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Abstract:

The origins, development, implementation, and application of AEROM, NASA’s patented reduced-
order modeling (ROM) software, are presented. Full computational fluid dynamic (CFD) aeroe-
lastic solutions and ROM aeroelastic solutions, computed at several Mach numbers using the
NASA FUN3D CFD code, are presented in the form of root locus plots in order to better reveal
the aeroelastic root migrations with increasing dynamic pressure. The method and software
have been applied successfully to several configurations including the Lockheed-Martin N+2
supersonic configuration and the Royal Institute of Technology (KTH, Sweden) generic wind-
tunnel model, among others. The software has been released to various organizations with ap-
plications that include CFD-based aeroelastic analyses and the rapid modeling of high-fidelity
dynamic stability derivatives. Recent results obtained from the application of the method to the
AGARD 445.6 wing will be presented that reveal several interesting insights.

1 INTRODUCTION

Classical linear aeroelastic analyses typically produce Velocity-damping-frequency (V-g-f) plots
and/or root locus plots. The use of these plots has enabled aeroelasticians to view the nature
of the flutter mechanisms in addition to identifying the conditions at which flutter occurs. The
rapid creation of these plots was facilitated by the use of linear unsteady aerodynamics and
linear aeroelastic equations of motion [1].

During the last few years, higher-order Computational Fluid Dynamics (CFD)-based methods
have become an important tool for the computation of nonlinear unsteady aerodynamics for use
in aeroelastic analyses. The use of these higher-order tools provides valuable insight regarding
complex flow physics at conditions where linear methods are not theoretically valid. However,
the increased computational cost associated with the computation of unsteady aerodynamics
and aeroelastic responses using higher-order methods has resulted in a subtle change in the
manner in which the aeroelastician evaluates and interprets these analyses. First, the increased
computational cost of these analyses has tended to dictate a snapshot approach to aeroelastic
analyses whereby the aeroelastic response at only a handful of dynamic pressures is all that is
computed. This snapshot approach is used to identify the flutter dynamic pressure but the actual
flutter mechanism is not easily discernible. Second, due to the complexity of the computational
analyses, methods that could rapidly generate V-g-f plots and/or root locus plots are not avail-
able. However, with the development of reduced-order modeling (ROM) methods [2–4], the
rapid generation of root locus plots using CFD-based unsteady aerodynamics is now available
to aeroelasticians.
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The origin of this method started with the author’s PhD dissertation [5] and related publica-
tions [6,7]. An important conceptual development first presented in these references consists of
the realization that unsteady aerodynamic impulse responses exist and can be computed. This
concept is an important point that is claimed to be not realizable in some of the classic aeroe-
lastic references. The reason for this discrepancy is actually quite simple as it relates to the
difference between the impulse function for a continuous-time system versus that for a discrete-
time system.

For a continuous-time system, it is well known that the impulse input function is the Dirac
delta function. This function serves the continuous domain well, in particular in the solution of
ordinary and partial differential equations. However, its application to a discrete-time system
such as a CFD-based solution, is not clear, thus the belief that an impulse input could not be
applied to a CFD code. Therefore, if an impulse input could not be applied to a CFD code, then
an unsteady aerodynamic response could not be identified or realized.

An important contribution by the author [5] is the realization that in order to properly identify
the unsteady aerodynamic impulse response using a CFD code, a discrete-time impulse input,
also known as the unit sample input in discrete-time theory, is the proper function to use and
not the Dirac delta function. The theory of Digital Signal Processing (DSP) demonstrates that
a unit sample input is much simpler to apply and less complex to interpret than the Dirac delta
function. These results proved the existence and realizability of a unit unsteady aerodynamic
impulse (sample) response via a CFD code.

In the world of structural dynamics and modal identification, the concept of a structural dy-
namic impulse response is clear and well understood. As a result, various modal identification
techniques consist of the identification of these responses and a subsequent realization of a
system that captures the structural dynamic system of interest. Having familiarity with one of
these methods by the name of Eigensystem Realization Algorithm (ERA) [8]/System Observer
Controller Identification Toolbox (SOCIT) [9], the author applied the modal identification tech-
nique, previously limited to structural dynamic systems, to that of identifying an unsteady aero-
dynamic system via the identification of the unsteady aerodynamic impulse responses. Once
the concept of a discrete-time unsteady aerodynamic impulse response was mathematically val-
idated, the application of ERA/SOCIT became quite logical [10]. These results [10] represent
the first time that the ERA/SOCIT algorithms were used for the identification of unsteady aero-
dynamic systems. It is valuable to point out that this method is now being applied at several
organizations around the world [11–16]. In the area of fluid modal decompositions using, pri-
marily, the Proper Orthogonal Decomposition (POD), the application of the ERA algorithm has
become standard, with an initial appearence in the literature by Ma, Ahuja, and Rowley [17].

Following these fundamental advances, Silva and Bartels [18] introduced the development of
linearized, unsteady aerodynamic state-space models for prediction of flutter and aeroelastic re-
sponse using the parallelized, aeroelastic capability of the CFL3Dv6 code. The results presented
provided an important validation of the various phases of the ROM development process. The
ERA, which transforms an impulse response (one form of a ROM) into state-space form (an-
other form of a ROM), was applied to the development of the aerodynamic state-space models.
Flutter results for the AGARD 445.6 aeroelastic wing were calculated using the CFL3Dv6 code,
including computational costs [18]. Unsteady aerodynamic state-space models were generated
and coupled with a structural model within a MATLAB/SIMULINKTM environment for rapid
calculation of aeroelastic responses including the prediction of flutter. Aeroelastic responses
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computed directly using the aeroelastic simulation ROM showed excellent comparison with the
aeroelastic responses computed using the CFL3Dv6 code [19].

Previously [18], the aerodynamic impulse responses (unit pulses) that were used to generate
the unsteady aerodynamic state-space model were computed via the excitation of one mode
at a time. For a four-mode system such as the AGARD 445.6 wing, these computations are
not very expensive. However, for more realistic cases where the number of modes can be
an order of magnitude or more larger, the one-mode-at-a-time method becomes prohibitively
expensive, requiring a different approach. Kim et al [20] have proposed methods that enable
the simultaneous application of structural modes as CFD input, greatly reducing the cost of
identifying the aerodynamic impulse responses from the CFD code. Kim’s method consists
of using simultaneous staggered step inputs, one per mode, and then recovering the individual
responses from this simultaneous excitation. Silva [2] has developed a method that enables
the simultaneous excitation of the structural modes using orthogonal functions. Both of these
methods require only a single CFD solution and the methods are independent of the number of
structural modes.

Silva [21] has also developed a method for generating static aeroelastic solutions and matched-
point aeroelastic solutions using a ROM. The methods developed by Silva [2, 21] have already
been implemented in the FUN3D [22–25] CFD code. In addition, methods for generating root
locus plots of the combined structural state-space model and unsteady aerodynamic state-space
model were developed by Silva et al [3]. These ROM-based root locus methods were applied
to fixed-wing configurations and subsequently to launch vehicle configurations [4]. The present
paper will discuss the application of these ROM and root locus methods in order to visualize
the aeroelastic behavior of the various aerospace configurations.

In November 2011, the AEROM software was granted a patent, Patent No. 8,060,350. The
software has been distributed to the Air Force Research Laboratory, the Boeing Corporation,
and the CFD Research Corporation.

2 COMPUTATIONAL METHODS

2.1 FUN3D Code

The unstructured mesh solver used for this study is FUN3D. Within the code, the unsteady
Navier-Stokes equations are discretized over the median dual volume surrounding each mesh
point, balancing the time rate of change of the averaged conserved variables in each dual volume
with the flux of mass, momentum and energy through the instantaneous surface of the control
volume.

Because the CFD and computational structural mechanics (CSM) meshes usually do not match
at the boundary interface where the grids are defined, CFD/CSM coupling requires a surface
spline interpolation between the two domains. The interpolation of CSM mode shapes to CFD
surface grid points is done as a preprocessing step [26]. Modal deflections at the CFD surface
grids are first generated. Mode shape displacements located at CFD surface grid points are used
in the integration of the generalized modal forces and in the computation of the deflection of
the deformed surface. The final surface deformation at each time step is a linear superposition
of all the modal deflections.
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2.2 System Identification Method

In structural dynamics, the realization of discrete-time state-space models that describe the
modal dynamics of a structure has been enabled by the development of algorithms such as the
ERA [8] and the Observer Kalman Identification (OKID) [27] Algorithm. These algorithms per-
form state-space realizations by using the Markov parameters (discrete-time impulse responses)
of the systems of interest. These algorithms have been combined into one package known as
SOCIT developed at NASA Langley Research Center.

There are several algorithms within the SOCIT that are used for the development of unsteady
aerodynamic discrete-time state-space models. The PULSE algorithm is used to extract indi-
vidual input/output impulse responses from simultaneous input/output responses. For a four-
input/four-output system, simultaneous excitation of all four inputs yields four output responses.
The PULSE algorithm is used to extract the individual sixteen (all combinations of four inputs
and four outputs) impulse responses that associate the response in each of the outputs due to
each of the inputs. Once the individual sixteen impulse responses are available, they are then
processed via the ERA in order to transform the sixteen individual impulse responses into a
four-input/four-output, discrete-time, state-space model. A brief summary of the basis of this
algorithm follows.

A finite dimensional, discrete-time, linear, time-invariant dynamical system has the state-variable
equations

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = Cx(k) +Du(k) (2)

where x is an n-dimensional state vector, u an m-dimensional control input, and y a p-dimensional
output or measurement vector with k being the discrete time index. The transition matrix, A,
characterizes the dynamics of the system. The goal of system realization is to generate constant
matrices (A, B, C, D) such that the output responses of a given system due to a particular set of
inputs is reproduced by the discrete-time state-space system described above.

For the system of Eqs. (1) and (2), the time-domain values of the discrete-time impulse re-
sponses of the system are also known as the Markov parameters and are defined as

Y (k) = CAk−1B +D (3)

with A an (n x n) matrix, B an (n x m) matrix, C a (p x n) matrix, and D an (p x m) matrix. The
ERA algorithm begins by defining the generalized Hankel matrix consisting of the discrete-time
impulse responses for all input/output combinations. The algorithm then uses the singular value
decomposition to compute the (A, B, C, D) matrices.

In this fashion, the ERA is applied to unsteady aerodynamic impulse responses to construct
unsteady aerodynamic state-space models.

2.3 Simultaneous Excitation Input Functions

Clearly, the nonlinear unsteady aerodynamic responses of a flexible vehicle comprise a multi-
input/multi-output (MIMO) system with respect to the modal inputs and generalized aerody-
namic outputs. In the situation where the goal is the simultaneous excitation of such a MIMO
system, system identification techniques [28–30] dictate that the nature of the input functions
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Figure 1: Walsh functions.

used to excite the system must be properly defined if accurate input/output models of the sys-
tem are to be generated. The most important point to keep in mind when defining these input
functions is that these functions need to be different, in some sense, from each other. If the ex-
citation inputs are identical, for example, and are applied simultaneously, it is quite difficult to
separate the effects of one input from the others. This, in turn, makes it practically impossible
for a system identification algorithm to extract the individual impulse responses for each in-
put/output pair. As has already been well established, the individual impulse responses for each
input/output pair are necessary ingredients towards the development of state-space models.

With respect to unsteady aerodynamic MIMO systems, these individual impulse responses
correspond to time-domain generalized aerodynamic forces (GAFs), critical to understand-
ing unsteady aerodynamic behavior. The Fourier-transformed version of these GAFs are the
frequency-domain GAFs which provide an important link to more traditional frequency-domain-
based unsteady aerodynamic analyses.

Referring back to the input functions used to excite the MIMO system, the question is how
different should these input functions be from each other and how can we quantify a level of
difference between them? Since orthogonality (linear independence) is the most precise math-
ematical method for guaranteeing the difference between signals, recent developments focused
on the application of families of orthogonal functions as candidate input functions. Using or-
thogonal functions directly provides a mathematical guarantee that the input functions are as
different from each other as mathematically possible. These orthogonal input functions can be
considered optimal input functions for the identification of a MIMO system.

In a previous paper [2], four families of functions were investigated to efficiently identify a
CFD-based unsteady aerodynamic state-space model. For the present paper, the Walsh family
of orthogonal functions [31] are used, shown in Figure 1 for four modes. These functions are
orthogonal and therefore provide a benefit in the system identification process as discussed
above. Also, this family of functions consists of a combination of step functions, which have
been shown to be well-suited for the identification of CFD-based unsteady aerodynamic ROMs.
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3 ROM DEVELOPMENT PROCESSES

The ROM development process consists of two parts: the creation of the unsteady aerodynamic
ROM and the creation of the structural dynamic ROM. The combination of the unsteady aero-
dynamic ROM with the structural dynamic ROM yields what is referred to as the aeroelastic
simulation ROM.

The original unsteady aerodynamic ROM development process consisted of the excitation of
one structural mode at a time per CFD solution. That approach is not practical for realistic
configurations with a large number of modes. As mentioned above, an improved method has
been developed and is described below.

3.1 Improved ROM Development Process

An outline of the improved simultaneous modal excitation ROM development process is as
follows:

1. Generate the number of functions (from a selected family of orthogonal functions) that
corresponds to the number of structural modes;

2. Apply the generated input functions simultaneously via one CFD execution resulting in
GAF responses due to these inputs; these responses are computed directly from the restart
of a steady rigid CFD solution (not about a particular dynamic pressure);

3. Using the simultaneous input/output responses, identify the individual impulse responses
using the PULSE algorithm (within SOCIT);

4. Transform the individual impulse responses generated in Step 3 into an unsteady aerody-
namic state-space system using the ERA (within SOCIT);

5. Evaluate/validate the state-space models generated in Step 4 via comparison with CFD
results (i.e., ROM results vs. full CFD solution results);

A schematic of steps 1-4 of the improved process outlined above is presented as Figure 2.

Using modal information (generalized masses, modal frequencies, and modal dampings), a
state-space model of the structure is generated. This state-space model of the structure is re-
ferred to as the structural dynamic ROM (Figure 3). Once an unsteady aerodynamic ROM and
a structural dynamic ROM have been generated, they are combined to form an aeroelastic sim-
ulation ROM (see Figure 4). Then root locus plots are extracted from the aeroelastic simulation
ROM.

An important difference between the original ROM process and the improved ROM process is
stated in step (2) of the outline above. For the original ROM process, if a static aeroelastic con-
dition existed, then a ROM was generated about that selected static aeroelastic condition. So
a static aeroelastic condition of interest would be defined (typically based on a dynamic pres-
sure) and that static aeroelastic condition was generated using the CFD code as a restart from a
converged steady, rigid solution. Once a converged static aeroelastic solution was obtained, the
development of the unsteady aerodynamic ROM process was applied about that static aeroelas-
tic condition. This approach implies that the resultant unsteady aerodynamic ROM is limited in
some sense to the neighborhood of that static aeroelastic condition. Moving too far away from
that condition could result in loss of accuracy.
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Figure 2: Improved process for generation of an unsteady aerodynamic ROM (Steps 1-4).

Figure 3: Process for generation of a structural state-space ROM.

Figure 4: Process for generation of an aeroelastic simulation ROM consisting of an unsteady aerodynamic ROM
and a structural state-space ROM.
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Figure 5: Error defined as difference between the FUN3D solution and the unsteady aerodynamic ROM solution
due to input of orthogonal functions.

The reason ROMs were generated in this fashion was because no method had been defined
to enable the computation of a static aeroelastic solution using a ROM. Any ROMs generated
in this fashion were, therefore, limited to the prediction of dynamic responses about a static
aeroelastic solution including the methods by Raveh [32] and by Kim et al [20]. The improved
ROM method, however, includes a method for generating a ROM directly from a steady, rigid
solution. As a result, these improved ROMs can then be used to predict both static aeroelastic
and dynamic solutions for any dynamic pressure. In order to capture a specific range of aeroe-
lastic effects (previously obtained by selecting a particular dynamic pressure), the improved
ROM method relies on the excitation amplitude of the orthogonal functions to excite aeroelas-
tic effects of interest. The details of the method for using a ROM for computing both static
aeroelastic and dynamic solutions is presented in another reference by the author [21]. For the
present results, all responses were computed from the restart of a steady, rigid FUN3D solution,
bypassing the need (and the additional computational expense) to execute a static aeroelastic
solution using FUN3D.

3.2 Error Minimization

Error minimization consists of error quantification and error reduction. Error quantification
is defined as the difference (error) between the full FUN3D solution due to the orthogonal
input functions used (Walsh) and the unsteady aerodynamic ROM solution due to the same
orthogonal input functions. This was identified in Step 5 in the previous subsection and is
shown schematically in Figure 5. The outputs shown are GAF responses per mode. Within
the system identification algorithms, there are parameters that can then be used to reduce the
error (error reduction). These parameters include number of states and the record length of the
identified pulse responses, for example. The maximum error is the largest error encountered
per mode. Using the maximum error as the figure of merit, the parameters are varied until an
acceptable ROM has been obtained.

4 SAMPLE RESULTS

A brief summary of results for three configurations is presented in this section. These config-
urations are the Lockheed-Martin N+2 low-boom supersonic configuration, the Royal Institute
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of Technology (KTH) generic fighter wind-tunnel model, and the AGARD 445.6 wing.

4.1 Low-Boom N+2 Configuration

An artist’s rendering of the Lockheed-Martin N+2 low-boom supersonic configuration is pre-
sented in Figure 6. This configuration has been used extensively as part of a NASA research
effort to address the technologies required for a low-boom aircraft, including aeroelastic effects.
Presented in Figure 7 is a comparison of the dynamic aeroelastic responses of the time histories
of the fourth mode generalized displacements from a full FUN3D aeroelastic solution and the
ROM aeroelastic solution at a dynamic pressure of 2.149 psi for the N+2 low-boom configura-
tion. As can be seen, the results are practically identical. Similar results are obtained for all the
other modes, indicating good confidence in the ROM.

Figure 6: Artist’s concept of the Lockheed-Martin N+2 configuration.

Figure 7: Comparison of full FUN3D aeroelastic response and ROM aeroelastic response for the fourth mode of
the N+2 configuration at M=1.7 and a dynamic pressure of 2.149 psi.

A major benefit of this ROM technology is the ability to rapidly generate an aeroelastic root
locus plot that reveals the aeroelastic mechanisms occurring at that flight condition. Figure 8
presents the aeroelastic root locus plot for the low-boom N+2 configuration at M=1.70. This
root locus plot clearly indicates the aeroelastic mechanisms that affect this configuration. In the
root locus plot, each symbol represents the aeroelastic roots at a specific dynamic pressure. In

9



IFASD-2017-181

this case, each increment in dynamic pressure corresponds to 2 psi. It is important to mention
that this root locus plot is generated in seconds while multiple full FUN3D solutions would be
required for each dynamic pressure of interest, with each solution requiring about two days.

The computational cost of generating these ROM solutions consists of one full FUN3D solution
that is used to generate the ROM at that Mach number. This full FUN3D solution ran for three
hours and consisted of 2400 time steps. Once this solution is available, a ROM can be generated
and then used to generate all the aeroelastic responses at all dynamic pressures. In comparison,
a full FUN3D analysis at each dynamic pressure requires two full FUN3D solutions: a static
aeroelastic ( 10 hours) and a dynamic aeroelastic ( 18 hours). Therefore, full FUN3D solutions
for 20 dynamic pressures would require 560 hours of compute time.

Figure 8: Aeroelastic root locus plot for the low-boom N+2 configuration at M=1.7 with each colored marker
indicating a different dynamic pressure for a given mode.

4.2 KTH Generic Fighter

In 1985 and 1986, two wind-tunnel models of the Saab JAS 39 Gripen were designed, built,
and tested in the NASA Transonic Dynamics Tunnel (TDT) for flutter clearance. One model,
referred to as the stability model, was designed to be stiff, but incorporated proper scaling of
both the mass and geometry. The other model, referred to as the flutter model, was also designed
for proper scaling of structural dynamics, and was used for flutter testing with various external
stores attached.

For the current collaboration, a generic fighter flutter-model version of these earlier models was
selected. The new model, shown in Figure 9, has a similar outer mold line (OML) to the Gripen,
but it has been modified into a more generic fighter configuration. Specifically, the air intakes
were removed from the fuselage and the wing received an aspect ratio increase and a leading-
edge sweep reduction. Details regarding the design, fabrication, and instrumentation of the
wind-tunnel model can be found in the reference paper [33]. Figure 10 shows the wind-tunnel
model installed in the TDT.

Using the AEROM software, aeroelastic root locus plots were generated for the KTH wind-
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Figure 9: The generic fighter aeroelastic wind-tunnel
model tested in summer of 2016.

Figure 10: The generic fighter aeroelastic wind-
tunnel model installed in the Transonic
Dynamics Tunnel (TDT).

Figure 11: Pressure distributions at M=0.7, AoA=0 degrees on the wind-tunnel model, as simulated inside the TDT
using FUN3D code.
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Figure 12: Root locus plot generated from ROM model indicating an aeroelastic instability at M=0.90 in air test
medium for the third configuration.

tunnel model in air test medium for a free-air case and a solution accounting for the effects
of the TDT test section via CFD modeling [34, 35], as can be seen in Figure 11. There were
three configurations tested: wing with tip stores (configuration 1), wing with tip and under-wing
stores (configuration 1), and wing with tip and under-wing stores with added masses at tip stores
(configuration 3). The third configuration exhibited flutter while configurations 1 and 2 did not.
Presented in Figure 12 is the aeroelastic ROM root locus plot for the free-air configuration at
M=0.90. For this case, the roots clearly indicate a flutter mechanism at about 8100 N/m2 (or
169 psf) via a coalescence of modes 5 and 6. Using the ROM, any dynamic pressure can be
quickly evaluated to determine the aeroelastic response, consistent with the root locus plots. At
this dynamic pressure, this result is above the experimental result at M=0.9 (not conservative).
All results presented are for zero structural damping. Using the ROM, the effect of structural
damping can be quickly evaluated as well but is not pursued in the present discussion.

Presented in Figures 13 and 14 are comparisons of the aeroelastic responses for modes 3, 4, 5,
and 6 at M=0.9 and Q=7344 Pa for the FUN3D solution that includes the effect of the TDT and
the ROM solution for the same configuration. As can be seen, the comparison is quite good
with some variation in mode 6. Additional studies are currently underway to minimize these
variations in order to reduce the error associated with the ROM.

For the CFD model that included the TDT, the ROM solution required two days whereas the
full solution (for only one dynamic pressure) required five days. The ROM solution could, of
course, then be used to rapidly compute the aeroelastic response due to any dynamic pressure.

4.3 AGARD 445.6 Wing

In this section, aeroelastic transients for the FUN3D full solution and aeroelastic transients and
root locus plots are presented for the ROM results for both inviscid and viscous solutions of the
AGARD 445.6 aeroelastic wing [36]. The FUN3D full solution results consist of aeroelastic
transients at various dynamic pressures for two Mach numbers: M=0.96 and M=1.141. The
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Figure 13: Aeroelastic response in mode 3 for the
FUN3D and ROM solutions for the config-
uration including the TDT.

Figure 14: Aeroelastic response in mode 4 for the
FUN3D and ROM solutions for the con-
figuration including the TDT.

ROM results will consist of aeroelastic root locus plots for the same Mach numbers. The root
locus plots generated using the ROM procedure described above are used to identify aeroelastic
behavior and flutter mechanisms. The aeroelastic transients generated using the FUN3D full
solutions are used to validate the ROM results at specific dynamic pressures.

4.3.1 Inviscid Results

In this section, inviscid FUN3D results are presented for both full FUN3D and ROM solutions.
Presented in Figure 15 is the aeroelastic root locus plot for M=0.96 generated using the ROM
method. These root locus plots contain root values at twenty dynamic pressures from zero
to 114 psf. The reason for this increased resolution in dynamic pressure values is the ROM
procedure itself. Because the ROM procedure generates a combined aeroelastic state-space
model that consists of a state-space model of the structural dynamics and a state-space model
of the unsteady aerodynamics (from FUN3D), root locus plots can be generated for any number
and any increment of dynamic pressure in a matter of seconds. The flutter mechanism for the
FUN3D inviscid solution at this Mach number is clearly dominated by the first mode with some
coupling with the second mode noticeable. The third and fourth modes are stable.
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Figure 15: ROM aeroelastic root locus plot for M=0.96, inviscid solution.

In order to better visualize the root migrations for the first mode, a zoomed-in version of the
root locus plot is presented as Figure 16. The increment in dynamic pressure for this root locus
plot is 6 psf starting with 0 psf yielding a flutter dynamic pressure of approximately 30 psf. The
flutter dynamic pressure is, therefore, about 30 psf. This result is very close to and consistent
with the FUN3D full solution flutter dynamic pressure presented in the references [36]. How-
ever, the inviscid result at this Mach number does not compare well with the experiment. This
discrepancy is not surprising as inviscid solutions tend to have stronger shocks that are farther
aft and therefore induce a stronger and earlier onset of flutter. When viscosity is introduced into
the solution, the shock strength is reduced and the shock position is moved forward resulting in
the onset of flutter at a higher dynamic pressure. This effect is discussed in the next section of
this paper.

Figure 16: Detailed view of ROM aeroelastic root locus plot for M=0.96, inviscid solution.

Solutions are now presented for the supersonic Mach number of 1.141. As presented in the
references [36], there is a wide variation of flutter dynamic pressures and flutter frequencies at
this condition. The discrepancy between many of the solutions and the experiment as well as
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the discrepancy amongst the various solution methods has long been a source of speculation.
Although the authors do not present a conclusive answer to the source of these discrepancies, it
is hoped that the results presented will spur additional discussion and research.

Figure 17 presents the aeroelastic root locus plot for M=1.141 generated using the FUN3D ROM
method. There are two obvious flutter mechanisms: one flutter mechanism is an instability
involving the first mode while the other flutter mechanism involves an instability of the third
mode. The third mode is always unstable while the first mode instability occurs at a dynamic
pressure of about 300 psf. The third mode instability was a surprise in that it is not mentioned
by other researchers. So in order to validate the accuracy of this aeroelastic root locus plot, the
generalized coordinates from a FUN3D full solution are inspected.

Presented in Figure 18 are the aeroelastic transients for the four modes at M=1.141 and a dy-
namic pressure of 30 psf. The first mode, with the largest amplitude, is clearly stable. However,
discerning the stability for the other three modes with smaller and similar amplitudes is not as
obvious as it is for the first mode. If only the third mode is visualized, as in Figure 19, the
unstable nature of this mode becomes clearer.

Figure 17: ROM aeroelastic root locus plot for M=1.141, inviscid solution.

Figure 18: FUN3D full solution generalized coordinates at M=1.141, Q=30 psf, inviscid solution.
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Figure 19: FUN3D full solution third generalized coordinate at M=1.141, Q=30 psf, inviscid solution.

This third mode instability, not mentioned in any other publications on the flutter boundary of
the AGARD 445.6 wing, raises an important question. Is this third mode instability present
in all inviscid (Euler) solutions of the AGARD 445.6 wing presented in the literature? The
answer to this question requires consultation with researchers that have performed inviscid CFD
aeroelastic analyses for this wing at this condition. However, as mentioned previously, it appears
that the focus of all previous inviscid analyses at supersonic conditions was the first mode
instability. If that is the case, it is easy to see how the third mode instability might have been
ignored. In addition, for analyses performed in the early days of computational aeroelasticity,
Figure 18 would have consisted of fewer time steps (due to computational cost at the time),
thereby making it difficult to visually notice the third mode instability. It should be stated that
the authors have confirmed the existence of this third mode instability in previous solutions
obtained using the CFL3D code.

4.3.2 Viscous Results

In this section, viscous FUN3D full and ROM solutions are presented at M=1.141 since signif-
icant discrepancies, as just discussed, exist at this condition. The results for FUN3D full and
ROM solutions at subsonic Mach numbers agree well with each other and with experiment and
are not presented in this paper.

Presented in Figure 20 is the root locus plot generated using the FUN3D ROM viscous solution
at M=1.141 in dynamic pressure increments of 6 psf to 114 psf. It appears that the third mode
instability exhibited by the inviscid solution has been stabilized by the inclusion of viscous
effects.
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Figure 20: Viscous ROM root locus plot at M=1.141.

The four generalized coordinates from a FUN3D full viscous solution are presented as Fig-
ure 21. At this low dynamic pressure, all four generalized coordinates are minimally damped.
Visual analysis of these generalized coordinates indicates that these generalized coordinates ap-
pear to be stable although minimally damped. However, it is important to state a fundamental
and important difference between a root locus plot and the visual, or otherwise post-processed
analysis of generalized coordinates over a short period of time. A root locus plot, by definition,
exhibits the roots of a system as time approaches infinity or as the system reaches steady state.
In contrast, the analysis of the initial transient response of a generalized coordinate over a short
period of time can be deceiving as the response can change if the response was viewed (or ana-
lyzed) over a longer period of time. This property of root locus plots is critical for the accurate
evaluation of aeroelastic stability.

Figure 21: Generalized coordinates from viscous FUN3D full solution at M=1.141 and Q=6 psf.

5 CONCLUDING REMARKS

The origin, implementation, and applications of AEROM, the patented NASA reduced-order
modeling software, have been presented. Recent applications of the software to analyze com-
plex configurations, including computation of the aeroelastic responses of the Lockheed-Martin
low-boom N+2 configuration, the KTH (Royal Institute of Technology, Sweden) generic fighter
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wind-tunnel model, and the AGARD 445.6 wing were presented. Results presented demon-
strate the computational efficiency and analytical capability of the AEROM software.
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