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Abstract: Gust and turbulence events are of primary importance in the estimation of limit loads
and in the analysis of flight incidents. Aircraft manufacturers are putting effort into the study of
gust reconstruction as it is beneficial during the design stages of the aircraft and for in-service
support. The proposed gust reconstruction consists of a numerical optimisation framework
where the design variables are parameterised using (and comparing) two methods, namely,
Radial Basis Functions and Hick-Henne Bump Functions. Its applications is first demonstrated
on a standard flat plate in potential flow using the Unsteady Lumped Vortex Method; then, on
the full order model of a typical section of a modern airliner in CFD, using a prescribed velocity
approach called the split velocity method (SVM); and, finally, on a reduced order model for the
same aerofoil. Results proved satisfactory in all three applications for, but not limited to, the
reconstruction of a known one minus cosine gust.

1 INTRODUCTION

Turbulence may be defined as the movement of the air through which an aircraft passes and
where any component of the velocity of the air that is normal to the flight path (i.e. gust veloc-
ity) will change the effective incidence of the aerodynamic surfaces; in return, this will cause
sudden changes in the lift forces and hence a dynamic response of the aircraft involving flexible
deformation [1]. Aircraft are expected to encounter atmospheric turbulence (or ‘rough air’) of
varying degrees of severity during their lifecycle; in fact, all modern flight vehicles require the
evaluation of dynamic loads in response to discrete and random gust excitation as severe turbu-
lences may affect the static design strength of the aircraft and moderate turbulences may cause
fatigue damage to their structure [2, 3]. Moreover, it is a requirement set by the airworthiness
authorities [4, 5] that an aeroplane in its design stage must be subjected to symmetrical vertical
and lateral gusts in level flight and that the shape of the gust shall be taken as

Ω =
Ωds

2

(
1− cos

πs

H

)
for 0 ≤ s ≤ 2H (1)
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which describes the typical ‘1− cos’ gust; here, H is the gust gradient i.e. the distance parallel
to the aeroplane’s flight path for the gust to reach its peak velocity, s is the distance penetrated
into the gust and Ωds is the design gust velocity as defined in part (a) of CS-25.341 [5]. The
reason behind the choice of the ‘1 − cos’ shape appears to be connected with the view that no
gust could start with a finite slope; however, as argued by Houbolt [3], this is a notion irrelevant
to the assumption that realistic gust encounters could be represented by discrete gusts or, in fact,
by any shape. Part (b) of the CS-25.341 regulation also states that the dynamic response of the
aeroplane to vertical and lateral continuous turbulence must be taken into account.

The purpose of the study presented here is to provide a valid method for the reconstruction
of the original gust and/or turbulence experienced by aircraft in service using either data from
flight data recorders or from simulations. In fact, understanding the properties of any turbulence
encountered by in-service transport aircraft under various operating conditions is of increasing
interest to manufacturers, which are putting effort into this process in order to collect valuable
information for future aircraft development. The reconstruction of the gust shape would allow
a better estimation of the loads exerted on the structure, something that can be of major benefit
also for the aircraft operators; in fact, knowing the loads at any location of the aircraft structure
during or soon after flight can avoid unnecessary grounding and/or extensive and expensive in-
spection of the structure. Also, the time interval of regular aircraft inspections can be increased,
or these inspections only be conducted on specific parts of the aircraft if information on the
loads are readily available, thus reducing operating costs while increasing the availability of the
aircraft [6].

(a)

(b)

Figure 1: Direct method and optimisation method for force prediction

The earliest approach for gust loads studies dates back to the 40s and 50s [3, 7], with a method
known as the discrete-gust approach. This consisted of an analysis of peak vertical acceler-
ations measured by the aircraft flying in gusts; these accelerations were assumed to originate
from a series of isolated discrete gusts and were used to derive gust gradient distances and
maximum gust velocities. Although this approach was satisfactory for the evaluation of nor-

2



IFASD-2017-182

mal accelerations on future aircraft designs, it was not able to return the real air turbulence [8].
Further efforts were made in the 60s and 70s on the development of spectral techniques for
designing aircraft subject to gust encounters, but the complexity in the definition of the fre-
quency response functions marked a limitation for this technique [3]. In 1999, a Monte-Carlo
gust-loads analysis approach was presented by Kim et al [9] in the context of space and missile
systems, however the method has limited applicability with a restriction to gust wavelengths
greater than 500 ft (152 m). Over the years, force prediction has mainly been done by two
methods: the direct method and the optimisation method [10]. In direct methods, the excitation
f(t) is calculated directly from the measured responses a(t) by evaluating the inverse of the
forward system model (Figure 1a). Optimisation methods, instead, use a forward model in an
optimisation framework where the input to the forward model is tuned until the model responses
match the measured responses (Figure 1b); the tuned input is then assumed to equal the original
excitation. Although most force prediction methods are of the first type, a shift is ongoing from
methods in the frequency domain towards methods in the time domain; this transition is due
to the inability of direct methods to capture very time limited events, which play a crucial role
in exciting nonlinearities [11]. In 2009, Henrichfreise et al [12] proposed a method consisting
of a model-based approach with an observer for a non-linear aircraft model and a disturbance
model for the estimation of gusts and structural loads. This method used aircraft motion mea-
surements and parameters already available onboard modern commercial aircraft thus making
the estimation of purely monoeuvre-induced structural loads an easy to solve problem; the only
unknowns remain the gust velocities which were determined through a non-linear parameter
optimisation that computed the gain matrix of the observer model [12]. However, in order to
reduce the computational effort required for the convergence of the optimisation problem, only
a limited set of elements selected from the gain matrix was considered for the observer feedback.

To remain in line with recent studies, this paper proposes a method for gust reconstruction
based on numerical optimisation techniques applied directly to the measurement states of the
aircraft (or aerofoil) and introduces a parameterisation for the gust shape using Radial Basis
Functions (RBFs) and Hicks-Henne Bump Functions (HHBFs). The method is applied with
the fluid modelled using potential flow, the CFD split velocity method (SVM) [13] and reduced
order models (ROMs) [14]. The following sections provide an overview of the optimisation
framework, followed by a description of the flow solvers and the results obtained for a ‘1− cos’
gust excitation.

2 GUST RECONSTRUCTION METHOD

The system shown in Figure 2 could be defined as a ‘black box’ where for a given measurement
(the input), the original exciting force is extracted (the output). Inside this black box is a frame-
work that includes in its core a numerical optimisation technique that can be wrapped around
(virtually) any solver available in academia or industry. Although this system could be poten-
tially applied to any force-prediction application existing in engineering, it is here proposed to
reconstruct the gust disturbance profile, and the relative forces exerted on the structure (e.g. lift,
moment), of an aircraft that experienced turbulence.

In greater detail, it is assumed that the response of the aircraft to a gust disturbance is available
in the form of, for example, a lift coefficient time history (Ctarget

` ) or accelerations and that also
the initial conditions of the aircraft are known. With these information, the following process
applies:
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1. An initial guess for the gust shape Ω(xg) is built over an initial set of weighted parametric
functions.

2. An aircraft (or aerofoil) model is then required to obtain the time history of the response
to the initial (guessed) gust excitation, e.g. C̃`(Ω).

3. The resulting time history is then handled by the optimisation algorithm where the cost
function is the `2-norm of the difference between the time history of the model response
and the target time history.

4. The optimiser tunes the weights of the parametric functions, i.e. the design variables of
the optimisation; each change in the design variables generates a new parametric gust and
an additional call to the model/solver.

5. At convergence, when the cost function is minimised, the resulting gust shape is assumed
to be the original that caused the target response.

Figure 2: The numerical optimisation framework used for the reconstruction of the gust input profile. Here, C` is
the lift coefficient; Ω is the gust function and xg the vector of gust points; w is the vector of the N RBF
weights; a is the vector of the N coefficients for the Hicks-Henne bump functions and N is the number
of design variables.

2.1 The Objective Function

For this application, the optimisation can be constructed as an unconstrained problem where
the objective function is the `2-norm of the difference of the measured states of the aircraft
and those obtained from a model where the input is the parametrised gust shape Ω [15]. As
introduced earlier, the objective function for this study is designed around the lift coefficient
time history (but accelerations could also be used); hence,

minimise
w

∣∣∣∣∣∣∣∣C` − C̃`(Ω)

∣∣∣∣∣∣∣∣
2

(2)

or, explicitly,

minimise
w

√√√√∑
j

(
C`,j − C̃`,j(Ω)

)2

(3)
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where w = [wi]
T is the vector of the weights of the N parametric functions and j counts for

each time step. Also, the design variables wi can be bounded according to the relation

wLi ≤ wi ≤ wUi , for i = 1, N. (4)

where wLi and wUi are, respectively, the fixed lower and upper boundaries that can be set to
significant values, based on experience, or to infinity to leave the problem unbounded. With
due modifications, several algorithms can be used to solve this problem and gradient-based
optimisation was chosen due to cost of the objective function.

2.1.1 Gradient Evaluation

In order to converge more quickly to the solution, gradient-based optimisation techniques re-
quire the gradient of the objective function - i.e. how the states of the aircraft change with
respect to the input gust - to be evaluated at any number of iterations.

For simplicity, consider the function of Equation 2

f(Ω) = C` − C̃`(Ω) and fj(Ω) = C`,j − C̃`,j(Ω) (5)

and define

g(Ω) = ||f(Ω)||2 =

√√√√ n∑
j=1

fj(Ω)2. (6)

Differently, the gradient of g(Ω) can be written as

∇g(Ω) =
1

2

(∑
j

fj(Ω)2

)− 1
2
(∑

j

2 fj(Ω)∇fj(Ω)

)
=

∑
j fj(Ω)∇fj(Ω)

||f(Ω)||2
(7)

or in terms of the Jacobian

∇g(Ω) =
Jf (Ω)T f(Ω)

||f(Ω)||2
(8)

where Jf (Ω)T is the Jacobian matrix of f(Ω). The conventional method for finding this gradi-
ent is numerically via finite difference approximation, where a pre-determined ∆wi is sequen-
tially added/subtracted to each weight of the parametric functions and its influence measured
over the entire profile (Figure 3).

Figure 3: Representation of finite difference approximation.
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2.2 Gust Shape Parameterisation

In aerodynamics, generally, shape parameterisation concerns the way the aerofoil geometry is
handled and deformed by an optimisation algorithm, and determines both the fidelity and range
of control available. In the context of this study, instead, shape parameterisation is adapted and
applied to gust profiles in order to achieve a satisfactory deformation of the initial guessed gust
during the iterative optimisation process. Two parameterisation methods have been considered
and their effectiveness and efficiency have been measured on the ability to cover a large design
space with a limited set of design variables, as suggested by the work of Masters et al [16].
Recalling the first step of the optimisation process, where an initial guess for the gust is required,
it becomes natural to assume that deformative methods are the best candidates for this type of
application. In fact, deformative methods consist in the generation of a new shape following the
deformation of a preliminary, assumed, shape. The two deformative methods considered here
are Hicks-Henne bump functions (analytical method) and Radial Basis Functions (free-form
deformation method), and are introduced in the following sections.

2.2.1 Hicks-Henne Bump Functions

Hicks-Henne bump functions use a base shape definition over which a linear combination of N
basis functions defined between 0 and 1 is added to obtain the desired shape (Figure 4). Applied
to gust shapes, these can be written as

Ω(xg) = Ωinitial +
N∑
i=1

aiφi(xg) (9)

where ai are the coefficients of the N basis functions. These are defined as

φi(xg) = sinti
(
πxg

ln(0.5)/ ln(hi)

)
, (10)

as proposed by Hicks and Henne [17]. In Equation 10, hi is the location of the maxima of the
basis functions and is defined as

hi =
1

2

[
1− cos

(
iπ

N + 1

)]
, i = 1, . . . , N (11)

whereas ti controls the width of the functions and can be set equal to a constant [18]. Although
for this study only ai is set as the design variable for the optimisation, in general all parameters
controlling the shape functions (i.e. ai, ti and hi) can be defined as design variables [16].

2.2.2 Radial Basis Functions

The Radial Basis Functions (RBFs) approximation (Figure 5) is built upon the summation of
N basis functions that are (usually) defined by the Euclidean norm of a known set of points -
the control points, also defined as the RBF centres c = [cTi ] - and the variables at which the
approximation is sought - the gust points xg. RBFs evaluate the value of the interpolation at
any point in space by a weighted influence of the value at every control point; the influence is
determined by the vector distance of the evaluation point from all the control points. Here, the
RBF approximation can be expressed as

Ω(xg) =
N∑
i=1

wiφ(||xg − ci||) + p(x) (12)
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Figure 4: Example of Hicks Henne Bump Functions parameterisation with 8 basis functions

where φ(||.||) are the N ‘radius’ functions, which in this work are of the Gaussian type (i.e.
φ(||.||) = e−(ε||.||)2) but can likewise be of different nature (e.g. quadratic, inverse quadratic,
one-minus-cos, etc.), wi are N scalar variables, also known as weights of the basis functions,
and p(x) is an (optional) added polynomial used to ensure that translation of the gust shape
is captured without added deformation. The centres c = [cTi ] are defined by the initial guess
of the gust shape. When using this parameterisation method within the gust reconstruction
framework, the vector of weights w and the polynomial coefficients are the design variables of
the optimisation problem.
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Figure 5: Example of RBF parameterisation with 8 basis functions

2.3 Aerodynamic Solvers

The three aerodynamic models used for this work are briefly described below. These are the
unsteady lumped vortex method (ULVM), which uses an aerofoil idealised as a flat plate, com-
putational fluid dynamics (CFD) with the aerofoil of a typical modern commercial aircraft and,
finally, a reduced order model (ROM) of the same aerofoil.

2.3.1 Unsteady Lumped Vortex Method

The lumped vortex method is based on the surface distribution of singularity elements (lumped
vortices) where the solution is reduced to finding their strengths. This approach is more eco-
nomical from the computational point of view compared to those methods that solve for the
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flowfield in the whole fluid volume e.g. finite-difference methods. Figure 6 shows a representa-
tion of a two-component idealised aerofoil with two lumped vortices (singularity elements) and
two collocation points (i.e. where the boundary conditions need to be enforced). In addition,
there is a wake model behind the trailing edge. The lumped vortices are located at the 1/4-chord

𝑥"# 𝑥$#𝑥"% 𝑥$%

Γ"' Γ$' Γ()"'*" Γ()"'*$

𝑥"+ 𝑥$+

Foil Wake

𝑞-

𝑞-cos	𝛼

𝑞-sin	𝛼𝛼

Figure 6: Representation of a two-component idealised aerofoil with vortices and control points, and with a wake.
The superscript c indicates a collocation point, k the time level, v a vortex point and w a wake point.

point (centre of pressure) of each component of the flat plate and the collocation points at the
3/4-chord of each component; this configuration matches thin aerofoil theory which satisfies
the Kutta condition at the trailing edge of the flat plate [19]. The boundary condition requires
that the normal velocity component must be zero at the collocation points. The net upwash
(y-component of velocity) induced by all the aerofoil vortices at a generic control point m is
given by

vm =
N∑
n=1

Γn
2π(xvn − xcm)

(13)

In order to satisfy the flow tangency condition, the net upwash must be balanced by the down-
wash (velocity in the negative y-direction) induced by the freestream (q∞ sinα) and the incident
gust (Ωk)

N∑
n=1

Γn
2π(xvn − xcm)

= −Ωk − q∞ sinα (14)

Furthermore, Kelvin’s condition states that the total circulation about the aerofoil and its shed
vortex wake must remain constant; this condition is also known as the conservation of circula-
tion and translates mathematically to

N+1∑
n=1

Γn(t) =
N∑
n=1

Γn(t−∆t) i.e.
dΓ

dt
= 0 (15)

where ΓN+1 is the circulation of the shed vortex and
∑N

n=1 Γn(t − ∆t) is the total circulation
on the aerofoil at the previous time step. This system of equations can be expressed in matrix
form as [A]{Γ} = {b}, with

[A] =
1

2π



1
xv1−xc1

1
xv2−xc1

· · · 1
xvN−x

c
1

1
xvN+1−x

c
1

1
xv1−xc2

1
xv2−xc2

· · · 1
xvN−x

c
2

1
xvN+1−x

c
2

...
... . . . ...

...
1

xv1−xcN
1

xv2−xcN
· · · 1

xvN−x
c
N

1
xvN+1−x

c
N

1 1 · · · 1 1

 , {b} = −Ωk−q∞ sinα


1
1
...
1
0

−
N∑
n=1

Γn(t−∆t)

(16)
[A] is often referred to as influence coefficient matrix. In order to take into account the upwash
induced by the wake vortices and to include the wake vortices in the total circulation, the above
system must be modified. In fact, Equation 16 is solved at the first time step only, when no
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vortices have been shed in the wake; for the following time steps the influence coefficient matrix
remains the same but the right hand side changes to

{b} =



−q∞ sinα− Ωk
1 −

∑k−1
i=1

Γk−i
N+1

2π(xwi −xc1)

−q∞ sinα− Ωk
2 −

∑k−1
i=1

Γk−i
N+1

2π(xwi −xc2)
...

−q∞ − Ωk
N −

∑k−1
i=1

Γk−i
N+1

2π(xwi −xcN )

−
∑N

n=1 Γn(t−∆t)


(17)

Once the strengths of the lumped vortices have been evaluated, the lift can be obtained. For the
unsteady case, the Kutta-Jukowski law L = ρU∞Γ would not be sufficient to evaluate the total
lift experienced by the aerofoil as it would give a zero lift for the initial time step of a transient
solution. This is because at this step the lift is due to the acceleration of the flow rather than
the net circulation about the aerofoil. Hence, the unsteady Bernoulli equation must be used to
obtain the unsteady pressure and lift. As a result, it can be demonstrated [19] that the unsteady
lift at each time step k is given by

Lk = ρU∞

N+1∑
n=1

Γkn + ρ
N∑
n=1

(
∆φkn −∆φk−1

n−1

∆t

)
∆x (18)

where φ is the velocity potential of the perturbation flowfield. From this equation it is clear
that the first term accounts for the lift due to the steady flow (as expected from the Kutta-
Jukowski theorem) and the second term accounts for the unsteady effects. The nondimensional
lift coefficient is then Cl = L

1
2
ρq2∞c

.

2.3.2 CFD: Split Velocity Method

The potential flow approach described in the previous section does not allow for transonic ef-
fects, or other aerodynamic nonlinearities effects such as high angles of attack, to be captured
during a gust encounter. This limitation makes the reconstruction of a gust profile impractica-
ble for such cases and, indeed, a CFD analysis is required. Typically, the most direct way to
introduce a gust into a CFD code is the modification of the boundary conditions at the far field
of the computational domain. However, this application requires a very fine mesh to be defined
all the way from the body to the far field in order not to dissipate the effects of the disturbances;
as a result, the computational cost for such a simulation is very high and its usage very limited.
In order to overcome this issue, Wales et al [13] recently proposed a solution based on the de-
composition of the velocity components of the Euler equations into a prescribed gust velocity
term and the remaining velocity components. Known as the split velocity method (SVM), this
method is able to capture the full interaction between the body and the gust as no simplifying
assumptions are made in the solution of the Euler equations. Moreover, the computational cost
is reduced by the usage of a coarse mesh away from the body, because this does not dissipate
the effects of the gust and its motion, which are prescribed. Hence, starting from the unsteady
two-dimensional (2-D) version of the Euler equations, which can be rewritten as

∂

∂t


ρ
ρu
ρv
ρE

+
∂

∂x


ρu

ρu2 + p
ρuv

(ρE + p)u

+
∂

∂y


ρv
ρuv

ρv2 + p
(ρE + p)v

 = 0 (19)
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with

p = ρ(γ − 1)

[
E − 1

2
(u2 + v2)

]
, (20)

the velocity and energy can be decomposed as

u = ũ+ ug v = ṽ + vg E = Ẽ + Eg (21)

where ug and vg are the prescribed gust velocity components, and the split of the total energy is
defined by the decomposition

E =
p

ρ(γ − 1)
+

1

2
(u2 + v2)

=
p

ρ(γ − 1)
+

1

2
(ũ2 + ṽ2)︸ ︷︷ ︸

Ẽ

+ (ũug + ṽvg) +
1

2
(u2

g + v2
g)︸ ︷︷ ︸

Eg

. (22)

By substituting the terms defined in Equation 21 into Equations 19 and 20 and with further
algebra manipulation - where the applied gust is separated from the rest of the solution - it can
be shown [20] that the Euler equations can be rewritten as

∂

∂t


ρ
ρũ
ρṽ

ρẼ

+
∂

∂x


ρ(ũ+ ug)

ρũ(ũ+ ug) + p
ρṽ(ũ+ ug)

ρẼ(ũ+ ug) + pũ

+
∂

∂y


ρ(ṽ + vg)
ρũ(ṽ + vg)

ρṽ(ṽ + vg) + p

ρẼ(ṽ + vg) + pṽ

+


0

sm(ug)
sm(vg)
se(ug, vg)

 = 0 (23)

where

p = ρ(γ − 1)

[
Ẽ − 1

2
(ũ2 + ṽ2)

]
, (24)

and the source terms are

sm(ug) = ρ

[
∂ug
∂t

+ (ũ+ ug)
∂ug
∂x

+ (ṽ + vg)
∂ug
∂y

]
(25)

sm(vg) = ρ

[
∂vg
∂t

+ (ũ+ ug)
∂vg
∂x

+ (ṽ + vg)
∂vg
∂y

]
(26)

se(ug, vg) = ũsm(ug) + ṽsm(vg) + p

(
∂ug
∂x

+
∂vg
∂y

)
. (27)

Equations 23 are solved in integral form on a fixed mesh such that

d

dt

∫∫
Ω

W dx dy +

∫
∂Ω

(F dy −G dx) +

∫∫
Ω

S dx dy = 0 (28)

where

W = [ρ, ρũ, ρṽ, ρẼ]T

F = [ρ(ũ+ ug), ρũ(ũ+ ug) + p, ρṽ(ũ+ ug), ρẼ(ũ+ ug) + pũ]

G = [ρ(ṽ + vg), ρũ(ṽ + vg), ρṽ(ṽ + vg) + p, ρẼ(ṽ + vg) + pṽ]

S = [0, sm(ug), sm(vg), se(ug, vg)]

(29)

However, it can be shown that the SVM equations (24, 28 and 29) can be solved on a moving
mesh code by adding the source terms to the moving grid equations and setting the grid ve-
locities equal to the negative gust velocities. Indeed, Wales et al used a modified version of a
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moving mesh Euler code to demonstrate the efficacy of their method [13]; and this exact solver
was used for this study. The aerofoil model used here is shown in Figure 7 and represents a
typical section of a modern commercial aircraft [21]. Figure 8a and 8b show, respectively, a
snapshot of the forward velocity contour plot at zero angle of attack in steady conditions and
during a gust encounter.
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Figure 7: FFAST crank aerofoil
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Figure 8: Forward velocity contour plot of aerofoil at zero angle of attack in steady conditions (a) and during gust
encounter (b) for M = 0.73466 and Re ≈ 1.43× 108.

2.3.3 Reduced Order Model

CFD analyses are required to capture the detail of the flow behaviour, however low compu-
tational costs are essential during the early stages of the design of an aircraft, which restricts
their use. Reduced order models (ROMs) attempt to capture the dominant dynamic behaviour
of an unsteady CFD code, but at lower computational cost. In gust design applications, suitable
ROMs could provide the aircraft response to gust and turbulence encounters, in order to extract
the critical gust loads that are fundamental for sizing the aircraft. Williams et al [14] recently
demonstrated that a very efficient gust ROM can be achieved without loosing the accuracy of the
results obtained with full order simulations. Undeniably, the rapidity and maintained accuracy
of ROMs represents an invaluable characteristic in the gust reconstruction framework.

The ROM in this work is built from a single sharp-edged gust, of magnitude 1 m/s, alongside a
small number of steady simulations of various angles of attack. An effective step-down response
can be produced by subtracting the sharp-edged gust response from the steady data (with the
same angle of attack as the sharp-edged gust starts with) [22]. This step-down response is then
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used within an Eigensystem Realisation Algorithm (ERA) to perform a system reduction to
calculate the system matrices of a reduced order, discrete state-space model [20,23], which can
be used to express the near-linear behaviour of the given system. To ensure the ROM is stable
(all eigenvalues have a magnitude of less than 1) restarting [24] and/or Schur decomposition
[25] can be used. Once the system matrices have been calculated, they are valid for any gust of
given Mach number and Reynolds number. However, they can also be extended to calculate the
system response at any altitude. The computational cost of calculating a gust response once the
matrices have been calculated is negligible. For a more detailed breakdown of the ROM, see
Williams et al [14, 22].

3 RESULTS

3.1 Case Study: ‘1− cos’ gust

The reconstrution of a typical ‘1 − cos’ gust was considered for this study. The expression
governing the behaviour of this gust (Figure 9) is given as a function of time in the form

Ω(t) =
Ω0

2

(
1− cos

2πV

hg
t

)
(30)

where Ω0 is the value of the maximum gust velocity, V is the freestream velocity and hg is the
length of the gust (i.e. twice the gradient H). This analytical function was used to generate
the target lift response (Ctarget

` ) for all the three optimisation cases, as discussed in the next
sections.

Ω"

𝐻 𝐻
ℎ%

Figure 9: Typical ‘1− cos’ gust shape with dimensions.

3.2 Gust reconstruction with ULVM

Figure 10: Gust reconstruction diagram

The diagram of Figure 10 helps to better understand the components required for this applica-
tion. The ULVM was used to compute the lift coefficient time history of a flat plate undergoing a
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‘1− cos’ gust with normalised maximum velocity Ω0 = 0.15 and width 5 times greater than the
chord (hg = 5c). The C` time history was then provided as measured data to the reconstruction
framework detailed in Figure 2, which was designed around the ULVM for this case. The re-
constructed gust is the outcome of the iterative process and is compared in Figures 11a and 11c
to the reference ‘1− cos’ gust obtained analytically. Figure 11a shows the results obtained us-
ing the RBF parameterisation, whilst Figure 11c the results obtained using Hicks-Henne Bump
Functions. In both cases, the Sequential Least Squares Programming (SLSQP) algorithm1 was
used for the optimisation. When using RBF parameterisation, the optimisation converged in
approximately 20 minutes requiring 26 objective function evaluations and 4 gradient evalua-
tions; however, Figure 11a shows that the initial and final zero-velocity gust points, along with
the peak, were not well matched by the reconstruction. These resulted in a negative C` at the
impact time and a small discrepancy at the peaks, as shown in Figure 11b. With the HHBF pa-
rameterisation, instead, the optimisation took longer to converge (∼ 2 hours) as 207 objective
function evaluations were required, along with 29 gradient evaluations. However, Figure 11c
shows that a better reconstruction was achieved, as both the zero-velocity gust points and the
peak were perfectly matched; this resulted in a nearly perfect match for the reconstructed C`
time history (Figure 11d). Neither constraints nor bounds were set on the design variables for
this optimisation problem.

3.3 Gust reconstruction in CFD

A ‘1 − cos’ gust shape with characteristics similar to the potential flow case but with a dimen-
sional maximum velocity of Ω0 = 15.623 m/s and width hg = 15c was given as input to the
CFD model described in Section 2.3.2 to generate the target C` time history for the optimisa-
tion (Figure 12). The flow initial conditions were M = 0.73466 and Re ≈ 1.43 × 108. As
before, Figures 13a to 13d show the reconstructed gust and C` time histories compared to the
simulation target. For this CFD case, a good match was achieved when employing the RBF
parameterisation (Figure 13a), with a slight discrepancy at the initial and final zero points and
at the peak. When using the HHBF method, instead, a perfect match was achieved (Figure 13c).
Clearly, CFD analyses are much more expensive than the potential flow approach; however, as
mentioned earlier, they become essential when analysing the effects of aerodynamic nonlineari-
ties. The SLSQP optimisation algorithm required approximately 40 hours to converge, yet only
14 function calls and 9 gradient evaluations. Although no constraints were set for this optimisa-
tion problem, bounds on the design variables (i.e. the weights of the parametric functions) were
necessary to guarantee the convergence of the CFD code.

3.4 Gust reconstruction with ROMs

Similarly to the two previous cases, the diagram of Figure 14 summarises the gust reconstruc-
tion routine. However, before the process could start, a ROM of the FFAST crank aerofoil
of Figure 7 was built for M = 0.73466 at sea level conditions, according to the procedure
described in Section 2.3.3.

The optimisation converged in under a minute when using either RBFs (∼ 55 s) or the HHBFs
(∼ 40 s) and a perfect match was achieved in the reconstruction of the C` time histories, as

1SLSQP optimiser is a sequential least squares programming algorithm which uses the Han-Powell quasi-
Newton method with a BFGS update of the B-matrix and an L1-test function in the step-length algorithm. The
optimizer uses a slightly modified version of Lawson and Hansons nonlinear least-squares (NNLS) solver [26].
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Figure 11: Reconstruction of gust profiles for a flat plate obtained with the SLSQP optimisation algorithm. Figures
(a) and (b) show, respectively, the reconstructed gust and the resulting lift coefficient using 15 RBFs for
the parameterisation. Figures (c) and (d) show, respectively, the reconstructed gust and the resulting lift
coefficient using, instead, 15 HHBFs for the parameterisation.

shown in Figures 15b and 15d. In terms of parameterisation performance, Figure 15a shows
that, for the reconstruction of the gust, 18 radial basis functions with 600 cost function calls
were required to achieve the same accuracy obtained with only 8 bump functions and 489 func-
tion calls. The higher number of function calls required to reach convergence are due to the
reduced tolerance of the objective function (O(10−7)), which is set as one of the stop criteria.
As previously and with both parameterisation methods, the SLSQP algorithm was used for the
optimisation. Neither constraints nor bounds were set on the design variables for this case.

4 CONCLUSIONS

This work focuses on three objectives. The first is to demonstrate the applicability of the gust
reconstruction framework to three flow solvers of different nature i.e. potential flow (ULVM),
CFD (taking advantage of the split velocity method) and reduced order models. In fact, any type
of model is a suitable candidate as little or no knowledge of the underlying equations is needed,
except from the simple input/output manipulation of the main routine. The second objective
is to compare the performance and efficiency of two parameterisation methods applied to the
design variables of the optimisation (the gust input velocities); these are Radial Basis Functions
and Hicks-Henne Bump Functions. In order to address the first two objectives, the cost func-
tion was designed to minimise the difference between the reference and the reconstructed lift
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Figure 12: Gust reconstruction diagram

coefficient time histories, by tuning the weights for the RBFs or the HHBFs. Results obtained
with the SLSQP optimisation algorithm have shown that a good agreement was achieved in all
the three applications, with the HHBF parameterisation performing generally better than the
RBFs. Although, the well-known ‘1− cos’ gust shape was used as the pilot case, this approach
shall be valid for any arbitrary gust [27] and, once again, the results obtained have proven that
optimisation represents an invaluable solution for the reconstruction of the forces experienced
by an aircraft in turbulent atmospheric conditions.

The third objective reflects a medium-term development of the gust reconstruction framework
for near real-time analysis. In fact, ROMs have proven a valid choice for this type of application,
as their major cost is in the model generation phase and not in their use. As a result, this
allows a quick, efficient and more accurate reconstruction process, which has the potential to be
exploited as a technology for instantaneous monitoring of the airframe in flight, thus minimising
(or avoiding) the need for further aircraft inspections.
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Figure 15: Reconstruction of gust profiles for the FFAST aerofoil ROM obtained with the SLSQP optimisation
algorithm. Figures (a) and (b) show, respectively, the reconstructed gust and the resulting lift coefficient
using 18 RBFs for the parameterisation. Figures (c) and (d)instead show, respectively, the reconstructed
gust and the resulting lift coefficient using only 8 HHBFs for the parameterisation.
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