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Abstract: We present a variant of the Energy Conserving Sampling and Weighting (ECSW)
method that minimizes the offline cost associated to the construction of reduced order mod-
els of FE discretized geometrically nonlinear structural dynamics problems. The training sets
required by ECSW are obtained by lifting linear modal analysis responses on a quadratic man-
ifold generated with modal derivatives. The resorting on expensive POD of the full response
is completely avoided. The method is particularly suited for the dynamic analysis of flexible
airframes featuring geometric nonlinearities.

1 INTRODUCTION

Detailed Finite Elements (FE) models of ariframe structures often tend to possess large number
of degrees of freedom (DOFs) in order to account for extremely detailed geometric features and
material distribution. However, routine simulations to explore different load scenarios, geomet-
ric layouts and material choice for such large models carry prohibitive computational costs. In
this context, reduced-order models (ROMs) offer a reprieve from such extreme computational
costs and allow effective design and optimization activities.

In a broad sense, ROMs are low-dimensional counterparts of the original model, often referred
as high-fidelity model (HFM). Classically, this reduction is achieved through a linear projec-
tion of the full system of equations onto a reduction basis, which has been precomputed offline.
This basis spans a low-dimensional invariant subspace suitable for capturing the HFM solu-
tion. As a result, the ROM is characterized by only a few DOFs. The construction cost of the
reduced nonlinear operators (i.e. internal elastic forces and tangent stiffness matrix) in the pro-
jected equations, however, scales with the size of the HFM ans not with that of the ROM. This
constitutes a serious bottle-neck for achieving significant speed-ups, as the assembly of these
terms dominates the cost of the time integration. Hence, such ROMs are effective only if these
reduced operators can be precomputed offline.

More often than not, nonlinear modeling is essential for design and analysis of realistic struc-
tures, even in the preliminary stages. Thin-walled structural components, for instance, are typi-
cally employed in the aerospace industry when high stiffness-to-weight and strength-to-weight
ratios must be achieved. Among other nonlinear effects, the geometric nonlinearities are partic-
ularly important in modeling their behavior, including peculiar effects like bending-stretching
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coupling; buckling; snap-through; mode jumping etc., due to finite rotations [8]. This has given
rise to a pressing need for effective reduction of large nonlinear dynamical systems. To this ef-
fect, various techniques have been developed over the recent years, which have made the online
computation of the reduced nonlinear operators in ROMs, much cheaper [1, 3–6]. These are
commonly referred to as hyper-reduction techniques.

Generally, hyper-reduction techniques alleviate the computational costs of the nonlinear terms
by optimally selecting a small set of nodes (or elements) in the mesh over which the nonlin-
earity is evaluated. The nonlinearity is then cheaply interpolated over the rest of the mesh.
This selection process is performed with the help of training vectors. These training vectors
are usually obtained from the solution of the HFM. Such full-solution vectors are often also
used for the construction of the reduction basis used in projection-based ROMs, for example,
using the proper orthogonal decomposition (POD) [12–14]. The use of these full-solution snap-
shots for training and reduction purposes is a computationally expensive affair, which can be
unaffordable, especially at the preliminary design stage of structures.

Many techniques enable the construction of a ROM or reduction basis for nonlinear problems
without the need of a full solution (cf. [15, 16] more refs. ). Furthermore, for a certain class
of problems–characterized by mild geometric nonlinearities–the use of vibration modes (VMs)
and modal derivatives (MDs) has been shown to be effective for construction of a modal-based
reduction basis [9–11]. Indeed, the robustness and effectiveness of full-simulation vectors in
general nonlinear reduction scenarios (e.g. using POD) cannot be discounted. Nonetheless,
such modal-based reduction techniques, albeit being sub-optimal, find use when the available
time and computational resources do not allow for creating a database of full simulation runs.
By avoiding full solutions, these techniques go a long way in reducing offline costs incurred
during construction of an effective reduction basis.

The generation of training vectors for hyper-reduction of nonlinear terms in the ROM, however,
still leads to tremendous offline costs if they are still based on full-simulations. To this effect
we propose a modal-based training-set generation technique, which completely avoids the HFM
simulations, thereby, making the reduction procedure truly simulation-free.

The modal derivatives have been classically used to form a reduction basis along with VMs
to capture geometrically nonlinear behavior. Recently, they were also used for reduction via a
quadratic manifold [9], where a linear subspace, formed by a truncated set of VMs, captures
the linearized dynamics near the equilibrium and the corresponding MDs provide the necessary
nonlinear (quadratic) extension to this subspace. In this work, we use this notion of a quadratic
manifold to generate meaningful training vectors from a linear modal superposition of the un-
derlying linearized system. This unified approach builds on to the linear modal signature, which
is rather cheaply available and essential for the analysis of any structural system. We have tested
this approach on a realistic structural model of a wing. Furthermore, we have compared, for
the first time, the offline costs and effective speedups involved in reduction and hyper-reduction
with that of other established techniques, by taking into account althe effort needed to construct
such a simulation-free hyper-reduced ROM.

This paper is organized as follows. In the next section, we start by reviewing the concepts of
projection-based model reduction, which results in the reduction of the dimensionality of the
HFM. The concept of hyper-reduction is reviewed in Section 3, where we propose the use of
a stability-preserving, finite-element-based hyper-reduction technique, known as energy con-
serving sampling and weighing (ECSW) [1]. The modal-based training-set generation using
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the quadratic manifold is presented in Section 4. The numerical results for the tested exam-
ple, along with comparisons with other techniques, are presented in Section 5. Finally, the
conclusion are given in Section 6.

2 DIMENSIONALITY REDUCTION

The partial differential equations (PDEs) for momentum balance in a structural continuum are
first FE-discretized along the spatial dimensions to obtain a system of second order ordinary
differential equations (ODEs). Along with the initial conditions for generalized displacements
and velocities, these ODEs govern the response of the underlying structure. More specifically,
this response can be described by the solution to an initial value problem (IVP) of the following
form:

Mü(t) + Cu̇(t) + f(u(t)) = g(t) ,

u(t0) = u0, u̇(t0) = v0,
(1)

where the solution u(t) ∈ Rn is a high-dimensional generalized displacement vector, M ∈
Rn×n is the mass matrix, C ∈ Rn×n is the damping matrix, f : Rn 7→ Rn gives the nonlinear
elastic internal force as a function of of the displacement u of the structure, and g(t) ∈ Rn is the
time dependent external load vector. The nonlinear term f(u) models the effect of geometric
nonlinearities, arising in the case of large deflections and rotations. In this work, von Karman
kinematics has been used to model geometric nonlinearties for shell-based structures. As dis-
cussed in Section 1, the system (1) is referred to as the HFM. The response of the HFM can be
extremely time consuming to compute if the dimension n of the system is large. The classical
notion of model reduction aims to reduce this dimensionality by introducing a linear mapping
on to a suitable low-dimensional invariant subspace V as

u(t) ≈ Vq(t) , V ∈ Rn×m,

where q(t) ∈ Rm (m� n) is the low-dimensional vector of reduced variables, and V is known
as the reduction basis since its columns form a basis for V . The reduced-order model is then
obtained using Galerkin projection as

VTMV︸ ︷︷ ︸
M̃

q̈(t) + VTCV︸ ︷︷ ︸
C̃

q̇(t) + VT f(Vq(t)) = VTg(t),

where M̃, C̃ ∈ Rm×m are the reduced mass and damping matrices, respectively. Often, the
internal force can be split in to its linear and nonlinear contributions as f(u) = Ku+ fnl(u), to
obtain a reduced stiffness matrix as well:

M̃q̈(t) + C̃q̇(t) + VTKV︸ ︷︷ ︸
K̃

q(t) + VT fnl(Vq(t))︸ ︷︷ ︸
f̃(q(t))

= VTg(t). (2)

It is easy to see that each of the reduced matrices M̃, C̃ and K̃ can be precomputed in the offline
stage prior to time integration. Hence, during time integration (online phase), the computational
cost associated to the evaluation of the linear terms in (2) scales only with the number of reduced
variables m. This is, however, not the case for the computation of the nonlinear term f̃(q(t)).
For FE-based applications, this evaluation is usually carried out online in the following manner:

f̃(q) = VT fnl(Vq) =
ne∑
e=1

VT
e fe(Veq), (3)
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where fe(ue) ∈ RNe is the contribution of the element e towards the vector fnl(u) (Ne being the
number of DOFs for the element e), Ve is the restriction of V to the rows indexed by the DOFs
corresponding to e, and ne is the total number of elements in the structure. Since the reduced
nonlinear term f̃(q) is evaluated in the space of full variables, the computational cost associated
to its evaluation does not scale with m only. Indeed, (3) shows that this cost scales linearly with
the number of elements in the structure, and can hence be high for large systems. Thus, despite
the reduction in dimensionality achieved in (2), the evaluation of the reduced nonlinear term
f̃(q) emerges as a new bottleneck for the fast prediction of system response using the ROM.
Hyper-reduction techniques help mitigate these high computational costs by approximation of
the reduced nonlinear term in a computationally affordable manner.

3 HYPER-REDUCTION

In order to reduce the computational burden associated to the nonlinear force vector, we em-
ploy the recently proposed energy-conserving sampling and weighting (ECSW) hyper-reduction
method [1], which directly approximates the reduced nonlinear term f̃(q) while preserving the
symmetry of the tangential operations and thus numerical stability [2]. Essentially, ECSW aims
to identify a small set of elements E of the structure (|E| � ne) to cheaply approximate f̃(q)
as (cf. (3))

f̃(q) =
ne∑
e=1

VT
e fe(Veq) ≈

∑
e∈E

ξeV
T
e fe(Veq), (4)

where ξe ∈ R+ is a positive weight attached to each element e ∈ E, which is empirically
chosen to ensure a good approximation of the summation in (3). Clearly, if |E| � ne, then the
evaluation of the approximation in (4) would come at a fraction of the original computational
cost associated to (3). In doing so, ECSW approximates the virtual work done by the internal
force on the set of vectors in the basis V. As a consequence, the ECSW preserves the structure
and the stability properties of the underlying full model (cf. [2]).

The elements and weights are determined to approximate virtual work over chosen training
sets which generally come from full solution run(s). If there are nt training vectors in the set
with u(i) representing the ith vector, then corresponding reduced unknowns q(i) can be easily
calculated using least squares as

q(i) = (VTV)−1VTu(i),

and element level contribution of projected internal force for each of the training vectors can be
assembled in a matrix G as follows:

G =

 g11 . . . g1ne

... . . . ...
gnt1 . . . gntne

 ∈ Rmnt×ne , b =

b1
...

bnt

 ∈ Rmnt ,

gie = VT
e fe(Veq

(i)), bi = f̃
(
q(i)
)
=

ne∑
e=1

gie , ∀i ∈ {1, . . . , nt}, e ∈ {1, . . . , ne} .

(5)
The set of elements and weights is then obtained by a sparse solution to the following non-
negative least-squares (NNLS) problem

(P1) : ξ = arg min
ξ̃∈Rne ,ξ̃≥0

‖Gξ̃ − b‖2, (6)
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A sparse solution to (P1) returns a sparse vector ξ, the non-zero entries of which form the
reduced mesh E used in (4) as

E = {e : ξe > 0}.

An optimally sparse solution to (P1) is NP-hard to obtain. However, a greedy-approach-based
algorithm [7], which finds a sub-optimal solution, has has been found to deliver an effective
reduced mesh E [1].

4 SIMULATION-FREE REDUCTION

Effective reduction of nonlinear dynamical systems, involves both dimensionality reduction
(usually using projection-based methods) as well as hyper-reduction to speed up the (reduced)
nonlinearity evaluation. Conventionally, both these steps require HFM simulations which lead
to tremendous offline costs. In this case, both the basis vectors and the training forces are
obtained by a POD analysis of the simulation of the HFM. The POD basis is constructed as
follows. Let ui ∈ Rn, i ∈ {1, . . . , nt} be training vectors obtained from the full solution of
system (1). Let U := [u1,u2, . . . ,unt ] ∈ Rn×nt be the ensemble of snapshots obtained from
the full solution. A lower dimensional POD basis V = [v1 v2 . . .vm] ∈ Rn×m containing
m � nt orthogonal vectors which best spans the vectors in this ensemble can be obtained by
the Single Value Decomposition (SVD) of the matrix U, as

U = LSRT , (7)

where is U is factorized into unitary matrices L = [l1, l2, . . . , ln] ∈ Rn×n (containing the left
singular vectors) and R ∈ Rnt×nt (containing the right singular vectors); and the diagonal (rect-
angular) matrix S ∈ Rn×nt (containing corresponding singular values on the diagonal). The first
vectors in L are the most evergetically significant modes shape that represent he corresponding
snapshots, and are used to form the reduction basis. The POD technique is known to yield an
optimal reduction basis for the underlying HFM simulation, but little can be said on the validity
of such basis for another case of interest (as, for instance, a different load). As pointed out on
the introduction, the cost of even one single HFM instance could be prohibitive or not justifiable
in a preliminary design phase, where many different scenarios need to be explored. To reduce
these offline costs for geometrically nonlinear thin-walled structures, we propose the following
systematic procedure for obtaining a reduction basis, as well as for generating training vectors
required for hyper-reduction, while completely avoiding full simulation runs.

4.1 Modal-based reduction basis

For geometrically nonlinear problems with separation in time scales between in-plane and out-
of-plane behavior (beams, shells, thin plates, and their assemblage), it is well known that the
VMs and MDs form a good basis to represent the nonlinear displacement field [9, 11, 17, 18].
We propose their use in construction of the required reduction basis V as

Ψ = [φ1, . . . ,φM , . . . ,θij, . . . ], i, j ∈ {1, . . . . ,M}, (8)
V = orth(Ψ) , (9)

where V is obtained after an orthogonalization of the matrix Ψ in (8), orth represents any
routine to orthogonalize any general matrix such that the result is a orthonormal matrix with a
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full column rank (e.g., the Gram-Schmidt orthogonalization). The matrix Ψ contains the rele-
vant VMs and MDs, φ1, . . . ,φM represent a truncated set of VMs obtained from the solution
of the undamped eigenvalue problem(

K− ω2
iM
)
φi = 0 ∀i ∈ {1, . . . , n}, (10)

and θij are the MDs, obtained from the solution to the following problem

(
K− ω2

iM
)
θij +

(
∂2f(u)

∂u∂u

∣∣∣∣
u=0

φj −
∂ω2

i

∂ηj
M

)
φi = 0, i, j ∈ {1, . . . . ,M}. (11)

This represents a derivative of the eigenvalue problem (10) with respect to the modal amplitude
ηj of the VM φj , after K is replaced by the tangent stiffness matrix ∂f(u)

∂u
. An effective static

approximation of the MDs, obtained by neglecting the mass terms in (11) as

θstaticij = −K−1
[
∂2f(u)

∂u∂u

∣∣∣∣
u=0

φj

]
φi. (12)

The θstaticij were first introduced in [11]), and termed as static MDs (SMDs) in [9].

4.2 Quadratic-manifold-based training set generation

To alleviate the prohibitive offline computational costs involved in the HFM-snapshots-based
hyper-reduction, we seek to obtain relevant training vectors without the need of these full solu-
tion vectors. Starting with the idea of modal superposition, we propose a quadratic-manifold-
based approach [9] to avoid these prohibitive costs in training.

The linear modal superposition using a few significant VMs is a well-established technique to
obtain the reduced solution of a linear dynamical system. However, when the nonlinearities
become significant, the modal basis can be augmented with MDs to effectively capture the re-
sponse. If a light damping is assumed, the linearized solution ulin(t) of the HFM in response
to the applied external loading g(t) can be spectrally decomposed using linear modal superpo-
sition as (cf. [19])

ulin(t) =
n∑
i=1

φi

∫ t

0

sin(ωi(t− τ))(
φT
i Mφi

)
ωi

φT
i g(t) dτ︸ ︷︷ ︸

ηi(t)

=
n∑
i=1

φiηi(t) , (13)

where ηi(t) are the time varying modal amplitudes corresponding to the VM φi. Depending
on the spatial and temporal properties of the external load g(t), the summation in (13) can be
truncated to obtain

ulin(t) ≈
∑
i∈M

φiηi(t) = Φη(t), (14)

where M ⊂ {1, . . . , n} is the set of indices corresponding of the most significant modes in
modal superposition (13).

Clearly, the snapshots of ulin(t) would not be effective as training vectors needed for hyper-
reduction. Indeed, consider, for example, a flat thin walled shell structure with some exter-
nally applied out-of-plane loading. The modal truncation would feature bending dominated
modes which are out of plane for a linearized solution. The nonlinear response, however, is
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expected to feature in-plane effects due to bending/torsion-stretching coupling. These essen-
tial features would be missing in snapshots of ulin(t), making them poor for training nonlinear
hyper-reduction. The modal amplitudes, however, still contain important bending information
of the structure and can be useful in generating effective training vectors by using the notion
of a quadratic manifold, which was introduced for nonlinear model reduction in [9]. There, the
full unknowns are mapped to a lower dimensional set of variables z using a quadratic mapping
as

u(t) ≈ Γ(z(t)) := Φz(t) +
1

2
Ω : (z(t)⊗ z(t)) , (15)

where Φ ∈ Rn×M containing a truncated set of M(= |M|) significant VMs, resulting from
the linear modal superposition; and Ω ∈ Rn×M×M is a third order tensor containing the corre-
sponding MDs. As discussed in [9], the tangent space of the quadratic manifold at equilibrium
(u = 0) is the modal subspace represented by Φ, which is corrected using the MD information
to account for nonlinear behavior upon departure from the equilibrium. Furthermore, the MDs
capture the inherent bending/torsion-stretching coupling arising from geometric nonlinearities.
These components arise naturally as second components of the quadratic manifold. This pro-
vides a straight-forward method to generate physically-meaningful training vectors using the
snapshots of the modal amplitudes η (t) in (15), as

u(t) = Γ (η (ti)) , i ∈ {1, . . . , nt},

where ti ∈ T (with T being the simulation time-span) are the time instants at which the modal
snapshots are captured; nt is the number of such snapshots chosen for training.

This simple criterion implicitly assumes that the linear behavior is correct up to a first order and
the essential nonlinear bending/torsion-stretching coupling effects (captured using the quadratic
manifold) are of second order. This does not necessarily imply that the nonlinear forces are
small. In fact, the range of deflections we are interested in makes the linear and nonlinear
forces comparable in accordance with the von Karman kinematics. The degree to which this
concept can be stretched would be a problem-dependent issue. The advantage of this method
lies in the fact that the linear modal solution is available for any given system at practically
no costs, resulting in physically-relevant training vectors without the need of expensive high-
fidelity simulation. Note that the training vectors thus obtained could, in principle, be used for
training any hyper-reduction technique, and therefore this method is not restricted to ECSW
hyper-reduction.

5 NUMERICAL RESULTS

5.1 Setup

We illustrate the performance of the proposed hyper-reduction technique on a model of a
NACA-airfoil-based wing model, with realistically high number of DOFs, introduced in [9].
The details of the models are shown in Figure 1. The structure is modeled using flat, triangular-
shell elements with 6 DOFs per node (i.e., 18 DOFs per element). For both the models, the
accuracy of the results was compared to the corresponding full nonlinear solutions using a
mass-normalized global relative error (GRE) measure, defined as

GREM =

√∑
t∈S

(u(t)− ũ(t))TM(u(t)− ũ(t))√∑
t∈S

u(t)TMu(t)
× 100,
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where u(t) ∈ Rn is the vector of generalized displacements at the time t, obtained from the
HFM solution, ũ(t) ∈ Rn is the solution based on the (hyper) reduced model, and S is the
set of time instants at which the error is recorded. The mass matrix M provides a relevant
normalization for the generalized displacements, which could be a combination of physical
displacements and rotations, as is the case in the shell models shown here.

Since the success of reduction techniques is often reported in terms of savings in simulation
time, we define an online speedup S? computed according to the following simple formula:

S? =
Tfull
T ?sim

,

where Tfull and T ?sim represent the CPU time taken during the time integration of full and (hy-
per)reduced solution respectively. The superscript ? denotes the reduction technique being used.
The speed-up defined in this manner takes only the online costs into account. For a more fair
comparison, we take offline costs into account by defining an effective speed-up as

S?eff =
conTfull

coffT ?off + conT ?sim
,

where T ?off represents the computational time spent offline for setting up a (hyper-)reduced
model; con, coff ∈ [0, 1] represent the relative weights given to the online and offline costs,
respectively, such that con+coff = 1. The HFM simulation is assumed to carry zero offline costs
and, thus, Seff = S = 1 for a full HFM solution. A higher value of Seff for a given (hyper-)
reduction method more favorable than those corresponding to a lower value, with Seff < 1
implying that the corresponding reduction technique is effectively more expensive than a full
solution run.

The results from the following reduction techniques are compared:

• SIMFREE: Simulation-free reduction (No hyper-reduction). These technique involve
the simulation of the Galerkin ROM (2), where the reduction basis is obtained without
the use of full simulation snapshots V. Here, a few significant VMs (say M in number)
of the structure are selected based on linear modal superposition for the given load. These
VMs, along with the corresponding SMDs (which would be M(M+1)

2
in number), are used

to construct V. Thus, the size of the basis would be m = M(M+3)
2

.
• POD (No hyper-reduction): Here, the nonlinear system using is reduced using a POD

basis. The reduction basis of the same size as in Simulation-free reduction and is con-
structed through the SVD of the full-solution-snapshots-matrix. Thus, m = M(M+3)

2
left

singular vectors with the highest singular values are included in V.
• POD-ECSW: The ECSW method is used with the same basis in POD, to hyper-reduce

the nonlinearity in the ROM. The HFM simulation snapshots are used in the offline stage
for training to obtain the reduced mesh.
• SIMFREE-ECSW: Simulation-free hyper-reduction. The proposed quadratic-manifold-

based training set generation is used to reduce offline costs during hyper-reduction.

5.2 Wing structure

For the application of the proposed simulation-free hyper-reduction methods to more realistic
models, we consider the model of a NACA-airfoil-based wing structure, introduced in [9]. This
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model (referred to as Model-II hereafter) contains truly high number of DOFs, thereby allow-
ing for the appreciation of obtained accuracy and computational speed-ups. We simulate the
response of the structure to a low frequency pulse load, applied as a spatially uniform pressure
load on the highlighted area on the structure skin (cf. Figure 1). This pressure load takes the
shape of a pulse in time as shown in Figure 2. The dynamic load function is given as

p(t) = A sin2(ωt)
[
H(t)−H

(π
ω
− t
)]
, (16)

whereH(t) is the Heaviside function and ω chosen as the average of the first and second natural
frequency of vibration. The load amplitude is chosen so that the linear and nonlinear internal
forces have magnitudes of similar order (see Figure 2, cf. [9] for linear and nonlinear response
of this model). This is in agreement with the range of applicability of von-Kármán-kinematics-
based shell elements, used here.
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Figure 1: A wing structure with NACA 0012 airfoil (length(L) = 5 m, Width(W ) ≈ 0.9 m, Height(H) = 0.1 m
) stiffened with ribs along the longitudinal and lateral direction. The Young Modulus is E = 70 GPa,
the Poisson’s ratio is ν = 0.33, and the density is ρ = 2700 Kg/m3. The wing is cantilevered at one
end. Uniform pressure is applied on the highlighted area, with a pulse load as given by (16) (shown in
(a)). The structure is meshed with triangular flat shell elements with 6 DOFs per node and each with
a thickness of 1.5 mm. The mesh contains n = 135770 DOFs, ne = 49968 elements. For illustration
purposes, the skin panels are removed and mesh is shown in (b).
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Figure 2: (a) Dynamic load function for pulse loading (cf. (16)). (b) The comparison of the norm of the linear and
the nonlinear internal force during a full nonlinear solution of (cf. Figure 1).

The solution to the linearized system can be accurately reproduced using modal superposition
with the first five VMs of the structure. These VMs (M = 5), along with the corresponding
SMDs are used to construct reduction basis to perform simulation-free reduction with m =
20, as discussed in Section 5.1. The SIMFREE ROM is further equipped with the quadratic-
manifold-based training-set generation technique to perform simulation-free hyper-reduction.
using ECSW. The results for these techniques are compared with the classical (hyper-)reduction
approaches and reported in Table 1.

Reduction Technique # el. GREM (%) S? S?eff
POD 49968 0.31 2.77 0.73
POD-ECSW 278 0.38 394.6 0.97
SIMFREE 49968 1.65 2.72 2.69
SIMFREE-ECSW 156 1.40 638.7 38.48

Table 1: Starting with a linear modal superposition with M = 5 modes (first 5 VMs), reduction techniques as
described in Section 5.1 are formulated. The size of the reduction basis is m = 20 for all the presented
cases. Global Relative Error, speed-ups and effective speed-ups (for con = coff = 0.5) for these reduction
techniques are tabulated. A total of nt = 200 training vectors, chosen uniformly from the solution time-
span, are used to setup hyper-reduction in Modal-ECSW-L1/L2 as well as ECSW-POD. Time for a full
solution run Tfull = 3.808× 104s.

The following observations can be made from the results in Table 1:

• The general need for hyper-reduction is apparent from the results for classical reduction
as well as simulation free reduction approaches. Even for a model with truly high number
of DOFs the online speed-up (S?) shows a value between 2 and 3 for these techniques.
Indeed, the evaluation and projection of nonlinearity is a major bottleneck for saving
computational time.
• For the conservative choice of equal weights assigned to online and offline costs, the Clas-

sical reduction methods (POD) show an effective speed-up S?eff < 1, even when equipped
with hyper-reduction (ECSW-POD). This makes such techniques heavily dependent on
an expensive database of full solution runs to obtain any reasonable effective speed-up
for a range of load cases.
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• The simulation-free reduction techniques, on the other hand, lead to effective speed-ups
S?eff > 1. Indeed, the reduction basis constructed using modes and SMDs is much
cheaper to obtain than a POD basis which requires the HFM solution vectors.
• The simulation-free hyper-reduction using the quadratic-manifold-based training-set gen-

eration results in effective speed-ups which are orders of magnitude higher than any other
methods. Specifically, the obtained online speed-up is approximately 1.6 times larger
than that of ECSW-POD. This is due to the fact that the sNNLS routine selected only
156 elements (in place of 278 for POD-ECSW). The online speed-up S? for ECSW is
inversely proportional to the number of elements selected in sNNLS routine.

6 CONCLUSION

We have introduced a new method to generate training sets for hyper-reduction of geometrically
nonlinear structural dynamics problems, without the need of full solution snapshot, thereby re-
ducing offline costs significantly. This method essentially involves the projection of snapshots
obtained from the (inexpensive) linear modal superposition solution, on to a quadratic manifold,
which is tangent to the corresponding linear modal sub-spaces and captures the second order
nonlinear effects. As discussed in Section 4.2, this modal-based techniques results in physically
meaningful training vectors, which capture the essential bending-stretching coupling character-
istic of geometrically-nonlinear thin-walled structures. The advantage of this method lies in the
fact that the linear modal solution is available for any given system at practically no costs.

As remarked earlier, the quadratic-manifold-based training sets still rely on the underlying linear
footprint of the model and correct for the relevant nonlinear effects up to the second order. The
degree to which this concept can be stretched would be a problem-dependent issue. One can
envisage the load cases where this technique is not expected to perform well, at least on long
enough times scales. Specifically, for resonant loading of lightly damped systems, the modal
amplitudes are expected to grow indefinitely for a linearized system. In such situation, the linear
response is not likely to be representative of the nonlinear system. The projection of the modal
snapshots on to the quadratic manifold is not expected to return physically meaningful snapshots
for the nonlinear system, since the displacements would be constrained from indefinite growth
by the inherent nonlinearity.

The computational speed-ups calculated in the numerical results conservatively assume that the
online and offline stages of the simulation carry equal costs. However, it should also be noted
that, in general, the POD vectors used for training and reduction purposes can be expected to
be optimal only for the load case from which these full-solution vectors are initially obtained.
Thus, practically, a database of full-solution runs for different load cases would be needed
before any meaningful benefits of model-reduction could be observed. We contend the use of
simulation-free reduction techniques to ease preliminary geometrically nonlinear analysis of
structures, where such an expensive database of full solutions is unavailable or unaffordable.
Thus, we think that the naively defined effective speed-ups used here are still indicative.
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