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Abstract: This paper explores the optimum wing bending and torsion deformations of a highly
flexible mission-adaptive aircraft. With the goal of improving flight performance across the en-
tire flight regime, a modal based optimization subject to trim and other constraints is employed.
Distributed control loads are formulated and used to determine the optimization wing geometry
as well. The optimization is then performed to achieve the best flight performance which is de-
fined as minimum drag. This study explores the optimum wing geometry for steady level flight
at a single velocity, a range of velocities, and a coordinated turn. Additionally, the study also ex-
plores the optimum wing shapes with the consideration of the trade-off between flight efficiency
and ride quality, where a multi-objective optimization is performed, targeting for minimizing
drag to improve performance and reducing the wing bending load of a gust to improve the ride
quality.

1 INTRODUCTION

The improvement of aircraft operation efficiency needs to be considered over the whole flight
plan, instead of a single point in the flight envelope, since the flight condition varies in a flight
mission. Therefore, it is natural to employ morphing wing designs so that the aircraft can be
made adaptive to different flight conditions and missions. At the advent of recent develop-
ment in advanced composites as well as sensor and actuator technologies, in-flight adaptive
wing/aircraft morphing is now becoming a tangible goal. Traditionally, the discrete control sur-
faces were used to re-distribute the aerodynamic loads along the wing span during the flight, so
as to tailor the aircraft performance. However, the deflection of discrete control surfaces may
increase the aerodynamic drag. An effective alternative is to introduce conformal wing/airfoil
shape changes for the aerodynamic load control. In addition, the flexibility associated to the
morphing wing structures may be pro-actively utilized to improve the aircraft performance.
The active aeroelastic tailoring techniques would allow aircraft designers to take advantage of
the wing flexibility to create the desired wing load distribution according to the mission require-
ment, so as to improve overall aircraft operating efficiency and performance, without using the
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traditional discrete control surfaces. The utilization of these concepts is predicated upon the
optimum shape being known and a control system which is able to produce this wing shape.

The question of determining the optimum wing shape has been studied in depth. Recently, Chen
et al. [1] studied the effects of various trim conditions on the aerodynamic shape optimization of
the common research model wing-body-tail configuration. Using a free form distribution for the
wing geometry coupled with a RANS solver for the aerodynamics their work studied the impact
of a trim constraint on the optimization process. Through a series of optimizations utilizing the
trim conditions at varying points in the design process, they concluded that considering the
trim during optimization yields the best performance. In a similar study, Lyu and Martins [2]
performed an aerodynamic optimization of the trailing edge of wing. Their optimization showed
that drag reductions could be seen with shape optimization of either the entire wing or just
the trailing edge. Taking the optimization a step further requires the development of realistic
system capable of producing the optimum shape that is found for a given flight condition. This
concept is shown in [3], as the major aspects of the design of the Variable Camber Continuous
Trailing Edge Flap (VCCTEF) are highlighted. Along with this detailed design an optimization
is performed to determine the deflection angles required throughout the trailing edge to improve
the flight performance.

More detailed concepts of wing morphing technologies have been developed as improvements
in the materials being used on aircraft and the methods in which they are assembled has im-
proved. In Nguyen et al. [4] the principles of aerodynamic shape optimization and morphing
wing structures was explored. The optimization process led into the development of the VC-
CTEF, which was a novel concept for improving aircraft performance by drag reduction. A
further study of the VCCTEF wing model was done by Nguyen and Ting [5], where they per-
formed a flutter analysis of the mission adaptive wing. The methodology included a vortex-
lattice aerodynamic model coupled with a finite element structural dynamic model. Urnes et
al. [6] provided an updated review of the development, design, and testing of the VCCTEF
project. Under the support of the U.S. Air Force Research Laboratory, FlexSys, Inc. devel-
oped the Mission Adaptive Compliant Wing (MAC-Wing) to test and evaluate its performance.
The adaptive trailing edge flap technology was combined with a natural laminar flow airfoil
and tested on the Scaled Composites White Knight aircraft. The testing suggested fuel saving,
weight reduction, and improved control authority [7, 8]. In an effort to move from an adaptable
trailing edge into a completely adaptable wing structure, the Cellular Composite Active Twist
Wing was designed and tested in [9] showing promising results. An airplane model was built,
which incorporated two of the active twist wing and was compared to a similar rigid model with
traditional control surfaces in wind-tunnel tests. The active twist wing showed similar capabil-
ities for symmetric and asymmetric movements as well as added benefits in stall mitigation.
An overview of the process used to design the composite lattice-based cellular structures for
active wing shaping was presented in Jenett et al [10]. This paper gave a detailed approach to
design a low density, highly complaint structure. The detailed modeling and construction of
these structures was also presented.

As optimization processes and morphing technology have improved, there is a need for a com-
plete system, in which a controller will actuate the wing members to the desired optimum shape
throughout the entire flight envelope and perform the required maneuver and vibration control
during the flight. Most current optimization schemes utilize a CFD aerodynamic model coupled
with discrete structural points as design variables. These methods produce promising results,
but when considered over an entire flight plan could be a very time consuming process. Addi-
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tionally, these methods generally consider the planform shape of the wing rather than the wing
bending and torsions associated with highly flexible, large aspect ratio wing members. Recent
developments of morphing technologies such as the Cellular Composite Active Twist Wing take
advantage of the flexible nature of high aspect ratio wings. Therefore, it is natural to develop
an optimization scheme that mainly considers the bending and torsion of the high aspect ratio
wings. This concept was utilized in Su et al. [11], which utilized a modal based optimization
approach in determining the best feasible wing shape (wing bending and torsion deformations)
of a highly flexible aircraft at any given flight scenario. In this paper, this process will be
used going forward to develop a wing shape control algorithm with defined distributed control
loads. The optimization process will generate the specific wing shape needed to guarantee the
optimum performance and ride quality over the entire flight envelope of an aircraft.

2 THEORETICAL FORMULATION

A coupled aeroelastic and flight dynamic formulation for highly flexible aircraft has been de-
veloped by Su and Cesnik [12–14]. A brief introduction of the formulation is presented here,
followed by the modal-based optimization approach for searching the most efficient wing ge-
ometries with the optimum distributed control scheme along the wing span under different flight
conditions.
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Figure 1: Global and body frames defining the rigid-body motion of aircraft and flexible lifting-surface frames
within body frame

2.1 Equations of motion

As shown in Figure 1 a global(inertia) frame G is defined. A body frame B (t) is then built in
the global frame to describe the vehicle position and orientation. By taking advantage of their
geometry, highly flexible wings are modeled as slender beams that may exhibit large deforma-
tions in operation. Within the body frame, a local beam frame w is built at each node along the
reference line (Figure 1) which is used to define the nodal position and orientation of the flexi-
ble members. In Su and Cesnik [15], a nonlinear beam element has been introduced to model
the geometrically-nonlinear deformation of slender beams. In this formulation, strain degrees
(curvatures) of the beam reference line are considered as the independent variables to describe
the beam deformation. Assume the curvatures are constant within one element, the elemental
strain vector is denoted as

εTe =
{
εx κx κy κz

}
(1)

where εx is the extensional strain, κx, κy, and κz are the twist curvature of the beam reference
line, out-of-plane bending curvature, and in-plane bending curvature, respectively. The total
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strain vector of the complete aircraft ε is obtained by assembling the global strain vector. Trans-
verse shear strains are not explicitly included in this equation. However, shear strain effects are
included in the constitutive relation [16]. Complex geometrically nonlinear deformations can
be represented by such a constant-strain distribution over each element.

By following the Principle of Virtual Work extended to dynamic systems, the coupled aeroelas-
tic and flight dynamic behavior of highly flexible aircraft in free flight can be described by the
following equations:

MFF (ε)ε̈+ MFB(ε)β̇ + CFF (ε̇, ε, β)ε̇+ CFB(ε̇, ε, β)β + KFF ε

= RF (ε̈, ε̇, ε, β̇, β, λ, ζ,T,u)

MBF (ε)ε̈+ MBB(ε)β̇ + CBF (ε̇, ε, β)ε̇+ CBB(ε̇, ε, β)β

= RB(ε̈, ε̇, ε, β̇, β, λ, ζ,T,u)

ζ̇ = −1

2
Ωζ(β)ζ

ṖB =
[

CGB(ζ) 0
]
β

λ̇ = F1

{
ε̈

β̇

}
+ F2

{
ε̇
β

}
+ F3λ

(2)

where the components of the generalized inertia M, damping C, and stiffness K matrices are
found in [12, 13]. in general, gravity, aerodynamic loads, thrust, and control forces are consid-
ered in the generalized load vector of aircraft, which is given as{

RF

RB

}
=

{
KFF ε

0

0

}
+

[
JTpε
JTpb

]
BFFa +

[
JTθε
JTθb

]
BMMa

+

[
JThε
JThb

]
Ngg +

[
JTpε
JTpb

]
T +

[
B̄F

B̄B

]
u

(3)

which involves the effects from initial strains ε0, aerodynamic loads Fa and Ma, gravitational
fields g, thrust force T, and additional control input u. BF , BM , and Ng are the influence
matrices for aerodynamic lift, moment, and gravity force, respectively, which come from the
numerical integration of virtual work done by the external loads along the wing span (see Su
and Cesnik [12]). Influence matrices of the control input (B̄F and B̄B) are dependent on the
specific control mechanism and are yet to be determined in this paper. Finally, all the Jacobian
matrices J in Eq. (3) can be obtained from the nonlinear strain-position kinematic relationship
discussed in [15, 17], which link the dependent variables (nodal positions and orientations) to
the independent variables (element strain and rigid-body motion). It should be noted that both
elastic member deformations and rigid-body motions are included when deriving the internal
and external virtual work in Su and Cesnik [12]. Therefore, the elastic (ε) and rigid-body (β)
degrees of freedom are naturally coupled. This coupling is also highlighted in Eq. (2), where
the elastic deformations and the rigid-body motions are solved from the same set of equations.

In Eq. (3), aerodynamics loads are calculated by using the 2-D finite-state inflow theory [18].
At a given station along the wing, the aerodynamics lift, moment, and drag are given as

lmc = πρ∞b
2
c (−z̈ + ẏα̇− dα̈) + 2πρ∞bcẏ

2

[
− ż
ẏ

+

(
1

2
bc − d

)
α̇

ẏ
− λ0

ẏ

]
mmc = πρ∞b

2
c

(
−1

8
b2cα̈− ẏż − dẏα̇− ẏλ0

)
dmc = −2πρ∞bc

(
ż2 + d2α̇2 + λ20 + 2dżα̇ + 2żλ0 + 2dα̇λ0

)
(4)

4



IFASD-2017-189

where the inflow states λ are governed by the inflow equation in Eq. (2). The different velocity
components referred by Eq. (4) can be seen in Figure 2.
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Figure 2: Airfoil coordinate systems and velocity components

2.2 Definition of general distributed control load

In the current study, a distributed control scheme is developed by assuming every element along
the main wing can be actuated. Figure 3 shows a generic wing element with applied point force
(u1) and force couplings (ru2, ru3 and ru4) on both ends in order to actuate it. The combined
loads may independently actuate the extensive, torsional, out-of-plane bending, and in-plane
bending deformations of the element. These elemental loads are written as(

Fpt
u

)
e

=
{

−u1 0 0 0 0 0 u1 0 0
}T(

Mpt
u

)
e

=
{

−ru2 −ru3 −ru4 0 0 0 ru2 ru3 ru4
}T (5)

where the coefficient r represents the arms of force couplings u1, u2, and u3. Without losing
generality, r is defined as one in the following studies. Note that there are three nodes defined
on each beam element [15]. As no loads are applied at the mid-node of the element for the
actuation, the fourth to sixth entries of the load vectors are all zeros. Eq. (5) is further written
into the matrix form of

(
Fpt
u

)
e

=


−1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


T 

u1
u2
u3
u4

 =
(
Bf
u

)
e
ue

(
Mpt

u

)
e

=


0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1


T 

u1
u2
u3
u4

 = (Bm
u )eue

(6)

Accordingly, the complete control loads are obtained by properly sizing and assembling the
elemental matrices in Eq. (6), which are

Fpt
u = Bf

uu

Mpt
u = Bm

u u
(7)
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where Fpt
u and Mpt

u , as point loads, can be eventually transformed to the generalized control
load by using the Jacobians:{

Ru
F

Ru
B

}
=

[
JTpε
JTpb

]
Fpt
u +

[
JTθε
JTθb

]
Mpt

u

=

([
JTpε
JTpb

]
Bf
u +

[
JTθε
JTθb

]
Bm
u

)
u =

[
B̄F

B̄B

]
u

(8)
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Figure 3: Point control forces on a beam element (Black: extension force; Blue: torsion coupling; Red: out-of-
plane bending coupling; and Green: in-plane bending coupling).

2.3 Determination of optimum wing geometry

Under a given flight condition (U∞ and ρ), the optimum wing geometry and other control inputs
should be determined to satisfy the trim of aircraft. In general, the trim variables are:

qtrim =
{
αB ϕB T u

}T (9)

where αB is the body pitching angle, ϕB is the bank angle, and u is the control input as defined
in Sec. 2.2. With the rigid-body rotation angles, one can prescribe the quaternions and rigid-
body velocity:

ζ = ζ(αB, ϕB)

β = β(U∞, ζ)
(10)

Therefore, the original aeroelastic and flight dynamic equations (Eq. 2) are reduced to steady-
state equilibrium equations, after removing the transient terms and unsteady aerodynamic con-
tributions, which are

KFF ε− RF (αB, ϕB,T,u, ε) = 0

RB(αB, ϕB,T,u, ε) = 0
(11)

where the loads are explicitly determined by the trim variables, as well as the wing shape. It is
clear that the second entry of Eq. (11) is essentially the trim condition that an aircraft in steady
flight should satisfy, while the first is the elastic equilibrium only for flexible aircraft.
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In the study of Su et al. [11], a modal-based approach was developed to search for the optimum
wing geometry without using the traditional control surfaces. This approach is still utilized
here, where the wing geometry is represented by linear mode shapes, such that

ε̄(s, t) =
N∑
i=1

Φi(s)ηi(t) (12)

where Φ are the linear mode shapes of the flexible aircraft and η are the corresponding magni-
tudes of the modes. This approach allows one to use a finite number of modes to search for the
optimum wing shape, targeting for the minimum drag as the optimum flight performance, while
maintaining the trim and elastic equilibrium of the aircraft.

rF = KFF ε̄− RF (αB, ϕB,T,u, η1, η2, · · · , ηN)

rB = RB(αB, ϕB,T,u, η1, η2, · · · , ηN)
(13)

From Eq. (13) and Eq. (8) the control force u can be calculated during each step of the opti-
mization process as

u = B̄−1F
(
KFF ε̄− JTpεB

FFa − JTθεB
MMa − JThεN

gg − JTpεT
)

(14)

With the elastic equilibrium now satisfied, the optimization problem is defined as

min
q
D = D(q)

s.t. rB = 0

q =
{
αB ϕB T η1 η2 · · · ηN

}T (15)

2.4 Multi-objective function optimization

It may be desired to determine a shape which accomplishes a goal other than minimizing drag.
Highly-flexible aircraft with slender wings are often susceptible to the effects of a gust. To
account for this, another objective function is required so as to minimize the wing bending
moment due to gust disturbances. This function will then be combined with the minimum drag
objective to formulate a multi-objective optimization problem. This allows for a study to be
performed to understand the various shapes required to find the trade-off between the minimum
drag and the minimum gust effects.

A discrete gust model is used to calculate the moment a gust could generate on root of the wing.
The desired gust model is shown in Figure 4. The gust should have a width 25 times longer than
the chord of the wing, which for this particular study would result in a gust that is 25 meters
long. The gust velocity can be expressed as here

wgust =
w0

2

(
1 − cos

(
2πx

25c

))
(16)

To further simplify the problem a method similar to [19] will be used. This reduces the gust so
that the entire streamwise length of the airfoil section experiences the same value of the gust
velocity at a given time. This gives an effective angle of attack as expressed here

αg =
1

2

w0

U0

(
1 − cos

(
2πx

25c

))
(17)
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The maximum angle of attack will occur as

(αg)max =
w0

U0

(18)

from which the resulting aerodynamic loads can be calculated.

The alleviation of the gust load can be approximated by minimizing the induced bending mo-
ment My at the root of the wing. Using this along with the aerodynamic drag calculation used
in the single objective function optimization the new objective function can be defined as

fobj = ξD + (1 − ξ)My (19)
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Figure 4: 1-cosine gust model velocity profile

3 NUMERICAL RESULTS

In this section, a highly flexible aircraft model is considered for the numerical study. The
vehicle’s geometrical and physical properties are shown in Figure 5 and Table 1. The aircraft
has a wingspan of 32 m and a total mass of 54.5 kg.

16 m

16 m

10 m

4 m

Elevator

Aileron

Rudder

Thrust

Figure 5: Geometrical data of the baseline highly flexible aircraft

8



IFASD-2017-189

Parameter Value Unit

Wings
Span 16 m
Chord 1 m
Incidence angle 2 deg
Sweep angle 0 deg
Dihedral angle 0 deg
Beam reference axis (from LE) 50 % chord
Cross-sectional c.g. (from LE) 50 % chord
Mass per span 0.75 kg·m
Rotational moment of inertia 0.1 kg·m
Torsional rigidity 1.00 × 104 N·m2

Flat bending rigidity 2.00 × 104 N·m2

Edge bending rigidity 4.00 × 106 N·m2

Tails
Span of horizontal tail 2.5 m
Span of vertical tail 1.6 m
Chord of tails 0.5 m
Incidence of horizontal tail -3 deg
Incidence of vertical tail 0 deg
Sweep of horizontal tail 10 deg
Dihedral of horizontal tail 0 deg
Beam reference axis (from LE) 50 % chord
Cross-sectional c.g. (from LE) 50 % chord
Mass per span 0.8 kg·m
Rotational moment of inertia 0.01 kg·m
Torsional rigidity 1.00 × 104 N·m2

Flat bending rigidity 2.00 × 104 N·m2

Edge bending rigidity 4.00 × 106 N·m2

Complete aircraft
Mass 54.5 kg

Table 1: Properties of the baseline highly flexible aircraft

3.1 Steady Level Flight

In this study, the altitude of steady level flight is kept constant at 20,000 m and the flight speed is
fixed as 25 m/s. An optimization similar to what was performed in [11], updated to include the
distributed control force calculation as described above, is used to determine the optimum wing
shape. The optimization utilizes the trim conditions of the conventional aircraft configuration
with discrete control surfaces (see Figure 5) as the initial condition, and then explores the design
space by changing the body pitch angle, thrust, and modal magnitudes to minimize the drag
while maintaining trim. For this optimization process, the first seven symmetric modes are used
as design variables, as steady level flight produces symmetric wing deformations [11]. The
resulting optimum shape for the steady level flight case can be seen in Figure 6. The resulting
shape is primarily composed of the first and third bending modes. A deep “U” shape from the
root is produced by the first mode, and the third (second symmetric) mode produces a downward
bending of the wing tips. The optimum shape is compared to the initial trim case in Table 2.
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This shows the drag reduction of approximately 12.7% between the initial and optimum shapes.

Initial Optimum

Body pitch angle, deg 1.2596 2.8856
Thrust, N 59.2823 51.7633
Mode 1 1.5654 0.6697
Mode 3 -0.0164 -0.1555
Mode 5 0.0071 -0.0004
Mode 7 0.0004 -0.0008
Mode 8 0.0005 0.0135
Mode 10 -0.0002 0
Mode 12 -0.0014 -0.0005
Drag, N 59.84 51.696

Table 2: Initial and optimum wing shape for U = 25 m/s.

Figure 6: Optimum wing shape for steady level flight at 25 m/s

The full distributed control force u is plotted in Figure 7. The four curves shown are the Ex-
tension force, the torque, the out-of-plane bending moment, and the in-plane bending moment
for each element of the right wing. Since the steady level flight results in a symmetric wing
deformation, the control force in the left wing is simply a mirror to the right. It can be seen that
the distributed force is dominated by the out-of-plane bending moment, which agrees with the
shape seen in Figure 6.

3.2 Level Flight Velocity Range: 18 - 28 m/s

An aircraft may experience a wide variety of flight conditions over the course of their flight
plane. This will require separate optimum shapes for each different flight condition experi-
enced. This section explores the various optimum wing geometries associated with varying
flight velocities that the aircraft might encounter. Specifically, the range of 18 to 28 m/s is ex-
plored. Each of these cases is treated as an individual steady level flight case, meaning again
only the symmetric modes are considered as design variables. The aircraft model is again
trimmed using the traditional control surfaces for each flight velocity in order to have a point
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of comparison with the optimum solution as well as an initial set of design variables. Some of
the trim results are expressed in Table 3 for both the initial and optimum cases. One measure in
the effectiveness of the optimization is to examine the percent difference in the thrust required.
This gives an idea into the potential energy savings of the optimum wing shape versus the ini-
tial wing shape. For this velocity range the varying percent difference is as great as 12.68%
and as low as 4.64% meaning the drag reduction is somewhat dependent on the specific flight
condition.

Initial Optimum

U, m/s Drag, N Thrust, N BAOA, deg Drag, N Thrust, N BAOA, deg

18 105.254 105.974 6.595 100.799 101.061 4.1077
19 95.571 96.011 5.485 90.278 90.468 3.721
20 87.195 87.468 4.528 82.724 82.864 3.353
21 79.943 80.110 3.699 77.479 73.586 3.210
22 73.657 73.756 2.973 66.992 67.085 3.041
23 68.190 68.245 2.333 61.091 61.177 2.940
24 63.424 63.454 1.766 56.053 56.121 2.906
25 59.268 59.282 1.260 51.696 51.763 2.886
26 55.659 55.665 0.803 50.246 50.325 3.140
27 52.520 52.521 0.389 49.733 49.806 3.078
28 49.811 49.811 0.010 41.287 45.604 2.463

Table 3: Initial and optimum trim data for U = 18 to 28 m/s

Table 4 lists the magnitudes of the modes that describe the shapes of the resulting optimum
wing geometries. Figures 8 to 11 highlight four distinct shapes seen over the velocity range.
The shapes from U = 18 m/s to U = 24 m/s are all similar, which is bent upward at the root
and then begins to flatten out towards the wing tip. The optimum shape at U = 25 m/s begins
the transition from the flatter shape into a deep“U” shape. The shape at U = 26 m/s begins to
show the deep “U”, while still having the wing tips bend down towards flat. Finally, at U = 28
m/s, the full deep “U” shape is reached. This trend is also present in the modal magnitudes as
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Figure 7: Distributed control force of the optimum wing shape
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flight velocities over 26 m/s have significantly larger magnitudes for Mode 1, which results in
the “U” shape. It is important that the shapes for the varying flight conditions are similar, so
that in future work when a controller is designed, the transitions of controllers between flight
conditions are reasonable and possible. This is visibly true as the shapes gradually shift from
the flatter shape to the deep “U” shape. The magnitudes of Modes 1 and 3 also demonstrate this
to some extent, as the magnitude of Mode 1 generally increases as the velocity increases and
the magnitude of Mode 3 generally decreases as the velocity increases.

U, m/s Mode 1 Mode 3 Mode 5 Mode 7 Mode 8 Mode 10 Mode 12

18 0.6771 -0.1476 -0.0104 -0.0011 -0.0015 -0.0005 -0.0091
19 0.6621 -0.1541 -0.0086 -0.0009 -0.0015 -0.0004 -0.0074
20 0.4619 -0.0353 -0.0073 0.0139 0.0372 0.0132 0.0001
21 0.4993 -0.1460 -0.0052 0.0071 0.0090 0.0068 -0.0061
22 0.5537 -0.1531 -0.0041 -0.0025 0.0069 -0.0003 -0.0043
23 0.5122 -0.1616 -0.0030 -0.0015 0.0007 -0.0003 -0.0034
24 0.5643 -0.1629 -0.0017 -0.0011 -0.0046 -0.0003 -0.002
25 0.6697 -0.1555 -0.0004 -0.0008 0.0135 0.0000 -0.0005
26 1.3127 -0.0958 -0.0001 -0.0006 0.0045 0.0001 0.0017
27 1.4958 0.0616 -0.0009 -0.0007 -0.0008 -0.0003 -0.0008
28 1.5906 -0.0406 0.0006 -0.0011 -0.0006 -0.0003 0.0007

Table 4: Modal Magnitudes for Optimum Shapes for U = 18 to 28 m/s

The full distributed force for a few highlighted cases are presented in Figures 12 to 15. It can
be seen again that the distributed control force is dominated by the out-of-plane bending. At the
higher velocities the torsional component becomes more prominent as well.

Figure 8: U = 18 m/s Figure 9: U = 25 m/s

Figure 10: U = 26 m/s Figure 11: U = 28 m/s

3.3 Steady Coordinated Turn

Optimum wing geometry for steady coordinated turning flight is also explored. Maintaining the
20,000 m altitude, the aircraft is subjected to a 20.50 m/s nominal turn speed, which is chosen
to produce wing tip deflection similar to that of the 25 m/s steady level flight case. This adds
additional constraints into the optimization process and adds the aircraft bank angle as a design
variable, which is constrained up to 35 degrees. The trim values and modal magnitudes for the
initial and optimum cases are presented in Table 5. It can be seen that the optimum geometry
has a drag reduction of 8.9% which is comparable with the reductions seen in the steady level
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flight case.

Initial condition Optimum solution

Body pitch angle, deg 4.44 3.58
Bank angle, deg 14.97 17.12
Thrust, N 92.19 83.92
Mode 1 1.5529 0.6780
Mode 2 -0.0069 -0.0219
Mode 3 -0.0182 -0.1479
Mode 4 0.0000 0.0000
Mode 5 0.0074 -0.0062
Mode 6 0.0022 0.0004
Mode 7 0.0006 0.0075
Mode 8 0.0007 0.0145
Mode 9 0.0011 -0.0112
Mode 10 -0.0002 -0.0002
Mode 11 0.0000 -0.0002
Mode 12 -0.0017 -0.0050
Drag, N 91.92 83.76

Table 5: Optimum wing shape for steady coordinated turn

The optimum wing geometry is shown in Figure 16. It is of note that the shape of the steady
coordinated turn is very similar to the shape of the 25 m/s level flight case. The dominate modes
in each case are the first and third modes and the magnitudes are very similar between the two
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Figure 12: Distributed control force U = 18 m/s
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Figure 13: Distributed control force U = 25 m/s
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Figure 14: Distributed control force U = 26 m/s
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Figure 15: Distributed control force U = 28 m/s
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cases. The antisymmetric modes are also a factor in this new shape because of the turning
maneuver.

Figure 16: Optimum wing shape for steady coordinated turn

3.4 Multi-objective Optimization

Using the updated multi-objective function in Equation 19, a new optimization is performed
to study the effects of varying the parameter ξ. For this study, the aircraft is again at 20,000
m and flying at 25 m/s. Only the symmetric modes are used in the optimization as it is still
steady level flight. The parameter ξ is varied from 0 to 1 in increments of 0.1. If ξ=1 the
optimization is solely to minimize the drag, and if ξ = 0 the optimization is solely to minimize
the wing root bending moment due to gust disturbances. The results of this study are shown
in Table 6 including the aerodynamic drag, thrust, body angle of attack for trim, and the root
bending load for each case. It can be seen that as ξ goes from 0 to 1, the drag from the final
solution decreases, until it reaches the same solution that was achieved in the single objective
function optimization. The bending moment at the root of the wing follows an opposite pattern,
increasing as ξ increases. These two patterns demonstrate the trade-off that is associated with
the objective function. This study provides insight into methods, in which aircraft designers
could build a control system. If an aircraft is known to experience gusts often, the optimum
shape would be one which considers the minimum moment at the wing root more heavily than
the minimum drag.

The optimum shapes associated with a few highlighted cases are presented in Figures 17 to 20.
The chosen velocities represent the major shapes seen as ξ is varied. Low values of ξ have
a shape similar to Figure 17, which is flat at the root and then bends upward at the wing tip.
A ξ increases the shape shifts to something similar to Figure 18 which is more of a deep “U”
shape with the wing tips starting to show signs of bending down. As ξ is further increased, the
shape again bends upward at the root but then begins to flatten out at the wing tip. Finally as
xi approaches 1, the shape becomes the shape that was obtained in the steady level flight single
objective function optimization, where the root bends upward and then around halfway through
the span, the wing begins to bend back down until the shape is nearly flat.
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ξ Drag(N) Thrust(N) Body AOA(deg) My(N-m)

0 -81.88 82.09 4.16 1.9741 × 103

0.1 -82.19 82.35 3.59 1.9353 × 103

0.2 -81.9 82.15 4.56 1.9916 × 103

0.3 -70.63 70.79 3.95 2.2221 × 103

0.4 -63.93 64.09 4.09 2.4949 × 103

0.5 -58.63 58.74 3.68 2.6965 × 103

0.6 -56.49 56.61 3.49 2.8343 × 103

0.7 -56.39 56.49 3.47 2.8492 × 103

0.8 -54.11 54.19 3.23 3.0317 × 103

0.9 -53.39 53.46 3.10 3.161 × 103

1 -51.66 51.72 2.87 3.1436 × 103

Table 6: Parametric Study Results

Included in Figure 21 is a plot of the root bending moment vs drag for values of ξ ranging from
0 to 1. This plot serves as a tool for potential aircraft designers to understand the relationship
between performance and ride quality in the optimization process. There is a clear trade-off,
as well as what appears to be a range of values in the middle that offer improvement in both
performance and ride quality.

Figure 17: ξ=0 Figure 18: ξ=0.4

Figure 19: ξ=0.8 Figure 20: ξ=1

4 CONCLUSIONS

Determination of the optimum wing geometry of a highly flexible aircraft under varying flight
conditions was explored in this paper. Given the flexible nature of high aspect ratio aircraft,
a modal based approach was used in determining the optimum wing bending and torsion ge-
ometry. The magnitudes of the modes were used as design variables within the optimization.
Additionally, a distributed control actuation was formulated by assuming each element of the
main wing could be actuated. This gave an insight into the forces and moments required to
generate a specific wing geometry. The distributed force calculation was included within the
optimization and it was verified using a steady level flight case.

Additionally, the optimization was expanded to a range of velocities better understand the op-
timum wing shape and the required control actuation with variable flight conditions. A smooth
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Figure 21: Root bending moment versus drag for ξ = 0-1

transition of optimum geometries was seen. As the velocities became higher, the first mode
became dominate and the third mode became less important. The optimization was also applied
to a steady coordinated turn maneuver. This required the presence of the antisymmetric modes
in the optimization. The resulting geometry from the turning maneuver was similar to that of
the steady level flight. Finally, the optimization was updated to include gust alleviation as an
objective function. This multi-objective function provided insights into the trade-off between
performance metrics minimum drag and best riding quality.

It should be noted that the optimization was computed using the gradient-based optimizer fmin-
con in MATLAB, which can only produce a local minimum. Despite not being a global mini-
mum, the results produced were consistent and showed significant improvement over the base-
line solution. The results presented here serve as the foundation of future works to develop
the robust flight control algorithms to determine the optimum wing geometry for any flight
condition. It has been demonstrated that the optimum shape over a range of velocities follows
what appears to be a visually smooth transition. These results will be used along with linear
parameter-varying modeling techniques to develop a flight controller. A similar process will
also be used with the coordinated turn results, to demonstrate the effects of the optimum shape
on a turning maneuver. Currently, the objective function is to minimize the drag experienced by
the aircraft. However, it is also of importance to consider minimizing the control effort needed
to maintain a particular wing geometry. Going forward, additional multi-objective optimiza-
tions will be performed, to find a desirable balance between the various design needs of the
aircraft.
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