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Abstract: A recently proposed method that extends the classical naggeibach captures geo-
metrically nonlinear effects in large structural deflenioThe extensions account for nonlinear
force displacement relationship by generalized quadeattt cubic stiffness terms and a geo-
metrically nonlinear displacement field by quadratic, cybnd fourth-order mode components.
These extensions make the method particularly suitabladavelastic applications involving
highly flexible structures and nonlinearities due to norseswmative loads. In this work, the
method is enhanced by rigid body degrees of freedom to stmalenaneuvering, very flexible
aircraft. Special emphasis is put on the derivation of a ebapled differential equations of
motion in which as few assumptions as possible are made esjbect to structural deforma-
tions. The use of the mean-axes constraints is explicitedydad, all inertial and gyroscopic
coupling terms between rigid body and elastic motion arkighedd. The setup of the aeroelastic
framework based on an unsteady vortex-lattice method ititteedoamin is presented in detail.
University of Michigan’s X-HALE UAV is the test case of thisork. The results of dynamic
maneuvers including tail input scenarios and gust encosiate presented and compared with
results from UM/NAST.

1 INTRODUCTION

Some classes of aircraft are characterized by highly flexalnfframes exhibiting pronounced
structural deflections in steady and maneuvering flighthHilitude, long endurance (HALE)
type of aircraft as well as modern, high performance saieare prominent examples. Design
criteria such as reduction of the induced drag almost iablytlead to wings of high slender-
ness and aspect ratio. Analyzing and designing highly flexaircraft puts great demands on
the methods and tools employed. Multidisciplinary anayaking into account aerodynam-
ics, flight mechanics, and structural dynamics is indispbleswhere nonlinearities due to large
rigid body and structural deflections are inherent in eadhede disciplines and must be taken
into account from the beginning. For the structural party dew methods exist so far for the
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calculation of general aircraft structures undergoingdateformations. Commercial Finite EI-
ement solver are mostly limited to clamped structures iir thenlinear solution capabilities.
On the other hand, sophisticated methods incorporatingjmear rigid body and elastic mo-
tions have been developed for beam type structural modéts Amecently developed method
(the extended modal approach) is aiming to fill this gap bymsion of the classical modal
approach to account for its major limitations [1-3]. Noedm force-displacement relations and
a geometrically nonlinear displacement field are accouiuteas well as a load dependent stiff-
ness function, similar to the geometric stiffness matrixdiism nonlinear finite element analyses.
In this work, the method is further extended by rigid bodyréeg of freedom in a nonlinear
fashion to enable the simulation of the free-flying elasiicraft. The differential equations of
motion are derived using Lagrange’s equations in quasi-nraadal coordinates. Inertial and
gyroscopic coupling terms between rigid body and elastitions are taken into account and
enable the use of shape functions for the calculation otstral deformations with clamped
boundary condition, which are required by the extended fraglaroach. In combination with
an unsteady vortex-lattice solver, an aeroelastic framievggpresented for trim and maneuver
simulations of highly flexible aircraft in the time domain.

The test case of this work is the¢HALE UAV from the Active Aeroelasticity and Structures
Research Laboratory from University of Michigan. The gdahés UAV project is the develop-

ment of a low cost test bed to obtain and provide nonlinearedastic data [4]. The concept and
setup of the X-HALE platform is depicted in Fig. 1. Pronowho@nlinear aeroelastic and flight
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Figure 1: Concept of the X-HALE UAV developed by UniversitiMichigan [4].

dynamics interactions make this aircraft a very challeggast case for numerical simulations.
Classical aeroelastic and flight dynamic analysis of edastcraft based on coupling of linear
aerodynamic methods such as DLM, with linear structuraldyics methods, are completely
losing their validity for such an application.

2 THEORY OF THE ENHANCED MODAL APPROACH

The derivation of the enhanced modal approach is given eildetRef. [1], the final governing

equations are presented in the following. Compared to thesadal modal approach, the pro-
posed method is based on a nonlinear force-displacemeatioreship by quadratic and cubic
stiffness terms, as given in the following nonlinear gowegrequation in pseudo-generalized
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coordinates:
PGhg + 7GY qg + PG e = Q" (p=1,...,m) 1)
Where thé’G,, tensors denote the generalized stiffnessesgati@ vector of generalized coor-

dinates. The stiffness tensars are determined by polynomial fitting or numerical diffeiant
tion [1].

The second extension is the reconstruction of a geomdyrimahlinear displacement field based
on higher-order mode components (here up to fourth ordeshially, the structure’s eigenvec-

tors realize the linear transformation from generalizgohysical coordinates. For the proposed
method this linear relationship is extended, the mode sh@pacludes components of higher-

order and becomes a function of generalized coordinates:

PD =Py + D g + DY gig; + 7R qig;q 2)
The term?®, can be seen as the equivalent of the structure’s normal modes

Considering Eq.(1), the forcing term of the structure’sgoing equation, the generalized force
Q?, is normally calculated by the product of the transposedreigctor matrix and the forces

on the structure’s nodeg, Here, the quadratic mode componenis extend the generalized

forces to yield a dependency @ on the amplitude of deformation:

Q" =" f +7®" f ¢ 3
Combining Eq.(1) and (3) yields:

i T ij ij
(PGL —PD F) g +PGY qiq; + PG gy g = PR f (4)

Eq.(4) is the static governing equation of the enhanced haggaoach. Compared to the clas-
sical modal approach, th&i term is amended by the product of the transpose of the quadrat
mode component matrix and the force field. This addition#fhsss parameter is of impor-
tance especially in aeroelastic applications [1, 2]. Sgbeat to the solution of the governing
equation for the generalized coordinatgshe nodal deformation field in cartesian coordinates
is approximated by the higher order mode components:

u(q) ="®, q, + 78} q,q, + " @Y q,0:q; + "®Y" q,q:9;an (5)

3 THEORETICAL DEVELOPMENT OF THE FLIGHT DYNAMIC EQUATIONS O F
MOTION

This section describes the derivation of the flight dynanguoations of motion for the free
flying elastic aircraft where elastic structural deforroa are calculated by means of the ex-
tended modal approach. The goal is to obtain a set of eqatiomhich rigid body and elastic
degrees of freedom (the independent variables) are cobpylatkertial and gyroscopic forces.
This coupling is retained deliberately because of two ressd-irst, any attempt to decouple
rigid body and elastic motions is based on a particular ehfwcthe location of the body fixed
reference frame. Using the aircraft’s instantaneous ceftgavity leads to the mean-axes con-
straints which are met by structural mode shapes with freefoundary conditions (unclamped
model). This approach is based on various assumptions,asusiall structural deformations
which is excluded in this work a priori. Second, the highetew stiffness and mode tensors are
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determined by a series of nonlinear structural simulati@sh simulations can be done with
a clamped structural model only.

The derivation is based on Lagrange’s equations of the sddad in quasi- and modal coordi-
nates and loosely based on the work from Buttrill and Mebahv[5, 6]. In contrast to Buttrill’s
derivation the inertial coupling terms between rigid bodg @lastic DOFs are kept. A lumped
mass model of the structure with discrete masses is used.

3.1 Definition of kinematic relationships

Two coordinate systems are used for the definition of therkatecs, a geodetic, earth-fixed
system and a body fixed frame, depicted in Fig. 2. The geodgsiiem is considered as inertial

Z

¢ "

Figure 2: Inertial (geodetic) and body fixed coordinate eyst with indice®) andb (body system fixed to the
undeformed body). Mass poiatn; in undeformed positiony;, and displacement due to structural
deformationy;.

system, its basis vectors are denotedehyy,, andz,. In the following, the coordinate system
fixed to a material point of the aircraft in its undeformedipos is denoted as body fixed frame
or body system, with basis vectors definedrgsy,, andz,. The summation indekrefers to a
discrete masgm, of the lumped mass model, whetalenotes the number of mass points. The
location of the body frame in the geodetic frame is defined d&gtar P, it is resolved in the
body frame. The set of Euler angles is used to define the detidfithe body frame within the
geodetic frame [7]:

=20V . (6)

Angular rates of the body frame resolved in the body framealareted by vectof,:
Q=[pqr]". 7
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The vectorR; denotes the location of a discrete mass point resolved imérgal frame:

wherer; defines the position of the mass point in the body fixed frantk mspect to the un-
deformed structure, ang; is the displacement of the mass point due to structural defoon,
also resolved in the body fixed frame. The velocity of the npasst, R;, is given by the total
time derivative of the position vectd®; and will be denoted a¥’; in the following:

Ri:P+QbXP+'&Z‘+QbX(Ti+ui)zvi' 9)

Aring above a variable denotes its time rate of change wgpeet to the body frame. The term
P + Q, x P corresponds to the translational velocity of the body fragsslved in the body
frame:

V,=P+Q,x P, (10)

with the following velocity components along the particudaes:
V= [uvw]" . (11)

Transformation of a vector resolved in the geodetic frante e body fixed frame is done by
rotation matrixM,. This matrix is also used to calculate the kinematical r@habetween the
time derivative of the position vectd? and the body frame’s translational velocity [7]:

V=M, P . (12)

Calculating the body frame’s angular veloc#}, from the time rate of change of the Euler
angles requires another transformation matrix denotedhy [7]:

Q=M ® . (13)

3.2 Kinetic Energy Expression

The kinetic energy of the aircraft is given by the sum of theekic energies of its discrete

|||assedmi:
1 “ T 1 T -
I ———<;1 ‘/i‘/idmi>+—9b ZElJin’ (14)

where the local tensor of inertia of an individual mass p@rdenoted byJ,. The sum of the
discrete masses yields the aircraft’s total mass,

m=Sdm, (15)
=1
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Inserting the velocity defined by Eq.(9) into Eq.(14) resirtthe following expression for the
kinetic energy of the structure [5].

T:%V;;FmeJr%Zﬁfﬁidmi (16)
i=1
+ % Qg Z [(r,ir'r'i) I - 'r'i'r'zr] dmi Qb
L i=1
+ % Q;;F Z [(uiTri + rl-Tui) I — uiriT — rluﬂ dm;| €2
L i=1

n

£ 07 | [(ulw) I~ weuf] dm,

Q, x (i (r; +u;) dmi>

n
i=1

Q,

+Qf + Vv

i=1

n
1=1

n

Z ('l"z‘ X 'iLZ) dmz

i=1

+vi +Qf

1 n
+§QbT§ Ji S .
=1

The nodal displacemeimt; of a mass poinim; due to structural deformation is calculated by the
modal approach. For simplicity, only the linéa, components are used for now. However, the
quadratic mode components are considered for the recatistiof the physical displacement
field, cf. Eqg.(5) in the final equations of motion for the a&fitr Henceu; is calculated as:

u, ="®)q, (p=1,...,m) . a7
With the corresponding time derivative given as:
w; ="} g, . (18)

Equation (18) is inserted into Eq.(16) to express nodalmedtions as function of generalized
coordinates. The resulting terms of Eq.(16) are discuseed n

1 .. 1 -
2 Z UZT w; dm; = 2 M. Gp G, (19)
=1
denotes the modal kinetic energy of the elastic deformatwamerel/,,, is the generalized mass
matrix. Definitions for the tensor of inertia and its derivas are introduced in the following to

simplify the equations of motion [5]. The tensor of inertialoe undeformed aircraft with the
local inertia contributions is given by the following expston:

J = Z [(’riT'ri) I— ririT] dm; + Z J; . (20)
=1 =1
The first-order effect of deformation on the inertia tensaconsidered by tensax.J:

Z [(uZT'rZ + 7 u;) I—uiriT—rl-uiT] dm; = Z [(er.T P@y) I —P@yr] — ripcﬁéT] dm; qp .

i=1 i=1

J/

AT,
(21)
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Second-order effect of deformation on the inertia tensooissidered by tensds:

n

Z [(u]w;) I —wu | dm; = Z [(p‘I'éT kq;é) I-7®) k@éT] dm; qyqr. - (22)

i=1 i=1

J/

-~

B,

The following definition is introduced:
AQka = Bpk‘ -+ ka . (23)

Second-order momentum coupling between elastic modeswudieat momentum occurs through
the following cross product of modesandk, denoted by tensdt [5]:

n n

i=1 i=1

J/

-~

hyi

If the origin of the body fixed frame is located at the centegmaivity of the undeformed struc-
ture, the seventh term of Eq.(16) will be identical zero.sTi@moves inertial coupling between
the translational and rotational angular momentum. Thation of the origin of the body fixed
frame with respect to the undeformed aircraft structureoisrastricted here and can be cho-
sen according to practical needs, but a location in the péusgmmetry of the aircraft seems
favorable. The eighth, ninth, and tenth term of Eq.(16) carsét to zero only if the so-called
mean-axiconditions are employed. These conditions can be appraediithe eigenvectors
of an unrestrained structure are used in Eq.(17) [5]. If igerevectors of a clamped structure
are to be used for the calculation of elastic deformatioogpting between elastic and transla-
tional and angular momentum occurs which is considered éyalfowing contributions to the
kinetic energy in Eq.(16):

i=1 _ L i=1
vT [Z widm;| =V || r®fdm; qp] (26)
i=1 | L Li=1
QD (rxag) dmi| = Q) || (ri x "D}) dmi] qp] (27)
i=1 | =1

Where the first expression describes the coupling betwaeariand angular momentum. The
following definitions are introduced to avoid lengthy exgs®ns in the following derivations.

rm=Y ridm (28a)
i=1

"dm=> " dm; (28b)
=1

Prdm = (ri x "®)) dm; (28c)

i=1
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3.3 Potential Energy Expression
The potential energy of the system is the sum of gravity arairsenergy:
U=U,+Us . (29)

Similar as for the kinetic energy and for simplicity, no hegtorder mode components are taken
into account for the strain energy function. Using only tine&r mode componeh®, for the
calculation of structural deformations in the potentiadigyy expression yields:

n

i T 1 i ij ij
U==> (P+r+"®q,) (Myg) dm;+ (pGl Wi + "Gy apiq; + pG:f'“qpqiqjqk) :

=1
(30)
where the gravity vector, resolved in the geodetic framdeisoted ag = [00 — g]T .

3.4 Definition of the generalized forces

The nonconservative generalized forces and moments foslat@onal and rotational momen-
tum as well as for the structural work are denoted)asQ,., and@”, respectively. Itis assumed
that the generalized forces of the translational and angutenentum are composed of aerody-
namic and propulsive (thrust) forces and moments only:

Q, =R+ F (31)

Q, =Q"'+Q" (32)
Here, R denotes the resulting aerodynamic forces with respecte@ties of the body fixed
frame, andF' denotes the resulting propulsive forces, also resolvetarbbdy fixed system.

Accordingly, Q* are the resulting aerodynamic moments, 6fddenotes the propulsive mo-
ments. The generalized forces of the structural govermjugion are calculated by Eq.(3).

3.5 Lagrange’s equations of the second kind in quasi- and madi coordinates

The derivation of the governing differential equations aftion for the free-flying elastic arcraft
is based on Lagrange’s equations of the second kind in gaadimodal coordinates, given by
Meirovitch [6, 8]. With the Lagrange variable defined as the difference of kinetic and poten-
tial energy, Lagrange’s equations for the system are thdtewias:

Linear momentum in quasi-coordinates:

d| OL oL oL
ail av, T (W) - Mugp = @ (33)

Rotational momentum in quasi coordinates:

d| 0L oL oL 7 \—1 0L
%ba—m+va<a—vb)+9bx<a—ﬂb)—(ﬂ4b¢) %—Qr (34)
Elastic deformation in modal coordinates:
d| oL 0L
— | === 35
dt|, 0¢, Ogp (35)
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Using the expressions for the kinetic and potential enegjindd above, and taking the partial
derivatives yields the inertially coupled equations of oot
The linear momentum equation of motion is then given as:

Viym + Q x [W +P¢mqp] +7®m i, +

Q, x [me +Q, x [m N ven qp] +27®m qp} — (My,9)m = Q, (36)

The rotational momentum equation of motion is given as:
7(02(, + 79(, + hpkqqu + hkapdk — ‘D/b X [W + PPm qp:| + Pprdm (jp

+ VX {Qb X [WercI)mqu

+ Qb X |:[J] Qb + hpkqqu — Vb X [W + Pom qp} + Prém qp:| = Qr s (37)
where the following definitions have been used [5]
— 1
J=J+AJ,q, + §A2kaqqu (38)

j = AJpq'p + AQkaQp(jk (39)

The governing equation of the elastic deformation for mpdegiven as:

M,

p

vir +V, PBm ot Q) [pm - hpqu] -V {Qb X pq"m} — 2" hyidy

1 i ij F ol
-~ QQbT AJ, + AQkaQk} Q + PG g + PG qu g +PGE qrgiq; +PPM (My,g) = QP

(40)

As can be seen from these equations, the coupling betwedhrée equations of motion not
only occurs by means of the aerodynamic forces applied taiticeaft, but also inertially by
the terms defined in EqQ.(28). In most aeroelastic applinatithese terms are implicitly set
to zero by the use of free-free mode shapes of an unrestragtadle. However, they are
kept in this work due to the higher order mode components faetthe reconstruction of the
physical displacement field, which are obtained for clamgiaettures only. Structural damping
is omitted here, but can be considered in the equation oflfsti@deformations.

4 THE AEROELASTIC FRAMEWORK

This section describes the aeroelastic framework whickaset on a steady and unsteady VL
solver for the calculation of the aerodynamic forces. Thstesdy solution sequence coupled
with unsteady aerodynamic forces in time domain is showrign¥at a glance. Initialization

of the aerodynamic model and the setup of the structural m®dene in a pre-processing step.
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Figure 3: Solution sequence for the flight dynamic simutaiwith aerodynamic, structural, and data transfer part.

4.1 The Vortex-Lattice Aerodynamic Model

Although several aerodynamic methods for geometricallylinear simulations with large de-
formations are presented in literature, three main reasopgort the choice of a VLM for this
work:

e An almost unlimited deformation of the structure is possibAerodynamic panels can
undergo large translations and rotation. This is one of tappnadvantages of the VLM
compared to theloublet-lattice methodDLM), which is valid for small out-of plane
displacements of lifting surfaces only [9].

e Comparatively fast computing time, even in unsteady modeugh slower as e.g. the
2D strip theory, the method is much cheaper than solving tisteady Euler or Navier-
Stokes equations using a CFD finite-volume approach.

e High accuracy. Compared to 2D theories, 3D effects (e.gheawingtip) are taken into
account from the outset. This aspect becomes importantiedigefor highly flexible
structures. Furthermore, induced drag is taken into adcand viscous drag can be
estimated and added easily.
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The implementation is based on vortex rings (in contragiédibrseshoe vortex approach) such
that unsteady aerodynamic forces can be calculated inetiistime steps by a wake shedding
procedure [10]. A linear relation of the kinematic boundeopnditionsw (downwash) to the
circulationsI” of each aerodynamic panel is the basis for the VL method:

AIC - T =w (41)

The aerodynamic influence coefficiemstrix AIC relates the velocity that is induced at cer-
tain (control) points in the flow domain to the circulationadf elementary solutions. The right
hand sidew includes the non-penetration condition (zero flow veloaitynormal direction)
at solid walls and the Kutta condition. Once the circulatloms determined, the dependent
variables, such as aerodynamic loads, pressures, andty@omponents can be calculated as
function of the circulation. After each time step, the netf the aerodynamic grid is calcu-
lated, including updates of e.g. the panel areas and theatewutors. To this end, translations
and rotations of aerodynamic panels due to structural defoons are always taken into ac-
count and no linearization or assumption is made in thisrcega

Induced drag can be calculated based on the velocities éndoy the trailing segments of the
bound and the wake vortex rings onto the bound vortex rin@§ [Ihese velocities are added
to the onflow velocity at each panel and tilt the resultingpdgnamic force vector. Viscous
forces, such as drag, are not part of a potential methodigisnlbut a simple approach for
consideration is to estimate them based on local flow and geanproperties and to add them
to the aerodynamic forces. Therefore, drag polars are gteuusing XFOIL for a set of
Reynolds numbers and angles of attack with the airfoil aereid. For each row of panels in
chordwise direction (strip), the effective angle of attamhflow velocity, and Reynolds number
are calculated based on the flow and geometrical propeftiggsoparticular strip. A higher-
order method interpolates the drag coefficient from the fsdtay polars based on the local strip
properties. The viscous forces can then be calculated @r g&ip using the interpolated drag
coeffcients [11].

4.2 Data Transfer between Aerodynamic and Structural Model

Independent discretizations of the structural and thedygamic model require methods for
the transfer of forces and the interpolation of displaceisien

u? = Hu® (42
FS=H"F4 (43)

The first equation relates the displacement of the struatodes due to elastic deformation and
the corresponding displacements of the points of the aeadic grid by a linear mapping with
the operatoiH, thecoupling matrix The second equation describes the transformation of the
aerodynamic loadg™ to structural load$™® . The linear mapping must ensure at least a global
conservation of work between the aerodynamic and the staigbart and correctly consider
rigid-body motions of the structure. In the case of the X-HAUAV, the structural model is
represented by a number of finite beam elements. Howevetrdhsfer of moments is not
considered by the coupling matr&d. To circumvent this problem, a so-calleduplingmodel

Is used that extends the one-dimensional beam stuctureDaw@o8el by adding massless rigid
bars (MSC NastralRBE2elements) from the particular structural nodes to the regiothe
leading and trailing edges. This approach is depicted in&ig

11
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Figure 4: Extension of one-dimensional beam structuralehtmda 3D model by RBE2-elements.

5 X-HALE TEST CASE: AEROELASTIC MODELS AND UNSTEADY MANEUVE R
SIMULATIONS

The X-HALE UAV from the University of Michigan is the test caso demonstrate and vali-
date unsteady maneuver simulation results with the methmabged. The X-HALE UAV is a
highly flexible, wing-boom-tail type aircraft. It has a smeter wingspan, to which five booms
with horizontal tails are attached, as well as five spinesainimg motors, batteries, and the
instrumentation payload. The mass of the aircraft is 11 kb fight speeds ranging from 10 to
19 m/s [12]. The wings and the tails are made from fiberglasgyepomposite wrapped around
a foam core. The spines and tail booms are made of carbon Tiheron-board measurement
systems consists of an array of sensor to collect data ddnedlight tests [12]. The UAV
serves as a low cost platform to obtain nonlinear aeroeldstia for support and validation of
nonlinear aeroelastic codes.

5.1 Nastran FEM of the X-HALE UAV

An MSC Nastran 2D finite element model of the X-HALE was bugtsbd on the definition
of the model used in UM/NAST. Beam-like components (wingsyrns, tails) are modeled by
beam-type elements (MSC NastrBBEAM elements), discrete mass elements are added for
concentrated masses of structural parts and ballast madsestructural model is depicted in
Fig. 5, where the masses of the discrete mass points ardizesiay spheres with aluminum
equivalent density. The origin of the body system is locatied,0,0) with respect to the struc-
tural model’s coordinate system used in Nastran. It mustéetioned that the structural model
is clamped at the origin of the body frame, and thus the wifigigble beam is clamped at
the center. The reason for the clamping is that the detetramaf the higher-order stiffness
and mode components requires a set of nonlinear structomalagions which can only be done
with a clamped structure.

5.2 Setup of the VL Aerodynamic Model

The aerodynamic model consists of different lifting suefador the wings, the tails, and the
spines, as shown in Fig. 6. All elements are lifting surfeamed share wake panels. The UAV
Is equipped with &£MX07 reflexed airfoil, and the VL solver uses the camber line datedl
from the upper and lower coordinates of the airfoil profildieTincidence of the wing’s airfoll
is five degrees with respect to the body system'’s referemmeedy as can be seen in Fig. 6. A
cosine function is applied for the spacing of the panels ewiing in the spanwise direction
to better resolve the wingtip effect, the transition at tifeedral wing elements and at the pods.
Any other lifting surfaces are modeled as flat plates.

12
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Figure 5: Finite element model of the X-HALE UAV build with Rible and rigid beam finite elements (represented
by red and grey lines, respectively). Discrete masses ligabby spheres with aluminum equivalent

density.
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Figure 6: Vortex-lattice grid for the X-HALE composed of seal lifting surfaces for the wings, the tails, and the
pods.

5.3 Unsteady Maneuvers and Comparison to UM/NAST

Four unsteady maneuvers will be presented in this sectitim@&neuvers start from a steady
horizontal, trimmed flight with a flight velocity of 16 m/s. €hrim deflection of the wingtips is
approximately 0.16 m. In the first two maneuvers the unsteaditation of the aircraft is done
by a rotation of all four tails simultaneously according teigusoidal function with a frequency
of 0.25 Hz. The simulation results of the first maneuver (swtrimtail rotation with one degree
amplitude) are presented in Fig. 7 in terms of displacemthisowvingtip and the pitch angle of
the aircraft’s body frame as well as the location in the zatiom in the geodetic system. From
a structural point of view, this test case is clearly withe finear regime. The results show
an acceptable agreement of the tip displacements from UIS/NAnd the proposed method.
Although the amplitudes are significantly different, theg an phase for the first four seconds
of the flight (the time of the tail rotation). Also the pitch@ea (theta) and the location in
the geodetic systenx) agree well for the first four seconds, but UM/NAST shows aenor
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Figure 7: Aircraft response to simultaneous symmetricsidal rotation of all four tails. Amplitude of rotation
1 degree, frequency 0.25 Hz. Steady trim velocity 16 m/s.

distinctive phugoid motion.

For the second test case shown in Fig. 8, the tails are radatgdmetrically (amplitude of right
tails two degrees, left tails one degree). The asymmetgiation leads to asymmetric struc-
tural deflections and rigid body motion around all axes. $&irlyi to the symmetric case, the
deformations of the wing on both sides calculated by UM/NAS much lower than the defor-
mations from the proposed method, but an acceptable agnteggven for the pitch angle and
the locationz, in the geodetic frame. The amplitude of the rigid body mofiem UM/NAST

is lower compared to the proposed method, and the yaw angjdesfpows completely different
behavior. A possible reason for the differences is that tidsfare modeled as slender bodies
in UM/NAST whereas they are represented as normal liftingases in the UVL framework.
This could result in different sideforces as the aircraftamters sideslip and rotates around
the body frame’s z axis.

The next two test cases use a gust disturbance to exciteadysteotion. TheDARPAgust pro-
file was chosen because it allows varying the disturbanaeitglalong the span of the aircraft
and, by proper choice of its parameters, leads to strongtatal excitations with comparatively
low rigid body motions as the aircraft passes through thé dgiere, the disturbance velocity of
the gust is fixed in the geodetic frame and given as:

1 2
Voust(X,Y) = QUdS <1 — cos (%)) cos (% — ) , (44)

whereU,, was set to 0.5 m/s and 2 m/s respectively for the two test gassented in the
following. The gust lengthf was set to 40 m, andto 3 m.

The first DARPA gust test casé/{, = 0.5 m/s) is presented in Fig. 9. The disturbance of the
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Figure 8: Aircraft response to simultaneous asymmetrigssiidal rotation of all four tails. Amplitude of rotation
2 and 1 degrees (right and left tails, respectively), freqye.25 Hz. Steady trim velocity 16 m/s.

gust leads to a dynamic deflection of the wingtip of approxetya0d.22 m, which corresponds,
together with the trim deflection of 0.16 m, to a total wing defion of 12% normalized to
the wingspan (3 m). This is slightly beyond the linear stuugk regime. Both UM/NAST
and the proposed method show good agreement in terms of tiggipvdeflection. As with the
symmetric tail rotation maneuver, the rigid body motiorccddted by the aeroelastic framework
with the unsteady vortex lattice method are less in ampditarad a significant shift in the phase
occurs for both the pitch angle and the location inthdirection.

The disturbance velocity was increased to 2 m/s for the skgoist case, whose results are
shown in Fig. 10. The wing deflections calculated by UM/NAS® higher in this case then
the UVL ones, which yields, together with the trim deflectiapproximately 30% normalized
tip displacement, a highly nonlinear state. The pitch anhglgree at a simulation time of two
seconds but show larger deviations both in terms of am@itu! phase after that. The location
in the geodetic, direction are close in amplitude but their temporal relatidfers. Snapshots
of the X-HALE passing the 2 m/s DARPA gust case are shown in Fig where the large
structural deformations are remarkable.

The question about the differences between the UM/NASTIteand the aeroelastic frame-
work with the UVL and the proposed method is not easy to answhe major difficulty is

that the simulation results presented were calculated mpétztely different aerodynamic and
structural dynamic disciplines. The UM/NAST toolbox usesrg theory to calculate the aero-
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Figure 9: Aircraft response to symmetrical gust disturleaf@ARPA gust profile with disturbance velocity of 0.5
m/s. Steady trim velocity 16 m/s.
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Figure 10: Aircraft response to symmetrical gust distudearDARPA gust profile with disturbance velocity of 2
m/s.

dynamic forces, where a time-domain approximation of Tleseh'’s function is applied. The
simplicity of this method comes with the drawback that thaumalinteractions of the aircraft’'s
lifting surfaces is not captured. The X-HALE configuratianeaspecially sensitive in this re-
gard because the lifting surfaces of the pods, tails, ancdcéinde expected to develop intense
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Figure 11: Snapshots of the X-HALE passing the DARPA gustwslange wing deformation in th&;, = 2 m/s
test case.

aerodynamic interactions. Also the wake of the wing andnteraction with the tails is not
modeled. On the other hand, the UM/NAST toolbox uses a vephisticated, geometrically
exact strain-based beam theory. Thus the structural dyrsaané expected to be captured in a
highly accurate manner. The UVL based framework uses ardgeamic method that a priori
acounts for the interferences of lifting surfaces (and inegal captures 3D effects). A better
representation of the aerodynamic forces (e.g. lift distion at the wingtips) is the conse-
qguence. Also time dependent effects due to the motion of @deevand the circulation that is
shed into the wake leads to different aerodynamic forcgmaally on the tails.

6 CONCLUSION

The goal of this work was the application of a framework fog tionlinear aeroelastic simu-
lation of highly flexible aircraft structures to simulateetX-HALE UAV. An extended modal
approach that accounts for nonlinear force-displacenststions and a geometrically nonlinear
displacement field by the inclusion of higher order stifthasd mode components was extended
with rigid body motions. To this end, the flight dynamic gaveg equations of motion were
derived based on Lagrange’s equations of the second kirelhitfmer order stiffness terms are
used in the expression of the potential energy, and theledilon of the nodal displacement field
uses the higher order mode components. Special emphasigavas inertial coupling terms
between rigid body and elastic motion which leads to a foatioih that explicitly avoids the
mean-axis constraints. This was done because the higher ma@be components can only be
calculated for clamped structures. The applied aeroelf&stmework is based on an unsteady
vortex-lattice method, and a coupling model is used to edpmeam-like structural models for
the fluid-structure interaction process. Four numericadlists with the X-HALE UAV were
presented: Two simple sinusoidal tail excitations thatltes in linear structural deformations,
and two gust encounter scenarios where the second one piehdisear structural deflections
up to 30% normalized tip displacements. Good agreementrinst®f structural deflections
(both amplitude and phase) were obtained for the gust strook The rigid body motions of
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UM/NAST and the proposed method, however, are in acceptipeement only for the first
few seconds and show large differences after that. Furtlv@enical studies and validations of
the two solvers with the X-HALE UAV are thus indispensabledsolve the differences.
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