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Abstract: A new parametric flutter margin method for linear and nonlinear stability analysis 
of aeroservoelastic systems is presented. The method is based on frequency response 
calculations with the system stabilized using a single parameter, which facilitates convenient 
response calculations with smooth response variations with respect to excitation frequency 
and air velocity. The frequency response functions are used for generating flutter margins 
with respect to the added parameter. The linear flutter or nonlinear limit-cycle-oscillation 
conditions are those at which the margins are zero. The nonlinear process starts with a linear 
one, to which nonlinear effects are added using a non-iterative first-order harmonic-balance 
procedure. Two numerical examples, based on a generic transport aircraft model, are given: a 
linear one with a simple gust-alleviation control system, and a nonlinear one with control-
surface actuator free play. The results demonstrate excellent agreement with those obtained 
using traditional flutter methods and nonlinear time-marching simulations.  
 
1 INTRODUCTION 
 
Flutter is a dynamic aeroservoelastic (ASE) instability phenomenon due to the interaction 
between aircraft structural dynamics, unsteady aerodynamic forces and flight control systems. 
Flutter conditions of a certain structural configuration are characterized by the flight 
parameters at which the system becomes unstable, the associated vibration frequency, and the 
flutter mode. At the flutter boundary, linear ASE systems exhibit harmonic oscillations in 
response to an initial excitation. Beyond the boundary, the vibration amplitude increases 
exponentially. Flutter of nonlinear systems may be defined similarly when small vibration 
amplitudes are assumed. However, when amplitudes grow, the nonlinear dependency on the 
amplitude may yield periodic motion, called limit-cycle oscillation (LCO) at pre- or post-
flutter conditions without necessarily leading to damaging vibration levels.  
 
At flutter onset conditions, an aircraft undergoes self-excited harmonic oscillations in 
response to any initial trigger. Accordingly, the frequency-domain (FD) linear ASE equation 
is homogenous, and can be written as follows  

[A(iw)]{x(iw)} = {0}      (1) 

where the closed-loop system matrix [A(iw)] contains the generalized mass, damping, 
stiffness and frequency-depended aerodynamic matrices, and the control-system matrices (if 
any) that reflect the respective sensors, control laws and actuators; {x(iw)} is the state vector 
containing the modal displacement vector and control states. Equation (1) has a non-trivial 
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solution if and only if |A(iw)| = 0. Consequently, common flutter methods concentrate on 
finding the conditions at which the ASE matrix determinant is zero, e.g. [1,2] for aeroelastic 
systems and [3,4] for ASE ones. The main difficulty stems from the fact that the aerodynamic 
force coefficient matrix and control laws depend on the resulting flutter frequency. 
 
While being well established and widely used, the applicability of the common industrial 
flutter analysis methods is limited. Their main disadvantages are: (a) Requires dedicated 
flutter solvers such as p, p-k and g- method solvers. (b) Being based on the system matrix 
properties rather than response simulations, they are difficult to compare with wind-tunnel 
and flight tests results. (c) The solution reflects an actual physical situation only at the flutter 
point because it consists of adding an artificial term that is canceled only at this point. (d) It is 
difficult to obtain flutter margins with respect to design parameters that may be needed in the 
preliminary design stages. (e) The ASE matrix is singular at the flutter point, which makes it 
difficult to obtain time-domain (TD) solutions at the vicinity of this point; and (f) Cannot be 
extended directly to the investigation of nonlinear effects. 
 
An existing way to overcome these disadvantages is by generating a state-space TD model 
using rational-function approximation [5,6] of the generalized force coefficient matrix. Then, 
TD simulations are performed by integrating the state-space equation where nonlinear effects 
can be easily added, e.g. [7,8]. Although this approach is often used in research, it is rarely 
used in industrial environment because it lacks the required level of efficiency, robustness and 
accuracy when applied to realistic models. A different approach to perform time-marching 
simulations, with no need of rational-function approximations, is the recently developed 
Increased-Order Modelling (IOM) approach [9] and the associated Dynresp framework code 
[10], where an ASE system is modeled as a linear block, augmented by feedback loops that 
reflect structural, aerodynamic, control and mechanical nonlinearities. 
 
Theoretically, the LCO characteristics of a nonlinear ASE system can be obtained by 
analyzing the steady-state response of a time-marching simulation. However, this approach 
does not seem to be an appropriate method to perform a comprehensive industrial study of 
nonlinear ASE stability as the typically large model preparation and computation time limit 
the analyzed cases to a small number of aircraft configurations and flight conditions. 
 
More efficient techniques to find LCO characteristics are the Describing Function and 
Harmonic Balance (HB) methods. The Describing Function technique (e.g. [11]) consists of 
finding an equivalent linear expression of the nonlinearity and performing a linear flutter 
analysis afterwards. This approach needs analytical or numerical work to find the equivalent 
linear coefficients, and seems to be difficult to apply to a system with more than one 
nonlinear element. For example, to find the LCO conditions with multiple nonlinearities [12] 
proposed to solve a nonlinear system of equations, instead of using the common flutter 
methods with the equivalent linear coefficients. The HB approach (e.g. [13-15]) assumes that 
the displacements, and the associated nonlinear forces, can be written as a Fourier series. 
LCO conditions are found when the Fourier summation expressions associated with each 
participating frequency are zero. The fundamental frequency is also unknown, and 
consequently two nonlinear coupled matrix equations must be solved simultaneously, one due 
to the nonlinear elements and the other one due to the nonlinear dependency on the frequency. 
 
From this brief introduction, it is noted that linear and nonlinear ASE stability analyses are 
performed using different techniques. The typically gradual physical transition from linear to 
nonlinear flutter calls for using similar methodologies and disciplinary models for analyzing 
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both cases. This would simplify the combined flutter analysis, improve the physical insight 
and yield better understanding of the nonlinear effects. Therefore, an adequately accurate and 
robust stability analysis method which can be efficiently applied to both systems, linear and 
nonlinear, is desired.  
 
A new response-based flutter analysis method that is applicable to both linear and nonlinear 
ASE systems is presented in this paper. It consists of introducing a stabilizing parameter, Pf, 
which alleviates the numerical difficulties near the stability boundaries of the original system. 
Then, by response analysis to harmonic excitations, flutter/LCO is found at the conditions at 
which the excitation and the stabilizing effects cancel each other. The key point is that, while 
the analyzed system is stable, the response mode obtained at this point is the same as the self-
excited oscillations of the unmodified system. Furthermore, at flight conditions where the 
excitation does not cancel the stabilizing effects, flutter margins with respect to Pf can be 
found by using an expansion to the Nyquist gain-margin approach for single-input-single-
output (SISO) systems [16]. Hence, the new method is called “Parametric Flutter Margin” 
(PFM). It was recently added to version 11 of the Dynresp code [10], with which the 
numerical applications of this paper were performed.  
 
The paper is organized as follows: In Sec. 2 the mathematical formulation of the PFM method 
is presented. Section 3 presents the numerical examples comparing the PFM results to those 
calculating using standard commercial codes. Finally, concluding remarks are given in Sec. 4.  
 
2 PARAMETRIC FLUTTER MARGIN METHOD 
 
This section is divided into three subsections. In the first, we describe the new PFM method 
applied to linear systems for calculating their flutter characteristics. The second subsection 
expands the method for nonlinear LCO analyses, and the last one discusses some general 
implementation issues. 
 
2.1 Linear PFM 
 
In contrast to common flutter methods, the PFM procedure searches for the flutter boundary 
using frequency-response functions (FRFs) due to excitation introduced in the right-hand side 
of Eq. (1). Since dealing with FRFs is numerically difficult near the stability boundary due to 
the matrix singularity which causes the response to approach infinity, they are calculated with 
[A(iw)] modified to include the effect of a stabilizing parameter Pf. The only constraint on Pf 
is that its effect can be removed by closing a SISO feedback loop. Even though the 
formulation below relates to the feedback loop as a control component, it can reflect any ASE 
parameter, as explained and demonstrated below. The open-loop modified equation of motion 
with the added parameter becomes 

[A(iw)+Pf {Bf}⌊Cf (iw)⌋]{x(iw)} = {Bf}uf (iw)    (2a) 
yf (iw) = ⌊Cf (iw)⌋{x(iw)}      (2b) 

 
where uf and yf are scalars, input and output of the modified system, and {Bf} and ⌊Cf (iw)⌋ are 
the respective distribution vectors. For any given uf (iw) Eq. (2) can be solved for {x(iw)} and 
yf (iw) at all stable flight points, including the nominal flutter point that is now stable. The 
flight conditions and excitation frequency for which the resulting complex yf (iw) and the 
uf(iw) are related by 
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uf (iw) = Pf yf (iw)     (3) 
 
must reflect flutter-onset conditions with w=wf being the flutter frequency. This can be easily 
proved by substituting Eq. (3) in Eq. (2), which eliminates both the added Pf {Bf}⌊Cf (iwf)⌋ 
term in the system matrix and the right-side excitation term. Thus, Eq. (2) becomes the 
homogenous Eq. (1) to which the resulting {x(iw)}={xf (iw)} is a nontrivial solution, namely 
the flutter mode. 
 
To find the conditions at which Eq. (3) is satisfied, FRFs are first calculated at various flight 
conditions along a line in the flight envelope, such as a line of constant altitude or a line of 
constant Mach number. The FRF at each calculation point is then expressed by Bode plots of 
gain and phase variations with w,  

G(w) = 20log10| Pf yf (iw) / uf (iw) | [dB]   (4a) 
F(w) = ÐPf yf (iw) / uf (iw) [deg]    (4b) 

 
If the system is linear, the Bode plots can be generated with uf (iw)=(1.,0.). Phase-cross-over 
frequencies wpco are defined as those at which  
 

F(wpco) = 360n, n = 0, ±1, ±2, …   (5a) 
 
that implies that uf (iwpco) and yf (iwpco) have the same phase. Even though we may be looking 
for a certain flutter mechanism, there may be no phase-cross-over frequencies, or more than 
one, in the searched frequency range. The parametric flutter margins are defined by the gain 
at each wpco, 
 

PFM = -G(wpco)     (5b) 
 
The repetition of the FRF calculations for various points along the selected flight-condition 
line yields the flutter conditions at which PFM=0[dB], which implies that Eq. (3) is satisfied. 
If, as often done, the flight-condition line is of various true velocities at a constant altitude, 
the interpolated point at which PFM=0[dB] is the flutter velocity Vf. The flutter frequency, wf, 
and mode, {xf (iwf)}, are the respective wpco and {xf (iwpco)} interpolated at Vf.  
 
2.2 Nonlinear PFM 
 
The frequency response approach to flutter analysis can still be applied when the system 
includes nonlinear elements. However, instead of looking for linear flutter where the response 
diverges to infinity, the search is now for a periodic self-excited response with limited 
amplitude, namely LCO. When the amplitude is large enough to cause substantial damage, 
there is no much difference between flutter and LCO. However, it is often small enough to be 
tolerated or even ignored.  
 
The nonlinear effects depend on the excitation frequency and amplitude, and might result in 
LCOs with higher harmonics. It is assumed that the fundamental frequency of the return 
open-loop signal is the excitation one, as demonstrated in the numerical example. In this 
work, we focus on LCO analyses in which the nonlinearities can be represented by a single 
SISO nonlinear block, e.g. control-surface free play. Accordingly, a first-order non-iterative 
method is developed based on defining the nonlinear block as a part of the feedback loop that 
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remains open in the FD analysis, which was found to improve the computational time 
significantly. Higher-order iterative PFM methods were presented in Ref. [17]. 
 
The nonlinear effects are introduced by modifying the stability-boundary condition of Eq. (3) 
as follows 
 

uf (iwf) = Pf yf (iwf) + NLF(yf (iw))    (6) 
 
where NLF(yf (iω)) is the first Fourier coefficient of the nonlinear function that reflects the 
nonlinear effects. This means that the solution is equal to the one obtained by a first-order 
HB, which ignores the nonlinear effects between different frequencies and the steady bias, 
and is still assumed adequate. As done for linear PFM, the loop is never closed and NLF is 
needed only for calculating the flutter gain, which is a non-iterative step. Since the response is 
now nonlinear, it depends on the excitation signal so that the modified PFM becomes  
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where ωpco is the cross-over frequency, i.e.  
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The nonlinear term in Eqs. (6) thru (8) is first calculated over the frequency range of interest. 
At each frequency, the TD output is obtained by  

( ) ( )( )Re ji t
f j fy t y i e ww=    (9) 

and serves as the only input to the SISO nonlinear block, which can be compounded by 
several nonlinear elements. The output NLF(yf (t)) is transformed to FD by  
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where the number of time steps is N=Lk, L and k are the number of computation points per 
cycle and the number of cycles considered. The summation in Eq. (10) is performed with 
NLF(yf (t)) after removing the initial k0 cycles to avoid transient effects that might exists in the 
nonlinear function. The resulting NLF(yf (iω)) is used to calculate the Bode plots associated 
with the right-hand side of Eq. (6), from which the cross-over frequencies of Eq. (8) are 
found, followed by the associated gains of Eq. (7). As done above for linear flutter, LCO 
occurs when PFM(ωpco) = 0dB. Since it now depends on the excitation amplitude, the process 
may be repeated with different excitations uf (iω), which yields the particular vibration level 
associated with LCO at each flight point. 
 
2.3 Selection of the flutter parameter  
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As described and formulated above, the flutter parameter Pf should be one that expands the 
flutter velocity boundaries, and that its effect can be removed by a SISO control loop. Basic 
understanding of the flutter phenomena should normally be sufficient for selecting an 
adequate parameter. The selection of a parameter that does not increase the flutter velocity as 
desired would yield large response that is easy to detect. An example of a parameter that 
would work in most wing-flutter cases is an incremental generalized damping coefficient of 
the first-bending (ith) mode, Pf = Δgi Mhh,ii ωi where Δgi is the incremental non-dimensional 
coefficient, and Mhh,ii and ωi are the generalized mass and natural frequency of the ith mode. 
Also, to obtain a significant effect, the magnitude of Pf may be much larger than typical 
values. The respective ⌊Cf (iw)⌋ vector that defines yf as a ith modal velocity would be all zero 
except for Cf,i=iw and the {Bf} vector would be all zero except for Bf,i = 1, which applies the 
resulting generalized damping force. 
 
Another example of an effective flutter parameter in typical bending-torsion or wing-store 
flutter mechanisms is an added mass, Δm, at the wing’s tip leading edge. The input uf and 
output yf would be in this case a discrete force normal to the wing planform and the local 
acceleration to the same direction. The PFM equation of motion (2) would be applied in this 
case with Pf = Δm, {Bf}= ⌊fy⌋T and ⌊Cf (iw)⌋=-w2⌊fy⌋,	where ⌊fy⌋ is a row in the normal-mode 
matrix associated with the normal displacement at the added mass location. The flutter 
boundary of the original system is identified at the velocity and frequency where the applied 
force is equal, in magnitude and direction, to the measured acceleration times Δm. It implies 
that, physically, the harmonic excitation force is entirely dedicated to moving the added mass, 
while the rest of the aircraft retains its harmonic motion with no external excitation. 
 
3 NUMERICAL EXAMPLES 
 
This section is divided in two subsections. In the first, linear PFM flutter results obtained 
using the Dynresp code [10] are compared to those calculated using the g (ZAERO) and p-k 
(NASTRAN) methods. Two Generic Transport Aircraft (GTA) models are used. The first is 
with a simple gust-alleviation control system that exhibits a wing bending-torsion flutter 
mechanism, and the second, which is described in Ref. [9], has a softened horizontal tail plane 
(HTP) that exhibits bending-torsion flutter when the elevators are firmly connected through 
their actuators, and control-surface flutter when the actuators are disconnected. The 
aeroelastic models in both cases consist of normal modes extracted from a beam-type 
structural model with lumped masses, and an aerodynamic panel model as depicted in Fig. 1. 
In the second subsection, nonlinear-PFM LCO results are compared to direct time-marching 
simulations. In this case, we use the soften GTA with free play in the springs connecting the 
elevators to the HTP, as in [9].  
 
3.1 Linear Example 
 
The new PFM technique is applied to calculate the flutter characteristics of the two models 
discussed above. The GTA model with a gust-alleviation control system is used in Sec. 3.1.1, 
and the soften-HTP GTA model with and without the springs connecting the elevators to the 
HTP is used in Sec. 3.1.2.  
 
3.1.1 GTA with gust-alleviation control system 
 
The gust-alleviation control system is presented in Fig. 2, where “wing-tip acceleration” is the 
average accelerations measured at the right and left wing tips. Open- and closed-loop flutter 
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analyses were performed using symmetric modes only. The PFM results are compared to 
those obtained by the g-method implemented in ZAERO. The analyzed subcases are: (1) k1=0 
(open loop), (2) k1=0.5, and (3) k1=1. 
 

 
 

Figure 1: GTA Structural (left) and aerodynamic (right) model, taken from [9]. 
 

 

Figure 2: GTA gust-alleviation control system. 
 
PFM stability analysis was first performed with the incremental modal damping Dg = 0.1 
added to the first wing-bending mode, which is the third mode. With the generalized mass of 
Mhh,33=1.0 and the natural frequency of ω3 = 50.0rad/s, the stabilizing parameter is Pf = 5.0. 
The PFM sensor, yf, corresponds to the modal velocity, i.e. yf =iωx3, and the excitation 
corresponds to a generalized force at the same mode. As shown in Eq. (2), the effect of the 
stabilizing parameter is added to the system matrix while the feedback loop is disconnected in 
the response analysis. 
 
The extraction of the flutter velocity and frequency in PFM is illustrated in Figs. 3, 4 and 5 
using Subcase (1). Figure 3 shows the gain and phase associated with the FRFs of Pfyf (iw) in 
response to unit-amplitude uf at V=161, 163 and 165m/s. The interpolated frequencies at 
which f=0deg are the phase-cross-over frequencies wpco. These frequencies and the 
associated flutter margins of Eq. (5b), PFM=-Gain(wpco), are plotted vs. velocity in Fig. 4 
together with those of V=162 and 164m/s. The interpolated velocity at which PFM=0dB 
corresponds to Vf and the respective interpolated wpco is wf. 
 
The PFM flutter velocities and frequencies are compared in Table 1 to those of ZAERO, 
exhibiting negligible differences attributed to different interpolation schemes. Table 2 
presents the Subcase (3) flutter modes obtained with PFM and the g-method, also exhibiting 
excellent agreement. It may be noticed that the third mode is indeed a major participant in the 
flutter mechanism, but not necessarily the largest one.  
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Figure 3: Bode Plots of Pf yf (iw) in Subcase (1). 

 

Figure 4: Bode Plots of Pf yf (iw) in Subcase (1). 
 

 Subcase (1) Subcase (2) Subcase (3) 
PFM g PFM g PFM g 

Vf [m/s] 163.09 163.18 153.12 153.13 143.62 143.8 
Diff [%] 0.06 - 0.006 - 0.13 - 
wf [Hz] 12.78 12.81 14.22 14.25 15.3 15.36 
Diff [%] 0.23 - 0.21 - 0.39 - 

Table 1: Comparison between PFM and g- methods. 

Mode 
# 

PFM g Mode 
# 

PFM g 
Real Imag Real Imag Real Imag Real Imag 

1 -0.1514 -0.1203 -0.1520 -0.1199 6 -0.2539 0.0107 -0.2517 0.0089 
2 0.0046 0.0120 0.0047 0.0120 7 0.0639 -0.0068 0.0628 -0.0068 
3 0.5057 0.5650 0.5165 0.5555 8 -0.0018 -0.0081 -0.0020 -0.0081 
4 -0.0161 -0.0015 -0.0161 -0.0015 9 -0.0278 -0.0218 -0.0279 -0.0219 
5 1.0000 0.0000 1.0000 0.0000 10 -0.0056 0.0020 -0.0055 0.0020 

Table 2: PFM and g- methods flutter modes for Subcase (3). 

One of the advantages of the PFM method is that it utilizes efficient sensitivity analyses with 
respect to the stabilizing parameter Pf. To demonstrate this feature, the flutter calculations of 
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Subcases (2) and (3) were repeated with the control gain serving as Pf =k1=1.0. Consequently, 
the stabilized system is the open-loop one (with k1=0) and the FRFs are calculated from the 
input of SISO 1 in Fig. 2 to the wing-tip acceleration sensor. At each air velocity, wpco and 
PFM=-G(wpco) are calculated as earlier, yielding in this case the classic Nyquist SISO gain 
margin (GM). The left plot in Fig. 5 shows the Bode plots for seven different velocities, and 
the blue circles in the right one show the variation of the GM and phase-cross-over 
frequencies with velocity. The GM=0dB point with k1=1 in the GM plot is at Vf = 143.7m/s, 
agreeing with the one shown in Table 1. Flutter sensitivity analysis with respect to Pf can be 
easily performed by assuming, for example, Pf =0.5 instead of 1.0 without repeating the 
response simulations. This implies that k1=0.5 is now a part of the original system, as in 
Subcase (2), while the other half of the original k1 is the stabilizing element. This causes the 
GM plot in the right side of Fig. 5 to simply be shifted up by 20log10(2)»6dB, with no change 
in the frequency plot, leading to a new flutter point of (Vf =152.91m/s; wf =14.27Hz), which 
agrees with the one shown in Table 1. 
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Figure 5: Left: Open-Closed Bode plots for k1=1.0. Right: GM and phase-cross over frequencies for k1=1.0 and 
0.5, Subcases (2) and (3). 

 
3.1.2 Control surface flutter 
 
In this sub-subsection, linear flutter analyses of the soften-HTP GTA model in which the 
stiffness of the elevator actuators is represented by torsional springs, are presented. Two 
reference flutter cases, with connected and disconnected actuators, were analyzed using the 
common p-k method implemented in MSC/NASTRAN using two different sets of vibration 
modes. These cases were then analyzed using PFM with the spring condition modeled by a 
dummy control feedback loop that senses the rotation of the elevator relative to the HTP, 
multiplies it by the spring stiffness ka and applies the resulting moment to the elevators about 
their hinges. This allows the two flutter cases to be modeled with one set of modes with the 
connected case analyzed with ka=-2´104 Nm/rad, that adds the nominal actuator spring, and 
the disconnected case with ka=0Nm/rad. It should be noted that this model does not have any 
real control system. To obtain accurate results in the two flutter analyses, and in the nonlinear 
analyses of the next subsection, the single set of modes is generated with the elevator rotation 
degree of freedom loaded with a large fictitious inertia, as detailed in Refs. [9, 18], which is 
removed in the response analyses. 
 
The PFM flutter analyses were repeated with two different stabilizing parameters Pf: (a) 
added generalized damping to the HTP first-bending mode; and (b) elevator actuator stiffness 
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coefficient of 4´104Nm/rad, which is twice the value of the nominal coefficient. The PFM 
results are shown in Table 3 in comparison with those obtained with the p-k method 
implemented in MSC/NASTRAN, exhibiting excellent agreement between PFM and p-k, and 
between the two selected PFM stabilizing parameters. 
 

Actuator Connected (C)– PFM  Disconnected (D) - PFM C- p-k D- p-k 
Pf Damping Stiffness Damping Stiffness - - 

Vf [m/s] 163.93 163.50 90.69 90.84 162.85 91.06 
Diff [%] 0.66 0.40 0.41 0.24 - - 
wf [Hz] 12.71 12.70 12.19 12.19 12.7 12.19 

Diff [%] 0.06 0.03 0.03 0.03 - - 

Table 3: PFM flutter results compared to p-k. 

3.2 Nonlinear Example 
 
In this subsection, we will show nonlinear results of the soften-HTP GTA, where the 
nonlinearity consists of rotational free play in the control-surface linkage to the HTP, while 
the actuators are locked. The structure is represented by the same modal basis used in Sec. 
3.1.2. 
 
The stabilizing element is a relatively stiff actuator spring (as in Sec. 3.1.2, Pf =4´104Nm/rad) 
connecting the elevator to the HTP, while the original system is with disconnected actuators. 
The free-play nonlinear effects are introduced by a nonlinear SISO block that its input, yf, is 
the rotation of the elevator relative to the HTP and its output, uf, is the spring nonlinear 
moment, represented by the term NLF(yf) in Eq. (6). It is utilized in Dynresp by a dead-zone 
element multiplied by -ka,nominal=-2´104Nm/rad and its free-play limits are d=±0.02rad. To 
obtain a linear response with disconnected actuator, the PFM analysis was first performed 
with uf(iw)= Pfd=800Nm that produces an elevator rotation amplitude of 0.02rad, which 
keeps the actuator disconnected by the nonlinear feedback block. 
 
A discussed in Ref. [17], this model does not exhibit subcritical LCO and it is governed by 
the same mechanism in the entire LCO-velocity range between the disconnected and 
connected linear flutter velocities (91m/s<V<164m/s). Consequently, the first-order HB 
method discussed in this paper provides reasonably good results over the entire LCO range. 
Figure 6 shows the variation with velocity of the resulting LCO amplitude, divided by the 
free-play amplitude, and the fundamental LCO frequency, in comparison with comparison 
with direct time-domain simulations [9], both performed by Dynresp. It can be observed that 
the results agree fairly well. 
 
The PFM results were obtained using a frequency window of [12,13]Hz in steps of 0.2Hz, 
with the NLF time history calculated for two response periods with 100 points per cycle. The 
total time for calculating the responses at 13 velocities for 19 excitation amplitudes was 
6.0sec, whereas the time-marching simulations required for obtaining the time-marching plots 
of Ref. [9] required 119sec, not including the post-processing time.  
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Figure 6: LCO Results. 

 
4 CONCLUDING REMARKS 
 
A new method for flutter analysis of aeroservoelastic systems, based on parametric flutter 
margins (PFMs), was presented. In contrast to standard flutter methods that extract the flutter 
onset conditions through the mathematical properties of the system matrix, the PFM method 
is based on response to harmonic excitation of the system to which a parameter that increases 
the flutter velocity beyond the search range is added. Flutter margins calculated with respect 
to the added parameter provide a numerically convenient environment for extracting the 
flutter velocity, frequency and mode of the original system in the searched range. The 
nonlinear PFM relies on the same principle as linear PFM, namely finding the conditions at 
which PFM = 0dB, based on Fourier transform of the response parameter at the excitation 
frequency. The linear flutter solution is obtained first and then used as a starting point. The 
main issue to be considered in the nonlinear PFM solution process is the way nonlinear 
effects are introduced. A new non-iterative approach equivalent to the first-order Harmonic 
Balance method was presented in this work. 
 
Two Generic Transport Aircraft numerical models were used for proof of concept and 
validation of the new method. The linear PFM results are practically identical to those 
obtained using the common p-k (MSC/NASTRAN) and g (ZAERO) methods. The 
nonlinearities consisted of rotational free play in the control-surface actuators. As shown in 
the results sections, the LCO frequencies obtained by the PFM method agree with those 
obtained by the respective direct time-marching LCO solutions, while the amplitudes are up 
to 7% larger, which is acceptable for efficient design studies. The CPU time for obtaining the 
PFM results was about 20 times smaller than that of the time-marching approach. 
 
With the PFM concept proved and simple-case results validated, the numerical process is still 
to be applied to more complex nonlinearity sources from different disciplines. It is already 
clear, however, that the new response-based parametric approach may be favorably used to 
obtain aeroelastic design sensitivities, investigation of nonlinear effects that might not be 
covered by ordinary flutter margins, integration with control design processes and interaction 
with describing-function and response-surface models. The technique developed can be 
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applied for flutter analysis using standard FD dynamic aeroelastic response codes such as 
MSC/NASTRAN, ZAERO or nonlinear response codes such as Dynresp.  
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