrix. It can be also defined for nonzero reduced 

frequencies, avoiding the need of any assumption on the behavior of the correction along the 

reduced frequencies. 

 

Since some training eigenmodes can lead to values close to zero at low frequencies (e.g. 

plunge mode), one can take advantage of the computation of the Moore-Penrose pseudo-

inverse with the help of the Singular Value Decomposition. Using a tolerance value for the 

minimum considered singular value can ensure that a dataset (column in Wa and Wb) is 

ignored when it shows values close to 0 in comparison to other training modes. This 

regularization of the pseudo-inverse makes the creation of the correction matrix very robust 

and user-friendly. 

 

Also, an interesting feature for half models is the intended symmetry of the correction: a box 

of the aerodynamic model on one side of a symmetric configuration should be corrected 

exactly as its symmetric counterpart. One can derive from this symmetry that one should use 

the same correction matrix for symmetric and antisymmetric results. Then this correction 

matrix can be trained using simultaneously with symmetric and antisymmetric data, e.g. with 

all 6 rigid-body modes, even if only antisymmetric computations are intended. 

 

One should still keep in mind that this method is a correction technique and thus not intended 

to recreate effects missed by DLM as transonic shocks or some T-tail aerodynamics. For the 

latter, the following modal basis improvement methods can be considered. 

 

2.2 Component-wise modal basis 

 

For the early development phase of an aircraft, the chosen modal basis should allow to 

consider a full CFD-dataset for a limited amount of specific eigenmodes. The remaining 

eigenmodes should be covered with classical generalized aerodynamics coming from DLM or 

ZONA51. An AIC-correction technique should be applied to these results in order to smooth 

the discrepancies with CFD. 

 

The current approach is inspired by the Branch-Modes Modelling technique [3]. One can 

build a modal basis using the dynamic coupling between a master part and one or several 

slave parts that can be used in order to isolate the elastic effects of some structural part. 

 

For OptiMALE, the T-tail has been isolated and its eigenmodes were computed when it was 

clamped at its fixation points. The rest of the model was computed with a rigid T-tail in order 

to consider the effect of its mass on the fuselage eigenmodes. This rigid T-tail was realized 

using a RBE2-element of NASTRAN between the node (master node) representing the mass 

properties of the full T-tail and the fixation points (slave nodes). 
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In a second step, the modal basis issued of the eigenmodes of these both computations was 

created and the eigenmodes of the full configuration are compared with the ones rebuilt using 

the component-wise modal basis. 

 

2.3 Reuse of modal bases 

 

In the later development phase, the main differences between configurations arise from 

varying payloads, fuel states and some local mechanical effects. This results in limited 

variations in modal results and also in many similarities with respect to the aeroelastic results. 

 

The use of the modal basis of one or of a few representative configurations (e.g. a maximum 

take-off weight configuration) for the generation of the generalized aerodynamic forces of the 

remaining configurations can be very efficient whereas the prediction error is limited. 

 

This method has been already used by Airbus Defence and Space in the past and is 

demonstrated in this paper, while three different fuel states are considered as the reference 

configuration for each other. 

 

3 COMPUTATIONAL MODEL: THE OPTIMALE CONFIGURATION 

 

The OptiMALE configuration has been chosen by the authors in order to demonstrate the 

methods presented in this paper. It has already been used by the authors in the past in order to 

demonstrate the integration of small-disturbance CFD into the aeroelastic analysis [1]. Thus, 

only a short summary of its characteristics is presented here. 

 

The OptiMALE configuration by Airbus Defence and Space represents a generic MALE with 

high aspect-ratio wing, T-tail empennage, fuselage mounted engines and wing-mounted 

external fuel tanks. Additionally, internal fuel tanks are located in the fuselage and in the 

wing. 

 

The structured CFD-mesh (Figure 1) represents the right half of the configuration and consists 

of approximately 7 million hexa-mesh cells. In accordance with the aerodynamic modelling 

using the Euler-equations, an offbody-distance of rlOBD  310  was used. 

 

 
Figure 1: Side-view of the AER-SDNS OptiMALE CFD-mesh. 

 

The FEM-model (Figure 2) used for the analysis is very detailed. It also represents the right 

half of the configuration, whereas the engine and external store are simply represented as 
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mass points. It can be used for symmetric and antisymmetric analyses by applying the 

appropriate set of Single Point Constraints at the symmetry plane of the configuration, 

producing the adequate modal bases for aeroelastic analyses. 

 

 
Figure 2: OptiMALE FEM-model. 

 

 

The coupling between both meshes is given in reference [1]. It uses Thin-Plate-Splines for the 

model surface deformation, and a combination of spring analogy and transfinite interpolation 

for the volume deformation of the CFD-mesh. 

 

 
Figure 3: OptiMALE DLM-model. 

 

The Doublet-Lattice model (Figure 3) used for this paper is also a half-model. It consists of 

approximatively 850 boxes and includes a horizontal and a vertical paneling of the fuselage. 

The external fuel tank, the engine and their stores have been neglected here. The fluid-

structure coupling for the DLM model has been realized with Infinite-Plate-Splines. 

 

4 RESULTS 

 

In the following, antisymmetric modal and flutter results of the OptiMALE configuration are 

presented. The AIC-correction  and the component-wise modal basis techniques are presented 

for the Maximum Take-Off Weight case (MTOW) at Mach 0.4. 
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4.1 AIC-correction 

 

The modal basis used for the generation of generalized aerodynamic forces is the component-

wise modal basis that will be discussed in more details in section 4.2. The training of the AIC-

correction for OptiMALE used all 6 (symmetric and antisymmetric) rigid-body modes of the 

OptiMALE half-model at Mach 0.4 for 9 reduced frequencies between kred=0.01 and kred=5. 

This ensures that every box of the Doublet-Lattice model gets a non-zero downwash for at 

least some modes in the whole reduced frequency range, making the training of the AIC-

correction very robust. 

 

4.1.1 Correction matrices 

 

The CFD surface nodes have been grouped in order to associate them to the Doublet-Lattice 

panels as shown in figure 4 for the AIC-correction. Thus, the resulting CFD forces will be 

fully used for the corresponding Doublet-Lattice panels and not for other parts of the model, 

as would be the case if one overall spline had been defined here. The forces at the external 

fuel tank and at the engine (and their respective pylons) are ignored since they have no 

counterpart in the current DLM-mesh. 

 
Figure 4: Zones of the AER-SDNS mesh for the AIC-correction 

 

The computed correction matrices are, as expected, strongly diagonal for all reduced 

frequencies, so that the authors decided to present more precisely the diagonal of the 

correction matrix for two reduced frequencies (kred=0.01 and kred=0.5) in Figure 5. The real 

part is plotted with a full line, whereas the imaginary part is plotted with a dashed line. 

 

  
Figure 5: Diagonal of the downwash correction matrix for kred=0.01 (left) and kred=0.5 (right) 
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One can see that the AIC-correction for the lifting surfaces (wing, horizontal tail plane and 

vertical tail plane) shows the expected behavior that was already observed in past studies [2]. 

The real part lies slightly above 1.0 and decreases at the leading and trailing edges boxes. The 

imaginary part is close to 0, showing that the frequency dependency of the aerodynamics is 

similar for DLM and AER-SDNS (Euler). The high peak corresponds to the DLM-box at the 

wing tip trailing edge, which has a negligible aerodynamic effect on the rest of the wing. 

 

For the fuselage boxes, the correction is quite different, which is understandable given that the 

paneling of an aerodynamic body is a less accurate modelling of it. 

 

  
Figure 6: Variation of the diagonal of the correction matrix along the reduced frequency 

 

The variation of the diagonal coefficients of the downwash correction matrix with the reduced 

frequency can be found in Figure 6. It can be observed that this variation is smooth, thus it 

could be even possible to compute the AIC-correction for some reduced frequencies and to 

interpolate it at other values. This would further reduce the number of small-disturbance CFD 

analyses needed for the training of the AIC-correction. 

 

4.1.2 Generalized aerodynamics 

 

In order to evaluate the effects of the AIC-correction, one can compare the generalized forces 

obtained with AER-SDNS (dashed lines), DLM (dotted lines) and DLM with AIC-correction 

(full lines, see Figure 7). 

 

  
Figure 7: GAF versus reduced frequency: AER-SDNS (+), DLM (x) and DLM corrected (full lines) 
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On the left side of Figure 7, one can see the effect of the AIC-correction on the GAF element 

of a training mode. The corrected GAF value is closer to the AER-SDNS GAF in this case. 

The discrepancies can be explained with the following points: 

 Only the normal components of the AER-SDNS pressure disturbance force are used 

for the AIC-correction 

 The disturbance force due to the surface vector disturbance considered in AER-SDNS 

is ignored here. It could be added (at least for the forces normal to the box) in terms of 

an additive GAF-correction. 

 

On the right side of Figure 7, one can see the effect of the AIC-correction on a non-training 

mode. The GAF element of the corrected DLM does not match perfectly the AER-SDNS 

results, which can be explained by the arguments already given. An overall positive effect 

compared to the GAFs from the DLM can still be observed. A more general observation of 

the GAF entries of all modes was that the AIC-correction did mostly reduce the difference 

with AER-SDNS GAFs, and had no remarkable negative effect on any of the GAF-

coefficients. 

 

4.1.3 Flutter results 

 

The flutter analysis of the OptiMALE configuration has been done for Mach 0.4 at Sea Level. 

In this section, the results using three different GAF-datasets are compared: 

 Full small-disturbance CFD GAFs (all 22 antisymmetric modes) 

 AIC-corrected Doublet-Lattice GAFs (trained with the 6 rigid-body modes) 

 Non-corrected Doublet-Lattice GAFs 

 

Figure 8 shows the results of the first two cases, the last one can be seen in Figure 13 (right 

side). 

 

  
Figure 8: Flutter results with the small-disturbance CFD (left) and the corrected DLM (right) aerodynamics 

 

Since the flutter results of the small-disturbance CFD and the Doublet-Lattice Method are 

very similar in this case, Figure 8 shows some minor corrections of the Doublet-Lattice 

results without any negative effect on the accuracy. 

 

4.1.4 Other possible applications 

 

Even in this subsonic case, the AIC-correction should be profitable for gust analyses, because 

it increases the accuracy of the force distribution along the components. 
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For other cases, especially in higher subsonic and at the beginning of the transonic regime, the 

need for a correction of the Doublet-Lattice aerodynamics increases and can then be covered 

by the current method. 

 

4.2 Component-wise modal basis 

 

4.2.1 Modal results 

 

The objective set for this paper was to obtain a modal basis representing correctly the first 18 

(3 rigid-body modes, 15 elastic modes) original antisymmetric eigenmodes of the OptiMALE 

configuration. Thus, the created component-wise modal basis had to be accurate for 

eigenfrequencies up to 50Hz. Therefore, all modes of the model with rigid T-tail on one side, 

and of the clamped elastic T-tail on the other side, were computed up to 60Hz. This led to 22 

modes in the new built modal basis. 

 

In order to validate the component-wise modal basis Φ, the mass- and stiffness-matrices of 

the OptiMALE configuration were generalized in terms of it. Then, an eigenvalue 

computation of these generalized structural matrices gave the rebuilt (normal) modeshapes 

and eigenvalues of the OptiMALE configuration in the following way. The square root of the 

eigenvalues are the circular frequencies associated to each eigenmode, whereas the obtained 

eigenvector matrix V can be used to create the rebuilt modal matrix Φrebuilt according to 

equation 5: 

Φ𝑟𝑒𝑏𝑢𝑖𝑙𝑡 = ΦV      (5) 

 

In order to compare the rebuilt modal basis with the original one, two criteria were used. First, 

the rebuilt and original modeshapes had to be matched to each other. In the present paper, a 

Modal Assurance Criterion (MAC) technique was used. Let 𝜑𝑖⃗⃗  ⃗ and 𝜑𝑗⃗⃗⃗⃗  be two modeshapes 

(eigenvectors) to be compared, and 𝑀 the mass matrix of the mass configuration. The 

following MAC will tend to 1 if these modeshapes are very similar and to 0 if they are not 

correlated.  

𝑀𝐴𝐶(𝜑𝑖⃗⃗  ⃗, 𝜑𝑗⃗⃗⃗⃗ ) =
(𝜑𝑖⃗⃗ ⃗⃗ 

𝑇
𝑀𝜑𝑗⃗⃗⃗⃗  ⃗)

2

(𝜑𝑖⃗⃗ ⃗⃗ 
𝑇
𝑀𝜑𝑖⃗⃗ ⃗⃗ )(𝜑𝑗⃗⃗⃗⃗  ⃗

𝑇
𝑀𝜑𝑗⃗⃗⃗⃗  ⃗)

    (6) 

 

Since this MAC-definition uses the mass matrix of the FEM-model, it is very efficient when 

comparing normal modes as presented in this paper. The fitting of the original and rebuilt 

bases can be seen in Figure 9. 

 
Figure 9: MAC results between rebuilt modes and original modes 
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Figure 9 shows a good match between original and rebuilt modeshapes. For the first three 

modes, the MAC criterion is not applicable since those eigenmodes are all associated to the 

same multiple eigenvalue (0). Both rigid-body modal bases show a high quality. Mode 8 and 

9 seem to have some limited discrepancies. Mode 16 and 17 cross in frequencies, however, 

since these are very close to each other, this result is also acceptable. One can observe anyway 

that also more than the first 18 eigenmodes of the original modal basis can be captured. The 

original modes with no match are actually internal local modes (without any aerodynamic 

influence, therefore excluded from the component basis). 

 

 
Figure 10: Frequency matching results between rebuilt modes and original modes 

 

In a second step, the eigenfrequencies associated to these matched original and rebuilt modes 

are compared. This is presented graphically in Figure 10. The frequencies of the associated 

original and rebuilt modes match with high accuracy.  

 

  
Figure 11: Second wing-bending mode (left: original modal basis, right: rebuilt) 

 

 

In order to get a better impression of the quality of the results, the second wing-bending 

(Figure 11) and the first wing-torsional (Figure 12) modes are analyzed in more detail here. 

These modes have the highest participation in the flutter point presented in section 4.2.2. 
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Figure 12: First wing-torsional mode (left: original modal basis, right: rebuilt) 

 

Both modes have a MAC-value higher than 0.99 between the original and the rebuilt bases. 

This very high value of the MAC is confirmed by the graphical comparison of the 

modeshapes, while only the sign of the eigenvector can vary (as for the first torsional mode). 

The frequency difference lies around 3% for the second wing-bending and around 0.25% for 

the first torsion. 

 

4.2.2 Flutter results 

 

In order to validate the promising modal results, a flutter analysis with the non-corrected 

DLM-model was realized at Mach 0.4 and at Sea Level. In two analyses, the original 

antisymmetric modal basis with 18 modes and the component-wise modal basis with 22 

modes were used (Figure 13). 

 

  
Figure 13: Flutter results (DLM) with the original (left) and the component-wise (right) modal bases 

 

The flutter curves (Vg- and Vf-plots) of both modal bases show very similar characteristics, 

the same flutter mechanism and very limited differences in terms of the flutter speed (around 

2%) and frequency (lower than 1%). 

 

The presented results prove the component-wise basis to be a very accurate methodology that 

doesn’t require a considerable increase in the number of modeshapes needed for obtaining 

similar results. 

 



IFASD-2017-205    

12 

4.2.3 Other possible applications 

 

The present methodology can also be combined with the AIC-correction technique in a very 

efficient way, if some component (such as the T-tail here) needs full small-disturbance CFD 

results whereas the rest of the aircraft can be simply modelled using DLM with AIC-

correction. One should simply replace the related columns of the generalized aerodynamic 

forces (GAF) matrices with the computed small-disturbance CFD GAFs induced by these 

component modes. This hybrid method is not possible for the original modal basis where all 

components can be part of every eigenmode. 

 

Another application is the resizing of some component (without changing its aerodynamic 

characteristics) that will in this case only require the recomputation of the new modal basis of 

this component and of the related small-disturbance CFD dataset. As an example, resizing the 

component T-tail would require the replacement of only 4 component modes, whereas the 

original basis (18 modes) would have to be recomputed completely. Since the number of 

small-disturbance CFD analyses is directly proportional to the number of considered 

eigenmodes, the expected gain of such a methodology is high. 

 

4.3 Reuse of modal bases 

 

In order to validate this approach, three fuel states were used for generating modal bases. For 

the first configuration, all fuel tanks are empty. The second one has all tanks half full, and the 

last one is the full fuel configuration. 

 

The difference in overall mass between the empty and the full configuration lies around 40% 

of the full fuel mass, so that the effects on the modal and flutter results should be of some 

importance. 

 

Each of the three modal bases was computed with 18 eigenmodes (3 rigid-body, 15 elastic 

modes). 

 

4.3.1 Modal results 

 

The MAC-criterion presented in section 4.2.1 is reused here, as well as the methodology for 

computing the eigenmodes of a modal basis using the generalized matrices of another one. 

 

In this section the full-fuel modal basis is used to estimate the modal characteristics of the 

empty and of the half-full fuel configurations. The MAC-results are shown in Figure 14, 

whereas the matching of eigenfrequencies is presented in Figure 15. 

 

Figure 14 shows a very good match of the elastic modes, especially for the half-full fuel 

configuration. The non-matched 18th mode of the rebuilt empty configuration is actually not 

of importance, since the full-fuel mode associated to it was a local mode due to a lack of 

stiffness at the attachment of a fuel tank of the wing. The rigid-body modes Exhibit a very 

good agreement, and the MAC results for them are as in section 4.2.1 not applicable. This 

shows anyway that no user should expect computed rigid-body modes to have some specific 

orientation, unless some kind of supporting technique is applied. This orientation has no 

effect on the dynamic or aeroelastic stability or response computations, so no further work has 

been done on this subject in this paper. 
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Figure 14: MAC results between rebuilt modes and original modes (left: empty fuel, right: half fuel) 

 

The frequency comparison presented in Figure 15 shows also a good match for both cases. 

The rebuilt empty-fuel eigenfrequency has a maximum relative error of about 5% (for the last 

matched eigenmode), whereas this error lies under 2% for the half-fuel eigenfrequencies (also 

for the last eigenmode). 

 

  
Figure 15: Frequency matching results between rebuilt modes and original modes (left: empty fuel, right: half 

fuel) 

 

 

The results observed using the half-full and empty-fuel modal bases as references are even 

more accurate. 

 

4.3.2 Flutter results 

 

The flutter results (using Doublet-Lattice aerodynamics) are presented briefly in terms of 

flutter speed and frequency trend of the first antisymmetric flutter mode at Mach 0.4 at Sea 

Level (Figure 16). In all cases, this flutter mode is a coupling between the second bending 

mode and the first torsion mode of the wing. 

 

The results in Figure 16 can be read as follows: each line represents the results of one out of 

the three mass states, whereas the abscissae denotes the modal basis in which the flutter 

results were computed. The cross represents the case where the used modal basis and the 

computed mass case match, and is therefore the reference configuration for each mass state. 
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Figure 16: Flutter speed and frequency for the three fuel mass states of OptiMALE. 

 

One can observe that using another modal basis has a limited effect on the flutter speed. 

Comparing the flutter frequencies, the authors conclude that it would be better to use the half-

fuel or the empty-fuel modal basis in order to generalize the other mass states because the 

results obtained with the full-fuel modal basis for the empty- and half-fuel states were slightly 

less accurate. Then, only one modal dataset should be computed with small-disturbance CFD, 

leading to important savings in computational time at almost equivalent quality. 

 

The results obtained with these three important mass variations demonstrate clearly that one 

or a few specific reference modal bases can be used in order to generalize the other mass 

states. Therefore the computational effort yielding an accurate small-disturbance CFD dataset 

can be reduced strongly without any important loss of accuracy. 

 

4.3.3 Other applications 

 

This methodology can also be used for gust analyses or aeroservoelastic problems, where the 

full flight-envelope has to be analyzed for several Mach numbers and (if necessary) for 

different flight-conditions (angle of attack, control surfaces or flaps positions). Reducing the 

number of modal bases used for the generation of full small-disturbance datasets is then also 

in later phases a very good and efficient practice. 

 

5 CONCLUSIONS 

 

All methodologies presented here proved their reliability, their accuracy and their saving 

potential for a more efficient use of small-disturbance CFD. They all rely on good 

engineering judgement and good practice and can considerably increase the flexibility of this 

still computationally intensive aerodynamic method. 
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