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Abstract: This work discusses the quantitative stability evaluation of aeroelastic problems with
nonlinearities in the control surfaces. Stability estimation of linear time invariant and linear time
periodic systems rely on eigenanalysis of state transition matrices and implies simplifications on
the problems governed by nonlinear non-autonomous equations. Lyapunov Characteristic Ex-
ponents directly provide quantitative information on the stability of nonlinear non-autonomous
dynamical systems. Stability estimation using Lyapunov Characteristic Exponents does not
require a special reference solution and is consistent with the eigensolution of linear time in-
variant and Floquet-Lyapunov analysis of linear time periodic systems. Thus, they represent
a natural generalization of conventional stability analysis. The Discrete QR method is used to
practically estimate the Lyapunov Characteristic Exponents. The method is applied to two- and
three-dimensional aeroelastic problems with lumped nonlinearities in control surfaces.

1 INTRODUCTION

The aeroelasticity of linear systems is well addressed in literature (see Ref. [1] for the classical
treatment of aeroelastic problems). On the other hand, nonlinearities in aeroelastic systems
are often non-negligible and can be induced by structure, aerodynamics, and control systems.
Nonlinearities introduce unique phenomena that cannot be predicted using linear system theory.
Among them, limit cycle oscillations (LCO) occur as self sustained oscillations without the
need of an external input [2] and there exist more complex behaviours such as bifurcations and
chaos [3]. Many experiments on aeroelastic systems report phenomena of these kind; thus, it is
crucial to understand and analyze nonlinear effects in aeroelastic systems for safe, efficient and
improved designs of lifting and control surfaces [4].

Nonlinear aeroelasticity can be analyzed using theoretical and numerical methods, experiment-
ing in wind tunnel and doing flight tests [5]. However, the practical, quantitative way of mea-
suring stability depends on whether a system is autonomous (i.e. not explicitly dependent on
time) and linear. Stability of linear, time invariant (LTI) problems can simply be inferred by
evaluating the real part of the eigenvalues of its (constant) state space matrix, namely its spec-
trum. Stability evaluation is less straightforward when the problem is linear non-autonomous
(i.e. explicitly dependent on time). According to Floquet-Lyapunov’s theory, when the problem
is time periodic (LTP), i.e. the state space matrix has periodic coefficients, the real part of the
logarithm of the state transition matrix over one period. For nonlinear, autonomous problems,
the eigenvalues and eigenvectors of the linearized system computed at the coordinates of the
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phase plane corresponding to a steady solution provide local information about stability in the
neighborhood of that solution. Once these points are evaluated and connected for the whole
phase plane, a geometric and qualitative understanding of the system is possible. However, for
non-autonomous problems and systems having higher dimensions, geometric understanding is
not easy; thus, a quantitative measure is necessary.

In addition to difficulties in stability estimation of nonlinear systems, both LTI and LTP system
analysis find several applications in mechanics and specifically in aerospace engineering. LTI
and LTP problems typically result from linearization of nonlinear, non-autonomous problems
about a steady (both LTI and LTP) or a periodic (LTP only) reference solution, which is called
‘orbit’. Such linearization requires the existence of the reference solution, and the capability
to define and compute it. Obtaining a steady or periodic solution by numerical integration in
time requires that solution to be stable, so the study of the stability of the solution is actually
the study of its stability margin.

A method that does not require a special reference solution (i.e. a stable point or a stable orbit)
but, on the contrary, provides indications about the existence of an attractor, being it a point,
a periodic orbit or a higher-order solution (e.g. a multidimensional torus), while computing the
evolution of the system towards it, would give valuable insight into the system properties and,
at the same time, provide a viable and practical means for its analysis. Lyapunov Characteristic
Exponents (LCE) or in short Lyapunov Exponents are indicators of the nature and of the stability
properties of solutions of differential equations (see for example Refs. [6, 7] and references
therein). They define the spectrum of the related Cauchy (initial value) problem [8]. Lyapunov’s
theory can be applied to nonlinear, non-autonomous systems of differential equations. The
stability of trajectories in state space can be estimated while computing their evolution.

In nonlinear aeroelasticity LCEs is used as a definitive method in estimating stability [5]. The
LCEs estimation based on the time series chaos are studied in literature such as Ref. [9] studied
the estimation LCEs from time series. Refs. [10, 11] investigated the aeroelastic response of
an airfoil with structural nonlinearities; LCOs and chaotic motion is determined and compared
with findings of Lyapunov Exponents obtained using time series analysis. In another work,
aerodynamic and physical nonlinearities are studied for an airfoil in supersonic flow by Librescu
et. al. [12], a criterion based on First Lyapunov Quantity is used to indicate bifurcations. The
LCE indication of stability, which works directly on system differential equation rather than
time series, has been recently applied to rotorcraft stability analysis in Ref. [13]; successful
quantitative indications of the presence and stability of nonlinear phenomena could be obtained.
Analytical sensitivity of LCEs is also considered in Ref. [14]. The possibility to extend the
approach to systems of differential-algebraic equations, as outlined for example in Refs. [15–
17], represents a promising development in view of their use in the formulation of modern
multibody dynamics.

In this work we focus on quantitative stability estimation of aeroelastic problems involving
nonlinearities that are often found in control surfaces. LCEs are implemented along with the
governing differential equations and state transition matrix of the system rather than working
on time series. Discrete QR method is used for LCE estimation. The next section introduces the
stability problem of nonlinear systems and Lyapunov characteristic exponents (LCEs). Then,
two nonlinear aeroelastic problems are presented and stability is estimated using LCEs and
verified using time marching analysis.
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2 STABILITY OF NONLINEAR PROBLEMS

This section recalls the definition of non-autonomous problems and of Lyapunov Characteristic
Exponents as measures of their spectrum, along with numerical procedures for their estimation.

2.1 Nonlinear, Non-Autonomous Problems

In engineering practice, differential problems of the form

ẋ = f (x, t) , x(t0) = x0 (1)

often arise. Special cases occur when the problem is linear, i.e. f(x, t) = A(t)x(t), and
particularly time-periodic (LTP), i.e. linear with A(t+T ) = A(t) for a given constant T , ∀t, or
time-invariant (LTI), i.e. linear, with A independent of time. Autonomous problems arise when
f(x) does not explicitly depend on time t; when the problem is linear, i.e. f(x) = Ax, with A
constant, they yield the LTI case again. Stability of linear, time invariant (LTI) problems

ẋ = Ax (2)

can simply be inferred by evaluating the real part of the eigenvalues of its (constant) state space
matrix A, namely its spectrum. Stability evaluation is less straightforward when the problem
is linear non-autonomous. According to Floquet-Lyapunov’s theory, when the problem is time
periodic (LTP), i.e. the state space matrix has periodic coefficients,

ẋ = A(t)x, A(t+ T ) = A(t)∀t, (3)

the stability of LTP systems is evaluated using the real part of the logarithm of the eigenvalues
of the monodromy matrix H, namely the state transition matrix Y over one period (T):

H = Y(T, 0), (4)

which is the solution of the problem

Ẏ = A(t)Y, Y(0) = I. (5)

Although the definition of stability may be less intuitive for time dependent and nonlinear prob-
lems, the rate of decay of the amplitude of the trajectory with respect to initial perturbations, i.e.
its stability, has the same interpretation, and all cases are quantitatively comparable. Stability
indicators are the real part of the eigenvalues of matrix A for LTI systems, the logarithm of
the real part of the eigenvalues of the monodromy matrix for LTP problems. As discussed in
the next chapter, the Lyapunov Characteristic Exponents is the generalization of linear eigen-
analysis for nonlinear and non-autonomous systems.

2.2 Lyapunov Characteristic Exponents

Given the problem ẋ = f(x, t), with the state x ∈ Rn, the time t ∈ R, and the nonlinear
function f ∈ Rn+1 → Rn, and a solution x(t) for given initial conditions x(t0) = x0, the
Lyapunov Characteristic Exponents λi are defined as:

λi = lim
t→∞

1

t
log ‖ix(t)‖ , (6)
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where, as presented in Fig. 1, ix(t) is the solution that describes the exponential evolution of the
i-th axis of the ellipsoid that grows from an initially infinitesimal n-sphere according to the map
f/x tangent to f along the fiducial trajectory x(t). In other words, ix(t) is the solution of the
linear, non-autonomous problem iẋ(t) = f/x(x(t), t) ix(t), with ix(t0) = ix0. The definition
involves the limit for t → ∞; hence, in practice LCEs can only be numerically estimated for a
sufficiently large value of t. In this study, the term ”LCEs” indicate their (numerical) estimation
using a large enough value of t, such that the convergence is satisfied.
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Figure 1: Evolution of the solution of a differential equation

LCEs represent a measure of the rate of growth of perturbed solutions. Consider infinitesimal,
independent perturbations of the states with respect to a solution x(t) of Eq. (6) (the fiducial
trajectory). The perturbed solution can be computed in terms of the state transition matrix
Y(t, t0), considering A(x, t) = f/x, as the solution of the problem

Ẏ(t, t0) = A(x, t)Y(t, t0), Y(t0, t0) = I. (7)

According to the Ostrogradskiı̆-Jacobi-Liouville formula [6], the determinant of Y(t, t0) (the
Wronskian determinant of the independent solutions that constitute Y(t, t0)) is

det (Y(t, t0)) = det (Y(t0, t0)) e
∫ t
t0

tr(A(τ)) dτ
, (8)

where tr(·) is the trace operator. Thus, the Wronskian never vanishes when A(t) is regular in
[t0, t], since Y(t0, t0) ≡ I. The Wronskian geometrically represents the evolution in time of the
volume of an infinitesimal portion of the state space.

LCEs estimation suffer from the numerical difficulty of dealing with matrices whose coefficients
either rapidly converge to zero (exponential stability) or diverge (instability). For this reason,
different approaches have been formulated. Continuous formulations for the estimation of the
LCEs can be derived from the definition based on the singular value decomposition (SVD), or
on the QR decomposition (see for example Ref. [18]). A recent and ongoing investigation also
considered Schur decomposition in case of multiple LCEs [19]. The discrete QR method, based
on the incremental use of the QR decomposition of the state transition matrix for each time step,
is used in this study and discussed in the next section.

2.3 The Discrete QR Method

One of the most popular methods of LCE estimation is the Discrete QR Method, which is
based on incrementally updating the LCEs estimates with the diagonal elements of the upper-
triangular matrix R obtained from the QR decomposition of the state transition matrix between
two consecutive time steps.
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Given the previously defined state transition matrix Y(t, tj−1) from time tj−1 to an arbitrary
time t, set Yj = Y(tj, tj−1). Consider then the QR decomposition of YjQj−1, starting from
Q0 = I, which implies QjRj = YjQj−1. After defining RΠj

= Πj
k=0Rj−k, one can show that

YjQj−1RΠj−1
= QjRjRΠj−1

= QjRΠj
(9)

This way, YjQj−1RΠj−1
can be used to construct RΠj

by considering incremental QR decom-
positions over YjQj−1, i.e. with limited contraction/expansion. The LCEs are then estimated
from RΠj

as

λi = lim
j→∞

1

tj
log rii(tj), (10)

where rii(tj) are the diagonal elements of matrix R(tj) = RΠj
. It is worth noticing that the

product of two upper triangular matrices C = AB is also an upper triangular matrix, whose
diagonal elements are cii = aiibii. Thus the logarithm of cii can be incrementally computed
as log(aiibii) = log(aii) + log(bii), which helps preventing overflow/underflow in numerical
computations. Furthermore,

rii(tj) = Πj
k=0r(j−k)ii , thus log (rii(tj)) =

j∑
k=0

log(rkii), (11)

which leads to

λi = lim
j→∞

1

tj

j∑
k=0

log(rkii). (12)

3 APPLICATIONS

This section presents the quantitative stability evaluation of two aeroelastic problems, which are
numerically and experimentally analyzed in the literature as examples of aeroelastic systems
with lumped structural nonlinearities. To compare the findings of the original studies with the
indications coming from LCEs, system parameters and unsteady aerodynamic models are kept
the same. The first example is related to a cubic representation of the restoring pitch moment of
an airfoil, which can be seen as a simplification of an aileron or elevator. The second application
considers a two dimensional representation of a wing-aileron system, with the joint between two
possesses freeplay. For both examples, Fig. 2 presents a generic layout of the cross section of a
wing with span s and chord length 2b, with the degrees of freedom of pitch, α, plunge, h, and
flap, β. The degrees of freedom are constrained with spring k and dampers c.The dimensions are
normalized by semi-chord length b and include: position of elastic axis a, center of gravity xα,
position of the flap hinge c. The mass of the wing is represented by mW , total mass including
wing and support is denoted by mT . S and I refer to the first and second moment of mass with
respect to the hinges. In the equations subscripts α and β indicate the parameters corresponding
to that motion.

3.1 Mathematical Model

The mathematical representation of an aeroelastic airfoil motion is given in Ref. [20]. For the
linear model, the mass, stiffness and damping matrices of the model in-vacuo are given in non-
dimensional form as:
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Fig. 2: Airfoil with aileron: Aeroelastic Model of the pitch-plunge-flap systems

elastic axis offset from the rotation axis; this corresponds to the model of Fig. 2

without the aileron (c = 1).

The torsional spring coefficient kα(α) that resists the pitch motion is mathe-

matically represented by a quadratic function:

k(α) = kα0 + kα1α+ kα2α
2 (3.1)

where the nonlinear terms kα1 and kα2 are estimated in Ref. 18 based on the

comparison of the analytical and experimental results of the airfoil motion.

Table 1: Cubic stiffness: Section parameters

Span, s 0.6 m

Semi-chord, b 0.0325 m

Position of elastic axis relative to the semi-chord, a −0.5
Center of gravity relative to the semi-chord, xα 0.5

Air density, ρ 1.225 kg/m3

Mass of the wing, mW 1.0662 kg

Mass of wing and supports, mT 3.836 kg

Moment of inertia about the elastic axis, Iα 4067.5 Nms rad−1

Pitch and plunge damping coefficients, cα, ch 0.0115 kgm2/s, 0.011 kgm2/s

Stiffness in pitch and plunge, kα0, kh 0.942 Nm−1, 895.10 Nm−1

Stiffness constants of nonlinear damper, kα1, kα2 3.95 Nm, 107 Nm

Figure 2: Airfoil with aileron: Aeroelastic Model of the pitch-plunge-flap systems, non-dimensionalized with
semi-chord length b

Ms =

 r2
α r2

β + (c− a)xβ xα
r2
β + (c− a)xβ r2

β xβ
xα xβ MT/mW

 (13a)

Ks =

 r2
αω

2
α 0 0

0 r2
βω

2β 0
0 0 ω2

h

 (13b)

Ds =

 2ωαξα 0 0
0 2ωβξβ 0
0 0 2ωhξh

 (13c)

where the non-dimensional parameters are defined as:

xα =
Sα
mW b

, xβ =
Sβ
mW b

, r2
α =

Iα
mW b2

, r2
β =

Iβ
mW b2

(14a)

ωα =

√
kα
Iα
, ωβ

√
kα
Iα
, ωh =

√
kh
mT

, ξα =
cα

2mWωα
, ξβ =

cβ
2Iβωβ

, ξh =
ch

2mWωh
(14b)

The unsteady aerodynamic formulation follows a set of functions Tj , introduced by Theodorsen
and Garrick [21]. For the pitch-plunge-flap system of Fig. 2, the vertical force P , and hinge
moments Mα and Mβ can be obtained from Ref. [21] as:

P =− ρb2
(
πḧ+ Uπα̇− πba− α̈− UT4β̇ − T1bβ̈

)
− 2πρUbC(k)Q (15a)

Mα =− πb2

[
− aπbḧ+ π

(
1

2
− a
)
Ubα̇

(
1

8
+ a2

)
α̈

+ T15U
2β + T16Ubβ̇ + 2T12b

2β̈

]
+ 2πρUb2

(
a+

1

2

)
C(k)Q (15b)

Mβ =− ρb2

(
− T1bḧ+ T17Ubα̇ + 2T12b

2α̈ +
T13

π
U2β +

T19

π
Ubβ̇ − T3

π
b2β̈

)
− ρUb2T12C(k)Q (15c)

Q =Uα + ḣ+ b

(
1

2
− a
)
α̇ +

U

π
T10β +

b

2π
T11β̇ (15d)
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where ρ is the air density, C(k) is lift deficiency function as a function of reduced frequency k
and T functions are derived in Ref. [21]. As explained in Ref. [1], for arbitrary airfoil motions
starting from rest, the term C(k)Q multiplication can be written using superposition integral as:

c(k)Q = Q(0)φ(τ) +

∫ τ

0

dQ(σ)

dσ
φ(τ − σ)dσ (16)

where φ(τ) is the Wagner function. An approximation is given as [1]:

φ(τ) ≈ c0 − c1e
−c2τ − c3e

−c4τ (17)

with c0 = 1 c1 = 0.165 c2 = 0.0455 c2 = 0.335 and c4 = 0.3.

Ref. [20] used the approximated Wagner’s function and two augmented states to obtain the
unsteady aerodynamics in matrix form. First, the non-circulatory terms aerodynamic mass,
damping and stiffness matrices are given as:

MNC

− ρb2

mW

=

 π
(

1
8

+ a2
)
−(T7 + (c− a)T1) −πa

2T13 −T3/π −T1

−πa −T1 π

 (18a)

DNC

− ρUb
mW

=

 π
(

1
2
− a
)

T1s − (c− a)T4 0
T2s + T4

(
a− 1

2

)
−T4T11/(2π) 0

π −T4 0

 (18b)

KNC

− ρU2

mW

=

 0 T4 + T10 0
0 (T5 − T4T10)/π 0
0 0 0

 (18c)

Then these non-circulatory aerodynamic matrices are summed with structural and circulatory
aerodynamics matrices and and overall mass damping and stiffness matrices are obtained as:

Mt = Ms −MNC (19a)

Dt = Ds −DNC −
1

2
RS1 (19b)

Kt = Ks −KNC −
1

2
RS2 (19c)

D = RS3 (19d)

where:

R = − ρU

mW

[ (
a+ 1

2

)
−T12 −2π

]T (20a)

S1 =
[
U T10U/π 0

]
(20b)

S2 =
[
b
(

1
2
− a
)

bT11U/2π b
]

(20c)

S3 =
[
c2c4(c1 + c3)U2/b (c1c2 + c3C4)U

]
(20d)

T1s = T1 − T8 + T11, T2s = −2T9 − T1 (20e)
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Now the state variables vector x includes both physical variables of pitch, flap and plunge and
two augmented aerodynamic states:

x =
[
α β h/b α̇ β̇ ḣ/b x̄ ˙̄x

]T
. (21)

where the augmented states are related to the physical system variables according to:

ẍ = −c2c4
U2

b2
x− (c2 + c4)

U

b
ẋ+

U

b
α +

(
1

2
− a
)
α̇ +

ḣ

b
(22)

The nonlinear problem can then be defined as a multiplication of a linear problem and a nonlin-
ear forcing function:

ẋ = Ax + g (23)

where state space matrix A and nonlinear forcing function g are given as:

A =

 0 I 0
−Mt

−1Kt −Mt
−1Dt Mt

−1D
E1 E2 F

 , g =

 0
−Mt

−1fnl(x, t)
0

 (24)

for the following set of sub-matrices corresponding to the augmented states:

E1 =

[
0 0 0
U

b

UT10

πb
0

]
, E2 =

[
0 0 0

1

2
− a T11

2π
0

]
, F =

 0 1

−c2c4U
2

b2
−(c2 + c4)U

b


(25)

The nonlinear function fnl depends on the type of the nonlinearity and separately described
within the examples.

3.2 Spring with Cubic Stiffness

The cubic spring is characterized by the presence of a quadratic term in the stiffness coefficient
[4]. In the literature, this problem has been investigated numerically and experimentally to
determine the effects of the cubic spring on the aeroelastic stability of airfoils. Depending on
the characteristics of the cubic spring, namely a soft or a hard one, the flutter characteristics of
the system can change significantly and depend on the initial conditions [22]. It is also observed
that limit cycle oscillations (LCOs) is a common consequence of a cubic restoring moment (See
for example Refs. [10, 23–25]).

In order to compare the agreement between LCEs estimation and the response of a system with
a cubic stiffness nonlinearity, the 2D aeroelastic model of Ref. [24] is used. The numerical
values reported therein are given in Table 1. The model includes plunge and pitch degrees of
freedom, with center of mass and elastic axis offset from the rotation axis; this corresponds to
the model of Fig. 2 without the aileron (c = 1).

The torsional spring coefficient kα(α) that resists the pitch motion is mathematically represented
by a quadratic function:

k(α) = kα1α + kα2α
2 (26)
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Variable Description Value
Span, s 0.6 m
Semi-chord, b 0.0325 m
Position of elastic axis normalized by semi-chord, a −0.5
Center of gravity normalized by semi-chord, xα 0.5
Air density, ρ 1.225 kg/m3

Mass of the wing, mW 1.0662 kg
Mass of wing and supports, mT 3.836 kg
Moment of inertia about the elastic axis, Iα 4067.5 N m s rad−1

Pitch and plunge damping coefficients, cα, ch 0.0115, 0.011 kgm2/s
Stiffness in pitch and plunge, kα0, kh 0.942, 895.10 N m−1

Stiffness constants of nonlinear damper, kα1, kα2 3.95, 107 N m

Table 1: Cubic stiffness: Section parameters

where the nonlinear terms kα1 = 3.95 N m and kα2 = 107 N m are estimated in Ref. [24] based
on the comparison of the analytical and experimental results of the airfoil motion. The nonlinear
forcing function corresponding to Eq. 24 is then:

fnl =
[

(kα1α + kα0α
2)α 0 0

]T (27)

A reduced model can then be obtained by removing flap degree of freedom from the matrices
of governing equations of motion mentioned from Eq. 13 to 25. Tracking the real part of the
eigenvalues of state space matrix A of Eq. 23 with flight speed gives the flutter speed of the
linear model and is numerically found to be Uf = 10.90 m s−1, which is in agreement with
the results of Ref. [24], details are skipped here. For the two air-stream values above flutter
speed at U = 1.25Uf and U = 1.40Uf , pitch response of the nonlinear system is presented
in Figs. 3 and 4 respectively, along with the corresponding non-dimensional phase plane plots,
which indicate the topological properties of the state space. The initial configuration in the
phase plane plots are marked with a solid dot. It should be noted here that only pitching motion
is shown here; the intersections observed in the plots are due to projection of the variable and
its time derivative on a 2D plane.

When the airstream speed exceeds the flutter speed for a linear system, any perturbation from its
equilibrium condition would lead to a divergent response. As a consequence of nonlinearity in
stiffness however, the system experiences oscillatory motion; the phase portrait converges to an
orbit regardless of the initial condition, thus an LCO occurs. This is illustrated in Figs. 3 and 4
for flight speeds of U = 1.25Uf and U = 1.40Uf . The amplitude and phase portraits of the
responses are in agreement with those of Ref. [24]. The periodic orbits of Figs. 3 and 4 are of
particular interest. When a nonlinear system has a periodic attractor (for example a LCO), zero-
valued largest LCE estimates (or very close to zero from a numerical analysis point of view) are
expected [26]. This can be observed in Fig. 5(a) and Fig. 5(b), which present the time evolution
of LCEs for the corresponding flight speed values of U = 1.25Uf and U = 1.40Uf . The largest
LCE branch converges to zero, while the other tends to be a negative value. Thus, the LCE
estimates are compatible with the periodic motion of the system shown in Figs. 3 and 4. Note
that for U = 1.40Uf , the LCE estimation converges slower and the separation (λ1−λ1) between
the two LCEs increases approximately from 0.20 to 0.30.
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Figure 3: Cubic stiffness: Time history and normalized phase plot of pitch motion after a perturbation, U = 1.25Uf
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Figure 4: Cubic stiffness: Time history and normalized phase plot of pitch motion after a perturbation, U = 1.40Uf
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Figure 5: Cubic stiffness: Time evolution of LCEs, U = 1.25Uf (a) and U = 1.40Uf (b)

10



IFASD-2017-192

3.3 Airfoil Dynamics with Freeplay in Aileron

Control surface hinges often exhibit freeplay [4], which may possibly result in instability or
self-excited LCO, and chaotic or quasi-periodic motion. When the position of a control system
falls in the freeplay region, the control is disconnected from its actuation; it re-connects once
the deflection of the control surface exceeds the freeplay limit [27]. While there exist numerical
methods such as harmonic balance [28], a possible continuous and differentiable representation
is possible using hyperbolic functions, as given in Ref. [29]:

fh(β) =
1

2
k[1− tanh(ε(β − βl))](β − βl) +

1

2
k[1− tanh(ε(β − βu))](β − βu), (28)

where β is the rotation of a generic control system degree of freedom corresponding to the
flapping motion of Fig. 2, βl and βu are the lower and upper boundaries of the freeplay region,
δFP = βu − βl. The constant k is the stiffness of the control surface which is equal to r2

βω
2
β

for the linear case. The parameter ε is tuned to better catch the real freeplay behavior. Then for
this nonlinear case, hinge moment fh(β) is replaced with the corresponding nonlinear force of
Eq. 24 and added to the right hand side as a forcing contribution:

fnl =
[

0 fh(β) 0
]T (29)

This hyperbolic representation is implemented in Refs. [29] and [30] to introduce the freeplay
discontinuity in an aeroelastic airfoil model; chaotic motion and LCOs are reported as a conse-
quence. The mathematical representation of an aeroelastic airfoil dynamics given in Ref. [29]
is used in this study; physically corresponding to the model presented in Fig. 2 with freeplay in
the aileron hinge spring. System parameters of the 3D airfoil given in Ref. [31] are used and
reported in Table 2.

Variable Description Value
Span, s 0.52 m
Semi-chord, b 0.127 m
Position of elastic axis normalized by semi-chord, a −0.5
Position of hinge line normalized by semi-chord, c 0.5
Center of gravity normalized by semi-chord, xα 0.434
Center of gravity normalized by semi-chord, xβ 0.01996
Radius of gyration about the elastic axis per span, rα 0.7321
Radius of gyration about the aileron hinge per span, rβ 0.11397
Pitching motion stiffness coefficient, kα, 1486 1/s2

Flapping motion stiffness coefficient, kβ , 155 1/s2

Plunging motion stiffness coefficient, kh, 1809 1/s2

Air density, ρ 1.225 kg/m3

Mass of the wing, mW 0.62868 kg
Mass of the aileron, ma 0.1859 kg
Mass of each of two supports, ms 0.47485 kg
Pitching motion structural damping coefficient, cα/2mWωα, 0.01626
Flapping motion structural damping coefficient, cβ/2Iβωβ , 0.0115
Plunging motion structural damping coefficient, ch/2mWωh, 0.0113
Freeplay region, δFP , 2.12 deg

Table 2: Freeplay in aileron: Section parameters
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Figure 6: Freeplay in aileron: Time evolution of LCEs for: convergent response (a: U = 3m s−1), chaotic response
(b: U = 9m s−1), periodic attractor (c: U = 18m s−1) and divergent response (d: U = 27m s−1)

By tracking the real part of the eigenvalues of state space matrix A of Eq. 23 with flight speed
gives the flutter speed of the linear model, which is found to be approximately 23.9 m s−1 and
is in close agreement with the results of Refs. [29]. In Ref. [29], it is reported that the nonlin-
ear system with freeplay in the aileron motion presents transitions in response characteristics,
bifurcating from stable response at low flight speeds to chaos at mid to high speed. Close to the
flutter speed, LCOs occur and, for velocities slightly higher than the linear flutter speed, diver-
gent oscillations are observed. The quantitative stability analysis of these observed phenomena
can be obtained using Lyapunov’s theory. For illustrative purposes, each of these characteristic
motions has been identified at some particular flight speeds for the aileron motion. The spectra
of the nonlinear problems are obtained using LCEs. For each of these characteristic motions,
the steady flapping motion and the time evolution of the LCE estimates are presented in Fig. 6.
The relations between the qualitative behavior of the flapping motion and the corresponding
quantitative LCE estimates are discussed.

At low speed, the nonlinear system is stable, with quickly vanishing oscillations. Fig. 7 shows
the aileron motion and the non-dimensional phase plot after a perturbation at a flight speed
of 3 m s−1. For this case, the expected LCE spectrum is made of all negative values; this is
confirmed by the time evolution of LCE estimates presented in Fig. 6(a): the largest LCE with
its conjugate converges to a value slightly less than zero.
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Figure 7: Freeplay: aileron response at U = 3m s−1; time history (a) and non-dimensional phase-plot (b)

At a larger airstream speed, the nonlinear system shows a transition from stable to random
non-periodic motion, as illustrated in the time history of Fig. 8(a) at an airstream speed of 9
m s−1, resulting in self-sustained arbitrary but bounded oscillations. The phase plot of Fig. 8(b)
shows that the solution tends to visit all points in a bounded region of the phase plane. For
a nonlinear system, a positive LCE indicates non-convergent trajectory, such as chaos [26].
Fig. 6(b) confirms this behaviour, showing two positive and separate LCEs.
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Figure 8: Freeplay: aileron response at U = 9m s−1; time history (a) and non-dimensional phase-plot (b)

In proximity of the flutter speed of the linear model, the amplitude of the oscillations increases;
thus, the freeplay region is significantly exceeded. Two regions exist: one in the the freeplay
region without restoring moment, where oscillations cannot be slowed down, and another in
which a flexible restraint on the airfoil motion provides a sufficient level of moment to prevent
divergence and arbitrarily large oscillations. This leads to a periodic orbit of the flapping motion
in a self-sustained manner without the need of an external input, i.e. a LCO, as shown by the
oscillatory motion of Fig. 9(a) and orbital phase plot of Fig. 9(b) at a flight speed of 18 m s−1.
When the solution has a periodic attractor, zero-valued LCE estimates (or very close to zero
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from a numerical analysis point of view) are expected [26]. The quantitative indication of
LCOs can be observed in Fig. 6(c), with the largest LCE converging to zero.
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Figure 9: Freeplay: aileron response at U = 18m s−1; time history (a) and non-dimensional phase-plot (b)

As the airstream speed is further increased, the damping of the system keeps reducing; hence,
the restoring forces are no longer able to limit the oscillations. Similarly to what happens in the
flutter of linear systems, a divergent flapping motion is observed, as shown in Fig. 10(a). The
curve in the phase portrait spirals away from the initial conditions, as shown in Fig. 10(b) at
an airstream speed of 27 m s−1. The divergent motion is in agreement with the positive LCEs
shown in Fig. 6(d): largest two conjugate LCEs converge to a positive number.
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Figure 10: Freeplay: aileron response at U = 27m s−1 ; time history (a) and non-dimensional phase-plot (b)

4 CONCLUSIONS

A natural generalization of quantitative stability evaluation for aeroelastic problems with lumped
nonlinearities in control surface is presented. The spectrum of the nonlinear aeroelastic prob-
lems is estimated using Lyapunov Characteristic Exponents. The Discrete QR algorithm has
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been used for the practical estimation of Lyapunov Characteristic Exponents. The results are
verified with time marching simulations of simplified aeroelastic problems.

LCEs correspond to the real part of the eigenvalues for Linear Time Invariant problems, and
to Floquet multipliers for Linear Time Periodic problems; hence, they represent a natural gen-
eralization of stability indicators that are familiar in current engineering practice, including
aeroelastic stability problems which involve nonlinearities of diverse origins. On the other
hand, estimating LCEs is computationally more expensive than linear stability calculations and
convergence can be problematic in case of paired LCEs related to same branch of solution.
These drawbacks requires further research. However, as robust and cost efficient estimation
algorithms are developed and verifications over more complex systems are performed, Lya-
punov Characteristic Exponents can potentially be the standard stability evaluation practice for
nonlinear aeroelastic problems.
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