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Abstract: A recently proposed method that extends the classical modalapproach captures geo-
metrically nonlinear effects in large structural deflections. The extensions account for nonlinear
force displacement relationship by generalized quadraticand cubic stiffness terms and a geo-
metrically nonlinear displacement field by quadratic, cubic, and fourth-order mode components.
These extensions make the method particularly suitable foraeroelastic applications involving
highly flexible structures and nonlinearities due to nonconservative loads. In this work, the
method is enhanced by rigid body degrees of freedom to simulate a maneuvering, very flexible
aircraft. Special emphasis is put on the derivation of a set of coupled differential equations of
motion in which as few assumptions as possible are made with respect to structural deforma-
tions. The use of the mean-axes constraints is explicitely avoided, all inertial and gyroscopic
coupling terms between rigid body and elastic motion are included. The setup of the aeroelastic
framework based on an unsteady vortex-lattice method in thetime doamin is presented in detail.
University of Michigan’s X-HALE UAV is the test case of this work. The results of dynamic
maneuvers including tail input scenarios and gust encounters are presented and compared with
results from UM/NAST.

1 INTRODUCTION

Some classes of aircraft are characterized by highly flexible airframes exhibiting pronounced
structural deflections in steady and maneuvering flight. High altitude, long endurance (HALE)
type of aircraft as well as modern, high performance sailplanes are prominent examples. Design
criteria such as reduction of the induced drag almost inevitably lead to wings of high slender-
ness and aspect ratio. Analyzing and designing highly flexible aircraft puts great demands on
the methods and tools employed. Multidisciplinary analysis taking into account aerodynam-
ics, flight mechanics, and structural dynamics is indispensable where nonlinearities due to large
rigid body and structural deflections are inherent in each ofthese disciplines and must be taken
into account from the beginning. For the structural part, only few methods exist so far for the

1



IFASD-2017-171

calculation of general aircraft structures undergoing large deformations. Commercial Finite El-
ement solver are mostly limited to clamped structures in their nonlinear solution capabilities.
On the other hand, sophisticated methods incorporating nonlinear rigid body and elastic mo-
tions have been developed for beam type structural models only. A recently developed method
(the extended modal approach) is aiming to fill this gap by extension of the classical modal
approach to account for its major limitations [1–3]. Nonlinear force-displacement relations and
a geometrically nonlinear displacement field are accountedfor as well as a load dependent stiff-
ness function, similar to the geometric stiffness matrix used in nonlinear finite element analyses.
In this work, the method is further extended by rigid body degrees of freedom in a nonlinear
fashion to enable the simulation of the free-flying elastic aircraft. The differential equations of
motion are derived using Lagrange’s equations in quasi- andmodal coordinates. Inertial and
gyroscopic coupling terms between rigid body and elastic motions are taken into account and
enable the use of shape functions for the calculation of structural deformations with clamped
boundary condition, which are required by the extended modal approach. In combination with
an unsteady vortex-lattice solver, an aeroelastic framework is presented for trim and maneuver
simulations of highly flexible aircraft in the time domain.

The test case of this work is theX-HALE UAV from the Active Aeroelasticity and Structures
Research Laboratory from University of Michigan. The goal of this UAV project is the develop-
ment of a low cost test bed to obtain and provide nonlinear aeroelastic data [4]. The concept and
setup of the X-HALE platform is depicted in Fig. 1. Pronounced nonlinear aeroelastic and flight

Figure 1: Concept of the X-HALE UAV developed by University of Michigan [4].

dynamics interactions make this aircraft a very challenging test case for numerical simulations.
Classical aeroelastic and flight dynamic analysis of elastic aircraft based on coupling of linear
aerodynamic methods such as DLM, with linear structural dynamics methods, are completely
losing their validity for such an application.

2 THEORY OF THE ENHANCED MODAL APPROACH

The derivation of the enhanced modal approach is given in detail in Ref. [1], the final governing
equations are presented in the following. Compared to the classical modal approach, the pro-
posed method is based on a nonlinear force-displacement relationship by quadratic and cubic
stiffness terms, as given in the following nonlinear governing equation in pseudo-generalized
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coordinates:
pGi

1 qi +
pG

ij
2 qiqj + pG

ijk
3 qiqjqk = Qp (p = 1, . . . , m) (1)

Where thepGn tensors denote the generalized stiffnesses andq the vector of generalized coor-
dinates. The stiffness tensorsGn are determined by polynomial fitting or numerical differentia-
tion [1].

The second extension is the reconstruction of a geometrically nonlinear displacement field based
on higher-order mode components (here up to fourth order). Usually, the structure’s eigenvec-
tors realize the linear transformation from generalized tophysical coordinates. For the proposed
method this linear relationship is extended, the mode shapep

Φ includes components of higher-
order and becomes a function of generalized coordinates:

p
Φ = p

Φ0 +
p
Φ

i
1
qi +

p
Φ

ij
2
qiqj +

p
Φ

ijk
3

qiqjqk (2)

The termp
Φ0 can be seen as the equivalent of the structure’s normal modes.

Considering Eq.(1), the forcing term of the structure’s governing equation, the generalized force
Qp, is normally calculated by the product of the transposed eigenvector matrix and the forces
on the structure’s nodes,f . Here, the quadratic mode componentsp

Φ
i
1 extend the generalized

forces to yield a dependency ofQp on the amplitude of deformation:

Qp = p
Φ0

Tf + p
Φ

i
1

T
f qi (3)

Combining Eq.(1) and (3) yields:

(pGi
1 −

p
Φ

i
1

T
f ) qi +

pG
ij
2 qi qj +

pG
ijk
3 qi qj qk = p

Φ0
Tf (4)

Eq.(4) is the static governing equation of the enhanced modal approach. Compared to the clas-
sical modal approach, thepGi

1
term is amended by the product of the transpose of the quadratic

mode component matrix and the force field. This additional stiffness parameter is of impor-
tance especially in aeroelastic applications [1, 2]. Subsequent to the solution of the governing
equation for the generalized coordinatesq, the nodal deformation field in cartesian coordinates
is approximated by the higher order mode components:

u(q) = p
Φ0 qp +

p
Φ

i
1
qpqi +

p
Φ

ij
2
qpqiqj +

p
Φ

ijk
3

qpqiqjqk (5)

3 THEORETICAL DEVELOPMENT OF THE FLIGHT DYNAMIC EQUATIONS O F
MOTION

This section describes the derivation of the flight dynamic equations of motion for the free
flying elastic aircraft where elastic structural deformations are calculated by means of the ex-
tended modal approach. The goal is to obtain a set of equations in which rigid body and elastic
degrees of freedom (the independent variables) are coupledby inertial and gyroscopic forces.
This coupling is retained deliberately because of two reasons. First, any attempt to decouple
rigid body and elastic motions is based on a particular choice for the location of the body fixed
reference frame. Using the aircraft’s instantaneous center of gravity leads to the mean-axes con-
straints which are met by structural mode shapes with free-free boundary conditions (unclamped
model). This approach is based on various assumptions, suchas small structural deformations
which is excluded in this work a priori. Second, the higher-order stiffness and mode tensors are
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determined by a series of nonlinear structural simulations. Such simulations can be done with
a clamped structural model only.

The derivation is based on Lagrange’s equations of the second kind in quasi- and modal coordi-
nates and loosely based on the work from Buttrill and Meirovitch [5,6]. In contrast to Buttrill’s
derivation the inertial coupling terms between rigid body and elastic DOFs are kept. A lumped
mass model of the structure with discrete masses is used.

3.1 Definition of kinematic relationships

Two coordinate systems are used for the definition of the kinematics, a geodetic, earth-fixed
system and a body fixed frame, depicted in Fig. 2. The geodeticsystem is considered as inertial

yb

zb

xb

y0

x0

z0

P

yb

zb

xb

ri ui

dmi

Figure 2: Inertial (geodetic) and body fixed coordinate systems with indices0 andb (body system fixed to the
undeformed body). Mass pointdmi in undeformed position,ri, and displacement due to structural
deformation,ui.

system, its basis vectors are denoted byxg, yg, andzg. In the following, the coordinate system
fixed to a material point of the aircraft in its undeformed position is denoted as body fixed frame
or body system, with basis vectors defined asxb, yb, andzb. The summation indexi refers to a
discrete massdmi of the lumped mass model, wheren denotes the number of mass points. The
location of the body frame in the geodetic frame is defined by vectorP , it is resolved in the
body frame. The set of Euler angles is used to define the attitude of the body frame within the
geodetic frame [7]:

Φ = [Φ Θ Ψ ]T . (6)

Angular rates of the body frame resolved in the body frame aredenoted by vectorΩb:

Ωb = [ p q r ]T . (7)
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The vectorRi denotes the location of a discrete mass point resolved in theinertial frame:

Ri = P + ri + ui , (8)

whereri defines the position of the mass point in the body fixed frame with respect to the un-
deformed structure, andui is the displacement of the mass point due to structural deformation,
also resolved in the body fixed frame. The velocity of the masspoint,Ṙi, is given by the total
time derivative of the position vectorRi and will be denoted asV i in the following:

Ṙi = Ṗ +Ωb ×P + ůi +Ωb × (ri + ui) = V i . (9)

A ring above a variable denotes its time rate of change with respect to the body frame. The term
Ṗ + Ωb × P corresponds to the translational velocity of the body frameresolved in the body
frame:

V b = Ṗ +Ωb × P , (10)

with the following velocity components along the particular axes:

V b = [u v w ]T . (11)

Transformation of a vector resolved in the geodetic frame into the body fixed frame is done by
rotation matrixM bg. This matrix is also used to calculate the kinematical relation between the
time derivative of the position vectorP and the body frame’s translational velocity [7]:

V b = M bg Ṗ . (12)

Calculating the body frame’s angular velocityΩb from the time rate of change of the Euler
angles requires another transformation matrix denoted byM bΦ [7]:

Ωb = M bΦ Φ̇ . (13)

3.2 Kinetic Energy Expression

The kinetic energy of the aircraft is given by the sum of the kinetic energies of itsn discrete
massesdmi:

T =
1

2

(
n∑

i=1

V T
i V i dmi

)

+
1

2
Ω

T
b

n∑

i=1

J i Ωb , (14)

where the local tensor of inertia of an individual mass pointis denoted byJ i. The sum of the
discrete masses yields the aircraft’s total mass,m:

m =

n∑

i=1

dmi . (15)
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Inserting the velocity defined by Eq.(9) into Eq.(14) results in the following expression for the
kinetic energy of the structure [5].
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1
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V T

b V b m+
1

2
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i ůi dmi (16)
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(ri × ůi) dmi

]

+
1

2
Ω

T
b

n∑

i=1
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The nodal displacementui of a mass pointdmi due to structural deformation is calculated by the
modal approach. For simplicity, only the linearp

Φ0 components are used for now. However, the
quadratic mode components are considered for the reconstruction of the physical displacement
field, cf. Eq.(5) in the final equations of motion for the aircraft. Hence,ui is calculated as:

ui =
p
Φ

i
0 qp (p = 1, . . . , m) . (17)

With the corresponding time derivative given as:

u̇i =
p
Φ

i
0 q̇p . (18)

Equation (18) is inserted into Eq.(16) to express nodal deformations as function of generalized
coordinates. The resulting terms of Eq.(16) are discussed now.

1

2

n∑

i=1

ůT
i ůi dmi =

1

2
Mpk q̇p q̇k (19)

denotes the modal kinetic energy of the elastic deformations whereMpk is the generalized mass
matrix. Definitions for the tensor of inertia and its derivatives are introduced in the following to
simplify the equations of motion [5]. The tensor of inertia of the undeformed aircraft with the
local inertia contributions is given by the following expression:

J ≡

n∑

i=1

[(
rT
i ri

)
I − rir

T
i

]

dmi +

n∑

i=1

J i . (20)

The first-order effect of deformation on the inertia tensor is considered by tensor∆J :

n∑
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uT

i ri + rT
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T
i −riu

T
i
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Φ

i
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)
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p
Φ

i
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T
i − ri

p
Φ

i
0

T
]

dmi
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∆Jp

qp .

(21)
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Second-order effect of deformation on the inertia tensor isconsidered by tensorB:

n∑

i=1

[(
uT

i ui

)
I − uiu

T
i

]
dmi =

n∑

i=1

[(
p
Φ

i
0

T k
Φ

i
0

)

I −
p
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i
0

k
Φ

i
0

T
]
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Bpk

qpqk . (22)

The following definition is introduced:

∆2Jpk ≡ Bpk +Bkp . (23)

Second-order momentum coupling between elastic modes and angular momentum occurs through
the following cross product of modesp andk, denoted by tensorh [5]:

n∑

i=1

(ui × ůi) dmi =

n∑

i=1

(
p
Φ

i
0 ×

k
Φ

i
0

)
dmi
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hpk

qpq̇k . (24)

If the origin of the body fixed frame is located at the center ofgravity of the undeformed struc-
ture, the seventh term of Eq.(16) will be identical zero. This removes inertial coupling between
the translational and rotational angular momentum. The location of the origin of the body fixed
frame with respect to the undeformed aircraft structure is not restricted here and can be cho-
sen according to practical needs, but a location in the planeof symmetry of the aircraft seems
favorable. The eighth, ninth, and tenth term of Eq.(16) can be set to zero only if the so-called
mean-axisconditions are employed. These conditions can be approximated if the eigenvectors
of an unrestrained structure are used in Eq.(17) [5]. If the eigenvectors of a clamped structure
are to be used for the calculation of elastic deformations, coupling between elastic and transla-
tional and angular momentum occurs which is considered by the following contributions to the
kinetic energy in Eq.(16):
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Where the first expression describes the coupling between linear and angular momentum. The
following definitions are introduced to avoid lengthy expressions in the following derivations.

rm ≡

n∑

i=1

ri dmi (28a)

p
Φm ≡

n∑

i=1

p
Φ

i
0
dmi (28b)

prΦm ≡

n∑

i=1

(
ri ×

p
Φ

i
0

)
dmi (28c)
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3.3 Potential Energy Expression

The potential energy of the system is the sum of gravity and strain energy:

U =Ug + Us . (29)

Similar as for the kinetic energy and for simplicity, no higher order mode components are taken
into account for the strain energy function. Using only the linear mode componentpΦi

0 for the
calculation of structural deformations in the potential energy expression yields:

U = −

n∑

i=1

(
P + ri +

p
Φ

i
0
qp
)T

(M bg g) dmi+
1

2

(
pGi

1
qpqi +

pG
ij
2
qpqiqj + pG

ijk
3

qpqiqjqk

)

,

(30)
where the gravity vector, resolved in the geodetic frame, isdenoted asg = [ 0 0 − g ]T .

3.4 Definition of the generalized forces

The nonconservative generalized forces and moments for translational and rotational momen-
tum as well as for the structural work are denoted asQt,Qr, andQp, respectively. It is assumed
that the generalized forces of the translational and angular momentum are composed of aerody-
namic and propulsive (thrust) forces and moments only:

Qt = RA + F (31)

Qr = QA +QF (32)

Here,RA denotes the resulting aerodynamic forces with respect to the axes of the body fixed
frame, andF denotes the resulting propulsive forces, also resolved in the body fixed system.
Accordingly,QA are the resulting aerodynamic moments, andQF denotes the propulsive mo-
ments. The generalized forces of the structural governing equation are calculated by Eq.(3).

3.5 Lagrange’s equations of the second kind in quasi- and modal coordinates

The derivation of the governing differential equations of motion for the free-flying elastic arcraft
is based on Lagrange’s equations of the second kind in quasi-and modal coordinates, given by
Meirovitch [6, 8]. With the Lagrange variableL defined as the difference of kinetic and poten-
tial energy, Lagrange’s equations for the system are then written as:

Linear momentum in quasi-coordinates:

d

dt

∣
∣
∣
∣
b

∂L

∂V b

+Ωb ×

(
∂L

∂V b

)

−M bg

∂L

∂P
= Qt (33)

Rotational momentum in quasi coordinates:

d

dt

∣
∣
∣
∣
b

∂L

∂Ωb

+ V b ×

(
∂L

∂V b

)

+Ωb ×

(
∂L

∂Ωb

)

−

(
MT

bΦ

)
−1 ∂L

∂Θ
= Qr (34)

Elastic deformation in modal coordinates:

d

dt

∣
∣
∣
∣
b

∂L

∂q̇p
−

∂L

∂qp
= Qp (35)
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Using the expressions for the kinetic and potential energy defined above, and taking the partial
derivatives yields the inertially coupled equations of motion.

The linear momentum equation of motion is then given as:

V̊ bm+ Ω̊b ×

[

rm+ p
Φm qp

]

+ p
Φm q̈p+

Ωb ×

[

V b m+Ωb ×

[

rm+ p
Φm qp

]

+ 2 p
Φm q̇p

]

− (M bgg)m = Qt (36)

The rotational momentum equation of motion is given as:

JΩ̊b + J̊Ωb + hpkq̇pq̇k + hpkqpq̈k − V̊ b ×

[

rm+ p
Φm qp

]

+ prΦm q̈p

+ V b ×

[

Ωb ×

[

rm+ p
Φm qp

]]

+Ωb ×

[

[J ]Ωb + hpkqpq̇k − V b ×

[

rm+ p
Φm qp

]

+ prΦm q̇p

]

= Qr , (37)

where the following definitions have been used [5]

J ≡ J +∆Jpqp +
1

2
∆2Jpkqpqk (38)

J̊ ≡ ∆J pq̇p +∆2Jpkqpq̇k (39)

The governing equation of the elastic deformation for modep is given as:

Mpk q̈k + V̊
T

b
p
Φm+ Ω̊

T

b

[
prΦm− hpkqk

]

− V T
b

[

Ωb ×
p
Φm

]

− 2Ωb
T hpkq̇k

−

1

2
Ω

T
b

[

∆Jp +∆2Jpkqk

]

Ωb +
pGk

1 qk +
pGki

2 qk qi +
pG

kij
3 qk qi qj +

p
Φm

T
(M bgg) = Qp

(40)

As can be seen from these equations, the coupling between thethree equations of motion not
only occurs by means of the aerodynamic forces applied to theaircraft, but also inertially by
the terms defined in Eq.(28). In most aeroelastic applications, these terms are implicitly set
to zero by the use of free-free mode shapes of an unrestrainedvehicle. However, they are
kept in this work due to the higher order mode components usedfor the reconstruction of the
physical displacement field, which are obtained for clampedstructures only. Structural damping
is omitted here, but can be considered in the equation of the elastic deformations.

4 THE AEROELASTIC FRAMEWORK

This section describes the aeroelastic framework which is based on a steady and unsteady VL
solver for the calculation of the aerodynamic forces. The unsteady solution sequence coupled
with unsteady aerodynamic forces in time domain is shown in Fig. 3 at a glance. Initialization
of the aerodynamic model and the setup of the structural model is done in a pre-processing step.
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Figure 3: Solution sequence for the flight dynamic simulations with aerodynamic, structural, and data transfer part.

4.1 The Vortex-Lattice Aerodynamic Model

Although several aerodynamic methods for geometrically nonlinear simulations with large de-
formations are presented in literature, three main reasonssupport the choice of a VLM for this
work:

• An almost unlimited deformation of the structure is possible. Aerodynamic panels can
undergo large translations and rotation. This is one of the major advantages of the VLM
compared to thedoublet-lattice method(DLM), which is valid for small out-of plane
displacements of lifting surfaces only [9].

• Comparatively fast computing time, even in unsteady mode. Though slower as e.g. the
2D strip theory, the method is much cheaper than solving the unsteady Euler or Navier-
Stokes equations using a CFD finite-volume approach.

• High accuracy. Compared to 2D theories, 3D effects (e.g. at the wingtip) are taken into
account from the outset. This aspect becomes important especially for highly flexible
structures. Furthermore, induced drag is taken into account and viscous drag can be
estimated and added easily.
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The implementation is based on vortex rings (in contrast to the horseshoe vortex approach) such
that unsteady aerodynamic forces can be calculated in discrete time steps by a wake shedding
procedure [10]. A linear relation of the kinematic boundaryconditionsw (downwash) to the
circulationsΓ of each aerodynamic panel is the basis for the VL method:

AIC · Γ = w (41)

Theaerodynamic influence coefficientsmatrixAIC relates the velocity that is induced at cer-
tain (control) points in the flow domain to the circulation ofall elementary solutions. The right
hand sidew includes the non-penetration condition (zero flow velocityin normal direction)
at solid walls and the Kutta condition. Once the circulationΓ is determined, the dependent
variables, such as aerodynamic loads, pressures, and velocity components can be calculated as
function of the circulation. After each time step, the metric of the aerodynamic grid is calcu-
lated, including updates of e.g. the panel areas and the normal vectors. To this end, translations
and rotations of aerodynamic panels due to structural deformations are always taken into ac-
count and no linearization or assumption is made in this regard.

Induced drag can be calculated based on the velocities induced by the trailing segments of the
bound and the wake vortex rings onto the bound vortex rings [10]. These velocities are added
to the onflow velocity at each panel and tilt the resulting aerodynamic force vector. Viscous
forces, such as drag, are not part of a potential method’s solution but a simple approach for
consideration is to estimate them based on local flow and geometric properties and to add them
to the aerodynamic forces. Therefore, drag polars are generated using XFOIL for a set of
Reynolds numbers and angles of attack with the airfoil considered. For each row of panels in
chordwise direction (strip), the effective angle of attack, onflow velocity, and Reynolds number
are calculated based on the flow and geometrical properties of this particular strip. A higher-
order method interpolates the drag coefficient from the set of drag polars based on the local strip
properties. The viscous forces can then be calculated for each strip using the interpolated drag
coeffcients [11].

4.2 Data Transfer between Aerodynamic and Structural Model

Independent discretizations of the structural and the aerodynamic model require methods for
the transfer of forces and the interpolation of displacements:

uA = H uS (42)

F S = HT FA (43)

The first equation relates the displacement of the structural nodes due to elastic deformation and
the corresponding displacements of the points of the aerodynamic grid by a linear mapping with
the operatorH, thecoupling matrix. The second equation describes the transformation of the
aerodynamic loadsF A to structural loadsF S . The linear mapping must ensure at least a global
conservation of work between the aerodynamic and the structural part and correctly consider
rigid-body motions of the structure. In the case of the X-HALE UAV, the structural model is
represented by a number of finite beam elements. However, thetransfer of moments is not
considered by the coupling matrixH. To circumvent this problem, a so-calledcouplingmodel
is used that extends the one-dimensional beam stucture to a 3D model by adding massless rigid
bars (MSC NastranRBE2elements) from the particular structural nodes to the region of the
leading and trailing edges. This approach is depicted in Fig. 4.
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Figure 4: Extension of one-dimensional beam structural model to a 3D model by RBE2-elements.

5 X-HALE TEST CASE: AEROELASTIC MODELS AND UNSTEADY MANEUVE R
SIMULATIONS

The X-HALE UAV from the University of Michigan is the test case to demonstrate and vali-
date unsteady maneuver simulation results with the method proposed. The X-HALE UAV is a
highly flexible, wing-boom-tail type aircraft. It has a six-meter wingspan, to which five booms
with horizontal tails are attached, as well as five spines containing motors, batteries, and the
instrumentation payload. The mass of the aircraft is 11 kg with flight speeds ranging from 10 to
19 m/s [12]. The wings and the tails are made from fiberglass epoxy composite wrapped around
a foam core. The spines and tail booms are made of carbon fiber.The on-board measurement
systems consists of an array of sensor to collect data duringthe flight tests [12]. The UAV
serves as a low cost platform to obtain nonlinear aeroelastic data for support and validation of
nonlinear aeroelastic codes.

5.1 Nastran FEM of the X-HALE UAV

An MSC Nastran 2D finite element model of the X-HALE was built based on the definition
of the model used in UM/NAST. Beam-like components (wings, booms, tails) are modeled by
beam-type elements (MSC NastranPBEAM elements), discrete mass elements are added for
concentrated masses of structural parts and ballast masses. The structural model is depicted in
Fig. 5, where the masses of the discrete mass points are visualized by spheres with aluminum
equivalent density. The origin of the body system is locatedat (0,0,0) with respect to the struc-
tural model’s coordinate system used in Nastran. It must be mentioned that the structural model
is clamped at the origin of the body frame, and thus the wing’sflexible beam is clamped at
the center. The reason for the clamping is that the determination of the higher-order stiffness
and mode components requires a set of nonlinear structural simulations which can only be done
with a clamped structure.

5.2 Setup of the VL Aerodynamic Model

The aerodynamic model consists of different lifting surfaces for the wings, the tails, and the
spines, as shown in Fig. 6. All elements are lifting surfacesand share wake panels. The UAV
is equipped with aEMX07 reflexed airfoil, and the VL solver uses the camber line calculated
from the upper and lower coordinates of the airfoil profile. The incidence of the wing’s airfoil
is five degrees with respect to the body system’s reference frame, as can be seen in Fig. 6. A
cosine function is applied for the spacing of the panels on the wing in the spanwise direction
to better resolve the wingtip effect, the transition at the dihedral wing elements and at the pods.
Any other lifting surfaces are modeled as flat plates.
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Figure 5: Finite element model of the X-HALE UAV build with flexible and rigid beam finite elements (represented
by red and grey lines, respectively). Discrete masses visualized by spheres with aluminum equivalent
density.
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Figure 6: Vortex-lattice grid for the X-HALE composed of several lifting surfaces for the wings, the tails, and the
pods.

5.3 Unsteady Maneuvers and Comparison to UM/NAST

Four unsteady maneuvers will be presented in this section. All maneuvers start from a steady
horizontal, trimmed flight with a flight velocity of 16 m/s. The trim deflection of the wingtips is
approximately 0.16 m. In the first two maneuvers the unsteadyexcitation of the aircraft is done
by a rotation of all four tails simultaneously according to asinusoidal function with a frequency
of 0.25 Hz. The simulation results of the first maneuver (symmetric tail rotation with one degree
amplitude) are presented in Fig. 7 in terms of displacement of the wingtip and the pitch angle of
the aircraft’s body frame as well as the location in the z direction in the geodetic system. From
a structural point of view, this test case is clearly within the linear regime. The results show
an acceptable agreement of the tip displacements from UM/NAST and the proposed method.
Although the amplitudes are significantly different, they are in phase for the first four seconds
of the flight (the time of the tail rotation). Also the pitch angle (theta) and the location in
the geodetic system (zg) agree well for the first four seconds, but UM/NAST shows a more
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Figure 7: Aircraft response to simultaneous symmetric sinusoidal rotation of all four tails. Amplitude of rotation
1 degree, frequency 0.25 Hz. Steady trim velocity 16 m/s.

distinctive phugoid motion.

For the second test case shown in Fig. 8, the tails are rotatedasymmetrically (amplitude of right
tails two degrees, left tails one degree). The asymmetric excitation leads to asymmetric struc-
tural deflections and rigid body motion around all axes. Similarly to the symmetric case, the
deformations of the wing on both sides calculated by UM/NASTare much lower than the defor-
mations from the proposed method, but an acceptable agreement is given for the pitch angle and
the locationzg in the geodetic frame. The amplitude of the rigid body motionfrom UM/NAST
is lower compared to the proposed method, and the yaw angle (psi) shows completely different
behavior. A possible reason for the differences is that the pods are modeled as slender bodies
in UM/NAST whereas they are represented as normal lifting surfaces in the UVL framework.
This could result in different sideforces as the aircraft encounters sideslip and rotates around
the body frame’s z axis.

The next two test cases use a gust disturbance to excite unsteady motion. TheDARPAgust pro-
file was chosen because it allows varying the disturbance velocity along the span of the aircraft
and, by proper choice of its parameters, leads to strong structural excitations with comparatively
low rigid body motions as the aircraft passes through the gust. Here, the disturbance velocity of
the gust is fixed in the geodetic frame and given as:

Vgust(X, Y ) =
1

2
Uds

(

1− cos

(
2πx

H

))

cos
(πy

λ
− φ
)

, (44)

whereUds was set to 0.5 m/s and 2 m/s respectively for the two test casespresented in the
following. The gust lengthH was set to 40 m, andλ to 3 m.

The first DARPA gust test case (Uds = 0.5 m/s) is presented in Fig. 9. The disturbance of the
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Figure 8: Aircraft response to simultaneous asymmetric sinusoidal rotation of all four tails. Amplitude of rotation
2 and 1 degrees (right and left tails, respectively), frequency 0.25 Hz. Steady trim velocity 16 m/s.

gust leads to a dynamic deflection of the wingtip of approximately 0.22 m, which corresponds,
together with the trim deflection of 0.16 m, to a total wing deflection of 12% normalized to
the wingspan (3 m). This is slightly beyond the linear structural regime. Both UM/NAST
and the proposed method show good agreement in terms of the wingtip deflection. As with the
symmetric tail rotation maneuver, the rigid body motion calculated by the aeroelastic framework
with the unsteady vortex lattice method are less in amplitude and a significant shift in the phase
occurs for both the pitch angle and the location in thezg direction.

The disturbance velocity was increased to 2 m/s for the second gust case, whose results are
shown in Fig. 10. The wing deflections calculated by UM/NAST are higher in this case then
the UVL ones, which yields, together with the trim deflection, approximately 30% normalized
tip displacement, a highly nonlinear state. The pitch angles agree at a simulation time of two
seconds but show larger deviations both in terms of amplitude and phase after that. The location
in the geodeticzg direction are close in amplitude but their temporal relation differs. Snapshots
of the X-HALE passing the 2 m/s DARPA gust case are shown in Fig. 11, where the large
structural deformations are remarkable.

The question about the differences between the UM/NAST results and the aeroelastic frame-
work with the UVL and the proposed method is not easy to answer. The major difficulty is
that the simulation results presented were calculated by completely different aerodynamic and
structural dynamic disciplines. The UM/NAST toolbox uses astrip theory to calculate the aero-
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Figure 10: Aircraft response to symmetrical gust disturbance. DARPA gust profile with disturbance velocity of 2
m/s.

dynamic forces, where a time-domain approximation of Theodorsen’s function is applied. The
simplicity of this method comes with the drawback that the mutual interactions of the aircraft’s
lifting surfaces is not captured. The X-HALE configuration is especially sensitive in this re-
gard because the lifting surfaces of the pods, tails, and finscan be expected to develop intense
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Figure 11: Snapshots of the X-HALE passing the DARPA gust show large wing deformation in theUds = 2 m/s
test case.

aerodynamic interactions. Also the wake of the wing and its interaction with the tails is not
modeled. On the other hand, the UM/NAST toolbox uses a very sophisticated, geometrically
exact strain-based beam theory. Thus the structural dynamics are expected to be captured in a
highly accurate manner. The UVL based framework uses an aerodynamic method that a priori
acounts for the interferences of lifting surfaces (and in general captures 3D effects). A better
representation of the aerodynamic forces (e.g. lift distribution at the wingtips) is the conse-
quence. Also time dependent effects due to the motion of the wake and the circulation that is
shed into the wake leads to different aerodynamic forces, especially on the tails.

6 CONCLUSION

The goal of this work was the application of a framework for the nonlinear aeroelastic simu-
lation of highly flexible aircraft structures to simulate the X-HALE UAV. An extended modal
approach that accounts for nonlinear force-displacement relations and a geometrically nonlinear
displacement field by the inclusion of higher order stiffness and mode components was extended
with rigid body motions. To this end, the flight dynamic governing equations of motion were
derived based on Lagrange’s equations of the second kind. The higher order stiffness terms are
used in the expression of the potential energy, and the calculation of the nodal displacement field
uses the higher order mode components. Special emphasis wasput on inertial coupling terms
between rigid body and elastic motion which leads to a formulation that explicitly avoids the
mean-axis constraints. This was done because the higher order mode components can only be
calculated for clamped structures. The applied aeroelastic framework is based on an unsteady
vortex-lattice method, and a coupling model is used to expand beam-like structural models for
the fluid-structure interaction process. Four numerical studies with the X-HALE UAV were
presented: Two simple sinusoidal tail excitations that resulted in linear structural deformations,
and two gust encounter scenarios where the second one yieldsnonlinear structural deflections
up to 30% normalized tip displacements. Good agreement in terms of structural deflections
(both amplitude and phase) were obtained for the gust simulations. The rigid body motions of
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UM/NAST and the proposed method, however, are in acceptableagreement only for the first
few seconds and show large differences after that. Further numerical studies and validations of
the two solvers with the X-HALE UAV are thus indispensable toresolve the differences.
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