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Abstract: A semi-analytical formulation for the unsteady aerodynamics of flat plates is ex-
tended to flexible thin airfoils. The velocity field is described by means of a complex poten-
tial, which is developed by mapping the airfoil boundary onto a circle. This well-established
approach adopted in several small disturbance theories is generalized to airfoil motions of arbi-
trary amplitude, under the only assumptions of attached flow and constant body length. Vorticity
shedding from the airfoil trailing edge is modeled using a discrete-vortex method to account for
non-planar wake. A semi-analytical solution for the pressure jump on the body is obtained that
may be used for parametric studies and assessment of high-fidelity solvers. Numerical results
are presented for a cantilevered flexible airfoil undergoing imposed motion in a steady axial
flow.

1 INTRODUCTION

Two-dimensional incompressible potential-flow unsteady aerodynamics plays a key role in
aeroelasticity since the beginning of the past century. The relative physics simplicity and avail-
ability of sound theoretical approaches have allowed to obtain several closed-form solutions
for the aerodynamic load on moving airfoils [1–8]. Despite great progresses in computational
fluid dynamics and experimental methods, such theoretical models are still used as low-order
simulation tools and for validation of high-fidelity solvers.

Recent research on theoretical modeling of unsteady aerodynamics is driven by the interest in
applications such as bioinspired unmanned aerial vehicles, morphing airfoils, and fluttering de-
vices for energy harvesting [9–11]. Indeed, there is a need of analytical models to preliminarily
investigate the aeroelastic effects of large-amplitude motion and body deformation before per-
forming high-fidelity computations or experimental campaigns. Benchmarks for assessment of
fully numerical models are also necessary. Traditional theoretical solutions may not be suitable
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for these purposes since they are valid only for small disturbances and flat wake [1–8]. There-
fore, large-amplitude flat-plate models have been recently developed [12–15]. However, there is
still a lack of general modeling approaches to simultaneously take into account large-amplitude
motion, body flexibility, and free-wake effects in a unique theory.

This paper presents a semi-analytical formulation for the unsteady aerodynamics of flexible
thin airfoils that generalizes the flat-plate model presented and validated in Ref. [16]. The ve-
locity field is described by means of a complex potential [17], which is evaluated by mapping
the airfoil boundary onto a circle [18]. This well-established approach traditionally adopted
to derive small disturbance theories [3] is here generalized to study airfoil rigid-body motion
and deformation of arbitrary amplitude, under the only assumptions of attached flow and con-
stant body length. Vorticity shedding from the trailing edge is modeled using a discrete-vortex
method [19] to account for non-planar wake. A semi-analytical solution for the pressure jump
on the airfoil is obtained that simultaneously includes large-amplitude motion, body flexibility,
and free-wake effects. Numerical results for a cantilevered flexible airfoil undergoing imposed
motion in a steady axial flow are presented to show the capabilities of the proposed model.

The paper is organized as follows. A generalized map for flexible thin airfoils in arbitrary
motion is introduced in Sec. 2. The complex potential is developed in Sec. 3. The pressure
jump on the body is obtained in Sec. 4. Numerical results are presented in Sec. 5. Concluding
remarks and future work are discussed in Sec. 6.

2 GENERALIZED MAPPING

The present formulation is based on the standard hypotheses of inviscid and incompressible
fluid in attached, planar, and irrotational flow, which allow to develop a theoretical model via
complex analysis [17, 18]. The physical plane of the flow is identified with the complex plane,
and an auxiliary plane is also introduced. The position vectors in the two planes are identified
with the complex variables x and ω, respectively. The velocity field around a flexible thin air-
foil in the x-plane is described in terms of a complex potential [17], which is developed in the
ω-plane by mapping the airfoil boundary onto a circle [18]. To this purpose, the time-dependent
map used to develop the flat-plate model in Ref. [16] is here generalized to account for body de-
formation. As main advantage, using a time-dependent transformation that follows the moving
airfoil boundary allows to study rigid-body and elastic motions of arbitrary amplitude, under
the only assumptions of attached flow and constant body length. Conversely, standard time-
constant maps [18] transform the airfoil boundary in its reference configuration and are thus
suitable to study only small disturbances [3, 5, 8]. A body-fixed reference frame is frequently
introduced to model large-amplitude rigid-body motion still using a stationary map [13,15], but
this approach is not applicable to study large airfoil deformations.

2.1 Geometry and kinematics

The present unsteady aerodynamic model is developed by introducing the following time-
dependent map from the ω-plane to the x-plane

x(ω; t) = h(t) +
` χ(t)

4

n∑
k=1

ck(t)
(
ωk + ω−k

)
(1)

This is assumed smooth in both ω and t, with ∂ωx 6= 0 at any point on the unit circle C apart
from the points ω = ±1.
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Figure 1: Unit circle in the ω-plane (left) mapped onto a curved thin airfoil in the x-plane (right) by means of
Eq. (1) for n = 3, ` = 1, h = 0.25 − i0.25, α = 10◦, c1 = 1, c2 = i0.075, c3 = i0.125. Coordinates
are normalized by the circle radius (left) and by the airfoil length (right).

The map in Eq. (1) transforms points on C in the ω-plane into points on the boundary of a thin
airfoil undergoing rigid-body motion and deformation in thex-plane (see the example in Fig. 1).
No assumption is placed on the motion amplitude, provided that the flow remains attached and
that the body undeformed length ` is conserved. Arbitrary rigid-body translation is taken into
account in Eq. (1) by the function h(t) = hx(t)+ihy(t), which gives the instantaneous position
of the undeformed airfoil centroid. The function χ(t) := exp[−iα(t)] introduces a rigid-body
rotation by the instantaneous clockwise-positive angle of attack α(t). The body deformed shape
is described by the complex coefficients ck(t) = c rk (t) + ic ik(t) (k = 1, 2, . . . , n), n being the
order of the truncated Laurent series [18] in Eq. (1). The transformation used in Ref. [16] to
model a flat plate is a special case of Eq. (1) obtained by taking n = 1 and c1(t) ≡ 1. If n > 1
Laurent coefficients are used, the transformation in Eq. (1) describes a deformed thin airfoil
with n− 2 curvature sign changes along the chord.

The body boundary is obtained from Eq. (1) for ω ∈ C, namely by taking ω = exp(iθ) with
θ ∈ [0, 2π):

xb(θ; t) := x(eiθ; t) = h(t) +
` χ(t)

2

n∑
k=1

ck(t) cos kθ (2)

The upper and lower sides are spanned for θ ∈ [0, π) and θ ∈ [π, 2π), respectively. Cosine
functions are only present in Eq. (2) for the zero-thickness condition.

Having assumed the angle θ in Eq. (2) as Lagrangian parameter, the velocity ub of a generic
point on the airfoil boundary is evaluated as

ub(θ; t) := ∂txb(θ; t) = ḣ(t) +
` χ(t)

2

n∑
k=1

[
ċk(t)− i α̇(t) ck(t)

]
cos kθ (3)

Note that the angle θ could more generally be a function of time in Eq. (2). Indeed, different
choices of the parametrization of the airfoil boundary give body velocities that differ only for a
tangent contribution, which does not influence the surrounding flow in an inviscid model.
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2.2 Critical points

The critical points of the map [Eq. (1)] are the points of the x-plane obtained by mapping the
zeros of ∂ωx in the ω-plane. The location of these points and their role in the present unsteady
aerodynamic model is discussed below.

The ω-derivative of Eq. (1) can be written as ∂ωx = Q2n/ω
n+1 where

Q2n(ω; t) =
` χ(t)

4
ωn

n∑
k=1

k ck(t)
(
ωk − ω−k

)
(4)

=
` χ(t)

4
(ω2 − 1)

n∑
k=1

k ck(t) ω
n−k (ω2k−2 + ω2k−4 + . . .+ ω2 + 1

)
(5)

is a time-dependent polynomial of degree 2n in ω. The zeros of ∂ωx are the 2n zeros ofQ2n.

Equation (4) shows that the points ω = ±1 on C are zeros of Q2n for any value of n. These
points are mapped through Eq. (1) onto the airfoil leading and trailing edges, which are thus
critical points of the map for any body deformed shape. Since ∂ωx is assumed non zero at any
point ω 6= ±1 on C (see Subsec. 2.1), the airfoil edges are the only critical points on the body
boundary.

Equation (5) and the property x(ω) = x(1/ω) of Eq. (1) show that if a generic point ω 6= 0 is
a zero ofQ2n then 1/ω is also a zero. The other 2n−2 zeros ofQ2n are thus n−1 inside C and
n − 1 outside C. The latter are denoted by Λm(t) (m = 1, 2, . . . , n − 1) and are mapped onto
n− 1 critical points Ym(t) in the fluid domain by Eq. (1). As well known for flat-plate airfoils,
points inside C are not mapped onto the same Riemann surface as those outside C [18]. For
this reason, the points inside C are not considered when mapping the ω-plane onto the x-plane.
Therefore, the n− 1 zeros ofQ2n inside C do not give critical points in the fluid domain.

The critical points of the map in Eq. (1) are branch points, namely origins of branch cuts [18].
Since the airfoil edges are critical points for any value of n, the body boundary is always branch
cut for the map, as well known in the case of a flat plate [16]. Equation (1) involves powers of
ω and 1/ω higher than the first one when describing curved bodies (n > 1). Since this give
n − 1 critical points in the fluid domain as shown above, n − 1 branch cuts are also present.
The kth branch cut BCk is a curve running from the critical point Yk to infinity. Its preimage
BCPk in the ω-plane is an infinite curve passing through the point Λk, which divides it into two
parts BCP±k . The branch cut positive and negative sides BC±k are introduced as the left-hand
and right-hand sides of BCk as moving along the curve from Yk to infinity (see Fig. 2). The
positive side BC+k is described by the curve x = x(ω+) with ω+ ∈ BCP+

k , while the negative
side BC−k by the curve x = x(ω−) with ω− ∈ BCP−k . The orientation of BC±k yields consistent
orientations of BCP±k as shown in Fig. 2. The role of the branch cuts of Eq. (1) is further
discussed in Subsec. 2.3 and 3.3.

In the present unsteady aerodynamic model the complex potential Φ(x; t) describing the veloc-
ity field around a flexible thin airfoil in the x-plane is obtained by developing the complex po-
tential Φ̃(ω; t) in the ω-plane and by next mapping the ω-plane onto the x-plane using Eq. (1).
The conjugate velocity at any point of the x-plane is thus given by [17]

u[x(ω; t); t] =
∂ωΦ̃(ω; t)

∂ωx(ω; t)
(6)
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Figure 2: Critical points and branch cuts of the map in Eq. (1) (right) and their preimages (left) for the parameters
in Fig. 1. Coordinates are normalized by the circle radius (left) and by the airfoil length (right).

Equation (6) is singular at the critical points of the map, since ∂ωx vanishes at the corresponding
points of the ω-plane. The velocity singularity at the airfoil leading edge is allowed, while the
one at the trailing edge is removed by a Kutta condition (see Subsec. 3.2.3). The singularities at
the n− 1 critical points Ym(t) = x[Λm(t); t] must be also removed since these points are in the
fluid domain. The regularity of the velocity field [Eq. (6)] at the critical points Ym(t) must be
thus imposed together with to the no-penetration unsteady boundary condition and the recovery
of the freestream velocity at infinity when developing the complex potential (see Sec. 3). Note
that the regularity condition is not involved in the case of flat-plate airfoils, for which the only
critical points of Eq. (1) are the airfoil edges [16].

2.3 Map inversion and branch cuts

In Subsec. (2.2) it has been shown that the map in Eq. (1) has n − 1 branch cuts in the fluid
domain. The consequences of this behavior on the unsteady aerodynamic model are discussed
below. The discussion refers to a fixed time, so that time dependencies are omitted.

The inverse function of the map in Eq. (1) satisfies the following equation of degree 2n:

ω2n +
cn−1
cn

ωn−1 + · · ·+ c1
cn
ωn+1− 4 χ (x− h)

` cn
ω+

c1
cn
ωn−1 + · · ·+ cn−1

cn
ω+ 1 = 0 (7)

having n roots inside C and n roots outside C. When the map in Eq. (1) models a flat plate its
inverse function is thus given by the only solution of Eq. (7) transforming points of the x-plane
into points outside C in the ω-plane. However, n > 1 solutions of Eq. (7) verify this property
when the map in Eq. (1) describes a curved airfoil. Indeed, body curvature is introduced in the
map by adding powers of ω and 1/ω up to an order n > 1. The region of the ω-plane outside C
thus consists of n distinct regions mapped by Eq. (1) onto complete complex planes on different
Riemann surfaces. The region bounded by C and by the n− 1 curves BCPk is the preimage D
of the x-plane through Eq. (1) (see Fig. 3). The other n− 1 regions (shown in red in Fig. 3) are
mapped onto complex planes on different Riemann surfaces than the plane of the flow, so that
points in these regions shall be not considered when transforming the ω-plane into the x-plane.
For a generic order n > 1 of the map in Eq. (1) its inverse function is thus the solution of Eq. (7)
transforming points of the x-plane into points of D, which in this case does not coincide with
the whole region of the ω-plane outside C.
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Figure 3: Action of the functions ω?
k(ω) associated to the map in Eq. (1) for the parameters in Fig. 1. Coordinates

are normalized by the circle radius (left) and by the airfoil length (right).

For any point ω ∈ D, the other points of the ω-plane that are mapped onto the same location
as x(ω) on other Riemann surfaces are obtained by solving the equation x(ω) = x(ω?) with
respect to ω? and by neglecting the trivial solution ω? = ω . The n − 1 solutions outside C
define an equal number of functions ω?k = ω?k(ω) (k = 1, . . . , n − 1) that transform D into
the n − 1 regions outside to C not considered in the mapping (red regions in Fig. 3). The
function ω?k verifies the property ω?k(Λk) = Λk and it transforms points ω+ ∈ BCP+

k into
points ω− ∈ BCP−k (and vice versa).

The consequences of the above discussion on the unsteady aerodynamic model are clarified
by means of an example for the case n = 3. Consider a set of circles Cr in the ω-plane with
center at the origin and increasing radius r > 1. Consider also the curves in the x-plane
obtained by mapping these circles using Eq. (1). For 1 < r ≤ Λ1 := |Λ1|, the circles are
transformed into simple closed curves around the airfoil as shown in Fig. 4. When r = Λ1 the
corresponding circle passes through Λ1, and its image in the x-plane has a cusp at the critical
point Y1 = x(Λ1) (see Figs. 4 and 5). Next, the circles become non-simple self-intersecting
curves in the x-plane for Λ1 < r < Λ2 := |Λ2|. This occurs because some points of these
circles are located outside D, so they are mapped onto locations already obtained by previous
points but on a different Riemann surface. The self-intersection x± := x(ω±) on each mapped
circle lie on the branch cut BC1, with ω± ∈ BCP±1 as shown in Fig. 5. The same behavior is
observed for r ≥ Λ2 as shown in Fig. 6.

The above remarks can be extended to a generic order n of the map in Eq. (1), for which n− 1
critical points Yk and associated branch cuts BCk are present in the fluid domain. As pointed
out in Figure 5, crossing one of these branch cuts at a generic point x± 6= Yk in the x-plane
implies skipping from the point ω+ ∈ BCP+

k to the distinct point ω− ∈ BCP−k in the ω-plane
(or vice versa). Indeed, the points of the ω-plane outside D are not considered in the mapping.
As a consequence, any function of ω different from the map itself is discontinuous across the
n− 1 curves BCk once it is rewritten as a function of x using the map in Eq. (1). In particular,
this behavior affects the velocity field [Eq. (6)] and shall be conveniently corrected to remove
unphysical discontinuities in the fluid domain (see Subsec. 3.3).
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Figure 4: Circles in the ω-plane with center at the origin and increasing radius 1 < r < ρ with ρ < Λ2 (left) and
their images in the x-plane through the map in Eq. (1) (right) for the parameters in Fig. 1. Coordinates
are normalized by the circle radius (left) and by the airfoil length (right).

Figure 5: Zoom of Fig. 4

Figure 6: Circles in the ω-plane with center at the origin and increasing radius 1 < r < ρ with ρ > Λ2 (left) and
their images through the map in Eq. (1) (right) for the parameters in Fig. 1. Coordinates are normalized
by the circle radius (left) and by the airfoil length (right).
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3 COMPLEX POTENTIAL

The velocity field around a flexible thin airfoil in the x-plane is modeled by developing the com-
plex potential Φ̃ in the ω-plane and by next mapping the ω-plane onto the x-plane [Eq. (1)].
The conjugate velocity in the x-plane is then given by Eq. (6). Following the traditional ap-
proach [3, 5], the complex potential in the ω-plane is split in its noncirculatory and circulatory
contributions as follows:

Φ̃(ω; t) = Φ̃
(nc)

(ω; t) + Φ̃
(c)

(ω; t) (8)

These are separately developed in Subsec. 3.1 and 3.2. Remarks on the limits of validity of the
present model are given in 3.3. The flat-plate model presented and validated in Ref. [16] can be
recovered as special case of the following general formulation.

3.1 Noncirculatory flow

The noncirculatory contributions in Eq. (8) are obtained by imposing: 1) the no-penetration
unsteady boundary condition on the moving airfoil; 2) the recovery of the freestream velocity
at infinity; and 3) the regularity of the velocity field [Eq. (6)] at the critical points of the map in
the fluid domain.

3.1.1 No-penetration unsteady boundary condition

The no-penetration condition requires the normal components of the body and fluid velocities
to be equal at any point on the body boundary. Once the local normal vector is written as
n(θ; t) = −i ∂θxb(θ; t), using Eqs. (2) and (3) the normal component of the body velocity
ubn := ub · n = Re(ub n) is evaluated as

ubn =
1

2

[ n∑
s=1

ps
(
ω+s − ω−s

)
+

n∑
r,j=1

qr,j
(
ω+r+j + ω−r+j − ω+r−j − ω−r−j

) ]
(9)

where the time-dependent imaginary coefficients

ps :=
`

4
s
(
χ ḣ cs −χ ḣ cs

)
qr,j :=

`2

16
j
[ (
ċrcj − ċrcj

)
+ i α̇

(
crcj + crcj

) ]
(10)

are known functions of the instantaneous body shape and kinematics.

By considering the terms in Eq. (9), the complex potential Φ̃
(nc)

(ω; t) is searched as

Φ̃
(nc)

(ω; t) =
n∑

m = −2n
m 6= 0

dm(t) ωm (11)

The lower bound of the truncated Laurent series in Eq. (11) is assumed as −2n since Eq. (9)
involves powers ofω from−2n up to 2n. The upper bound is assumed equal to n as in Eq. (1) to
satisfy the recovery of the freestream velocity at infinity. Substituting the derivative of Eq. (11)
into Eq. (6) and writing the map derivative on the airfoil boundary as ∂ωx = i ω ∂θxb the
normal component of the fluid velocity un := u · n = Re(u n) is obtained as

un =
1

2

n∑
m=−2n

m
(
dm ω

m + dm ω
−m ) (12)

8
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The no-penetration boundary condition is satisfied by identically equating Eqs. (9) and (12).
This gives the following 4n relations:

n+ 1 ≤ k1 ≤ 2n k1 d−k1 = +
n∑

m=k1−n

qm,−m+k1

1 ≤ k2 ≤ n k2(dk2 − d−k2) = +pk2 +

? k2−1∑
m=1

qm,−m+k2 +

? n−k2∑
m=1

qm,+m+k2 −
? n∑

m=k2+1

qm,+m−k2

−n ≤ k3 ≤ −1 k3(dk3 − d−k3) = −p−k3 −
?−k3−1∑
m=1

qm,−m−k3 −
? n+k3∑
m=1

qm,+m−k3 +
? n∑

m=−k3+1

qm,+m+k3

−2n ≤ k4 ≤ −n− 1 k4 dk4 = −
n∑

m=−k4−n

qm,−m−k4

(13)
where the summations denoted by ? are considered only if the upper bound is not smaller than
the lower one. The conditions in Eq. (13) relate the 3n unknown coefficients of the complex
potential in Eq. (11) to the known coefficients in Eq. (10). However, the fourth and third set of
conditions in Eq. (13) are respectively the conjugates of the first and second one (k1 = −k4,
k2 = −k3). Therefore, only 2n equations in Eq. (13) are independent, which are not sufficient
to evaluate the 3n coefficients in Eq. (11).

3.1.2 Recovery of the freestream velocity at infinity

One further condition is obtained by imposing that the flow velocity asymptotically recovers its
undisturbed value u∞ for x → ∞. Since the circulatory terms in Eq. (8) give zero velocity at
infinity, this condition is imposed only on the complex potential in Eq. (11). Substituting the
derivatives of Eqs. (1) and (11) into Eq. (6) and imposing u→ u∞ for ω →∞ gives

dn =
` χ

4
u∞ cn (14)

3.1.3 Regularity of the velocity field at the critical points of the map

Using Eq. (6), the conjugate velocity due to the complex potential in Eq. (11) is written as

u(nc)[x(ω; t); t] =
1

ωn
P 3n(ω; t)

Q2n(ω; t)
(15)

having introduced the following time-dependent polynomial of degree 3n in ω:

P 3n := ωn+1 ∂ωΦ̃
(nc)

=
n∑

m=−2n

m dm ω
m+2n (16)

The conjugate velocity (15) is singular at the n−1 critical points of the mapYm(t) = x[Λm(t); t]
in the fluid domain (see Subsec. 2.2). These unphysical singularities are removed by imposing
that the points Λm(t) be zeros of P 3n with at least the same multiplicity as forQ2n. In the case
of distinct zeros, this gives n− 1 equations of the form

P 3n[Λm(t); t] ≡ 0 (m = 1, 2, . . . , n− 1) (17)

9
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The no-penetration unsteady boundary condition, the recovery of the freestream velocity at in-
finity, and the regularity of the velocity field at the points Ym result in a system of 3n equations
[Eqs. (13), (14), and (17)] whose solution gives the unknown coefficients of the complex poten-
tial in Eq. (11) as functions of the instantaneous body shape and kinematics and of the velocity
of the undisturbed flow.

3.2 Circulatory flow

The circulatory terms in Eq. (8) are due to the shed vorticity and to consequent circulation that is
developed around the body (Kelvin theorem). Vorticity shedding from the airfoil trailing edge
is here modeled using a discrete-vortex method in order account for free-wake effects [19].
Since the wake dynamics has to be simulated by means of a time-marching algorithm when
using discrete vortices, the present unsteady aerodynamic model is not fully closed-form like
linearized flat-wake theories [1–4]. However, it is applicable to large-amplitude motions while
still remaining analytical in space. The well-known complex potentials of a discrete vortex and
of the body circulation developed for flat-plate airfoils [17] are not valid for deformed shapes
described by Eq. (1). Hence, a general formulation is developed below.

3.2.1 Complex potential of a unit-circulation vortex

Consider a vortex of unit circulation in presence of a flexible thin airfoil described by Eq. (1).
The vortex is placed at a point xv(t) := x[ωv(t); t] of the x-plane, corresponding to a point
ωv(t) ∈ D(t) of the ω-plane. The complex potential of the vortex is developed in the ω-plane
by imposing that the vortex-induced conjugate velocity in the x-plane: 1) locally behave as
1/{2πi [x−xv]} for x→ xv ; 2) asymptotically tend to 1/(2πi x) for x→∞ ; 3) be tangent
to the body boundary; and 4) be regular at the critical points Ym.

The local behavior of the conjugate velocity (condition 1) and no-penetration (condition 3) can
be satisfied by assuming the following complex potential:

Φ̃
(v)

(ω; t) =
1

2πi

{
log[ω − ωv(t)] + logω − log[ω − 1/ωv(t)]

}
(18)

where the circle theorem [17] has been used. As well-known, the complex potential in Eq. (18)
gives the velocity field due to a vortex of unit circulation outside a flat plate [17]. However, the
conjugate velocity in the x-plane due to Eq. (18) does not have the required asymptotic behavior
(condition 2) when the map in Eq. (1) models curve body shapes. Indeed, the ω-derivative of
Eq. (18) tends to 1/(2πi ω) for ω → ∞, while from Eq. (1) one has ∂ωx → n x/ω for
ω → ∞. Therefore, the vortex-induced conjugate velocity in the x-plane [Eq. (6)] due to
Eq. (18) behaves as 1/(2πi n x) for x→∞, which does not verify the condition 2 for n > 1.

The correct asymptotic behavior of the vortex-induced velocity field can be obtained for a
generic n in Eq. (1) by including further n− 1 logarithmic terms of the form log[ω−wk(t)] in
Eq. (18). The additional contributions must be regular around xv (condition 1) and also give tan-
gent velocities on the airfoil boundary (condition 3). These requirements can be satisfied with
the choice wk(t) := ω?k[ωv(t); t] (j = 1, 2, . . . , n − 1) and using the circle theorem. Indeed,
the points wk(t) so introduced are always outside D(t), and the conjugate of their reciprocals
are also outside D(t) since they are located inside C (see Subsec. 2.3). Therefore, the additional
logarithmic terms and the ones obtained from the latter when using the circle theorem do not
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introduce unphysical singularities in the flow field. The complex potential in Eq. (18) is thus
modified in the following one:

Φ̃
(v)

(ω; t) =
1

2πi

{
log[ω − ωv(t)] + logω − log[ω − 1/ωv(t)]

}
+

+
1

2πi

n−1∑
k=1

{
log[ω −wk(t)] + logω − log[ω − 1/wk(t)]+

+
ak(t)

ω −wk(t)
+
ak(t)/w

2
k(t)

ω − 1/wk(t)

}
(19)

which verifies the conditions 1), 2), and 3). The regularity of the vortex-induced velocity field at
the critical points Ym (condition 4) is satisfied by evaluating the coefficients ak (k = 1, . . . , n−
1) so that the ω-derivative of Eq. (19) vanish at the points Λm (m = 1, . . . , n− 1).

3.2.2 Complex potential of a unit body circulation

The complex potential of a unit body circulation is obtained in the ω-plane by requiring that the
resulting conjugate velocity in the x-plane: 1) asymptotically tend to 1/(2πi x) for x → ∞ ;
2) be tangent to the body boundary; and 3) be regular at the critical points Ym.

From the remarks in Subsec. 3.2.1, the following complex potential is assumed:

Φ̃
(b)

(ω; t) =
1

2πi
logω +

1

2πi

n−1∑
k=1

{
log[ω − rk(t) σk(t)] + logω − log[ω − σk(t)/rk(t)]

}
(20)

The first contribution is the complex potential of a unit body circulation around a flat plate [17].
Since the conjugate velocity in the x-plane due to this term alone does not have the required
asymptotic behavior for deformed airfoils (n > 1 in Eq. (1)), further n−1 logarithmic contribu-
tions of the form log[ω−rk(t)σk(t)] are also present in Eq. (20). The singular points rk(t)ωk(t)
and the conjugates of their reciprocals must be located outside D(t), which is verified with the
choice σk(t) := Λk(t)/Λk and rk > Λk. The last two terms in the summation of Eq. (20) are
obtained using the circle theorem [17] to satisfy no-penetration. The regularity of the velocity
field due to Eq. (20) at the critical points Ym is satisfied by evaluating the distances rk so that
the ω-derivative of Eq. (20) vanish at the points Λm.

3.2.3 Complex potential of the circulatory flow

Using Eq. (19) and (20), the circulatory terms in Eq. (8) are written as

Φ̃
(c)

(ω; t) =

N(t)∑
j=1

Γj Φ̃
(v)

j (ω; t) + Γb(t) Φ̃
(b)

(ω; t) (21)

where N is the total number of discrete vortices shed into the wake, Γj is the time-constant
circulation of the jth point vortex, and Γb(t) is the instantaneous circulation around the body
given by Kelvin theorem.

Vortex shedding is modeled using the fixed-position method [19]. The initial position of the
nascent vortex, namely the N th vortex in Eq. (21), is assumed in the ω-plane as ωvN := 1 + δ,
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with 0 < δ � 1 assigned such that the vortex is introduced in the x-plane close to the airfoil
trailing edge. The circulation of the nascent vortex ΓN is obtained by imposing that the total
conjugate velocity in the ω-plane vanish at the point ω = +1, so removing the trailing-edge
singularity of the conjugate velocity in the x-plane [Eq. (6)]:

∂ωΦ̃
(nc)
∣∣∣
ω = +1

+ ∂ωΦ̃
(c)
∣∣∣
ω = +1

+ ΓN ∂ωΦ̃
(v)

N

∣∣∣
ω = +1

= 0 (22)

In the above equation, the complex potential of the circulatory flow (second term) include the
N − 1 contributions due to the vortices already shed into the wake and the term due to the
consequent body circulation, whereas the contribution due to the nascent vortex is considered
separately (third term).

Once shed, each vortex is convected downstream with the local velocity

ẋvj(t) = ∂ωΦ̃(ω; t)/∂ωx(ω; t)
∣∣∣
ω = ωvj (t)

(23)

in order to allow free wake dynamics. For numerical simulation, Eq. (23) is evaluated by regu-
larizing the Biot-Savart kernel as discussed in Ref. [20].

3.3 Velocity jumps across the branch cuts

In Subsec. 2.3 it has been observed that the velocity field given by Eq. (6) with complex potential
given by Eq. (8) has jump discontinuities across the branch cuts of the map located in the fluid
domain. Indeed, the jump of the conjugate velocity [Eq. (6)] at a generic point x± = x(ω±) ∈
BCk (k = 1, . . . , n− 1) is evaluated as follows:

u[x(ω+; t); t]− u[x(ω−; t); t] =
1

∂ωx(ω+; t)
[∂ωΦ̃(ω+; t) + ∂ωΦ̃(ω−; t)] (24)

where the relation ∂ωx(ω+; t) = −∂ωx(ω−; t) valid on BCPk has been used. The quantity in
Eq. (24) vanishes at the point Yk due to the imposed regularity conditions and at infinity due
to the recovery of the freestream velocity (see Subsec. 3.1 and 3.2). However, it is non zero at
other points on BCPk. This behavior has been motivated in Subsec. 2.3.

The distance between the curves BCk and the airfoil increase for smaller body curvature, as
expected since the map in Eq. (1) does not have branch cuts in the fluid domain in the flat-plate
case (see Subsec. 2.2). Since the quantity in Eq. (24) tends to zero at infinity, velocity jumps
across the branch cuts are thus expected to be small for moderate body deformation. In this
condition, the velocity field can be reasonably described by the complex potential in Eq. (8),
whereas a corrective term is needed for very large body deflections. This statement is supported
with an example for the case of a curved airfoil described by Eq. (1) for n = 2 and immersed
in a fluid at rest (u∞ = 0). The airfoil is also at rest with no circulation around its boundary. A
vortex of unit circulation is placed in the fluid domain at xv = −1 + i0.5. The vortex-induced
velocity field is analytically obtained from Eq. (6) with complex potential given by Eq. (19)
and it is compared with a numerical solution from a panel code. The latter assumes the body
boundary in Eq. (2) as camberline but introduces a finite thickness δt � ` and rounded edges.
The analytical and numerical velocity fields for two increasingly deformed body shapes are
compared in Figs. 7 and 8. Figure 7 shows a good agreement since the velocity jump across
the branch cut (red curve) given by the theoretical model is very slight for the moderately
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Figure 7: Analytical (green) and numerical (blue) velocity fields due to a unit-circulation point vortex at the point
xv = −1 + i0.5 outside a curved airfoil with mean camberline modeled by Eq. (1) for n = 2, ` = 1,
h = 0.25− i0.1, α = 15◦, c1 = 1,c2 = −0.02 + i0.1.

Figure 8: Analytical (green) and numerical (blue) velocity fields due to a unit-circulation point vortex at the point
xv = −1 + i0.5 outside a curved airfoil with mean camberline modeled by Eq. (1) for n = 2, ` = 1,
h = 0.25− i0.1, α = 15◦, c1 = 1,c2 = −0.06 + i0.3.

curved geometry. Minor differences around the airfoil edges are expected since the panel code
considers a finite body thickness. Conversely, the numerical and analytical solutions show more
appreciable differences in Fig. 8 since the theoretical model gives a significant velocity jump
across the branch cut for very large curvatures.

The examples in Figs. 7 and 8 show that for deformations of aeronautical interest the complex
potential in Eq. (19) can be used to describe the velocity field around a flexible thin airfoil,
whereas a corrective term to remove velocity jumps in the fluid domain is necessary for ap-
plications involving very large curvatures (e.g., fish locomotion). The methodology to correct
sectional-analytical functions to remove jump discontinuities across curves is well established
and based on the use of Cauchy integrals [18]. The standard corrective term shall be adapted
to the present case by imposing that it also gives tangent velocity on the airfoil boundary. The
development of such correction is beyond the scope of this paper and will be addressed in future
works. In the following discussion it is assumed that the body curvature is such that velocity
jumps across the branch cuts of the map [Eq. (1)] in the fluid domain can be neglected.

13
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4 PRESSURE JUMP EVALUATION

The pressure jump distribution on the airfoil is obtained analytically using Bernoulli theorem,
the map in Eq. (1), and the complex potential in Eq. (8). The following result is also valid in
case a corrective complex potential is added to Eq. (8) to remove the velocity jumps across the
branch cuts of the map in Eq. (1) in the fluid domain.

The jump of a generic complex function on the airfoil boundary is introduced as

[f ](θ; t) := f(eiθ
+

; t)− f(eiθ
−

; t)

with θ+ := θ ∈ [0; π] (upper side) and θ− := 2π− θ+ (lower side). Hence, using Bernoulli the-
orem one has [p]/ρ = − ([∂tϕ] + [|u|2]/2), where p is pressure, ρ is the constant fluid density,
and ϕ is the velocity potential given by the real part of the complex potential Φ [17]. The first
contribution to the pressure jump is evaluated by rewriting the time derivative of Φ in terms of
derivatives of Φ̃ as follows:

∂tΦ = ∂tΦ̃ + ∂ωΦ̃ ∂tζ = ∂tΦ̃− ∂ωΦ̃
∂tx

∂ωx
= ∂tΦ̃− u ∂tx

where the relation ∂tω = −∂tx/∂ωx and Eq. (6) have been used. Noting that ∂tx =: ub
[Eq. (3)] achieves equal values at corresponding points on the airfoil upper and lower sides, the
pressure jump divided by ρ becomes

[p]

ρ
= −1

2

{
∂t([Φ̃] + [Φ̃])− [u] ub − [u] ub + [u u]

}
The time-derivative contributions on the right-hand side are linear, so that a separation of noncir-
culatory and circulatory effects is possible. The other terms on the right-hand side of Eq. (25)
are nonlinear and involve products between the derivatives of noncirculatory and circulatory
contributions in Eq. (8) and products of these derivatives and the velocity of the body boundary
in Eq. (3).

5 NUMERICAL RESULTS

The capabilities of the present model are demonstrated by means of an application. The general
formulation developed in Secs. 2 and 3 is specialized to the case n = 2 and implemented
to simulate a cantilevered flexible airfoil undergoing imposed motion in a steady axial flow.
Assuming n = 2 in Eq. (1), this reduces to

x(ω; t) = h(t) +
` χ(t)

4

[
c1(t)

(
ω +

1

ω

)
+ c2(t)

(
ω2 +

1

ω2

) ]
(25)

with Laurent coefficients c1(t) = m1(t) exp[iϕ1(t)] and c2(t) = m2(t) exp[iϕ2(t)]. The map
in Eq. (25) describes a flexible thin airfoil that for any time shows curvature of constant sign
along the chord. The presence of the second-order powers of ω and 1/ω in Eq. (25) implies
that the map has one branch cut BC1 inside the flow field with origin at the critical point Y1. An
imposed motion for the airfoil modeled by Eq. (25) is obtained in Sec. 5.1 by assuming clamped
boundary conditions at the leading edge and by requiring that the body length be conserved.
Pressure jump distributions on the body and free wake configurations at different times during
the motion are presented in Sec. 5.2.
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5.1 Imposed motion

The airfoil modeled using Eq. (25) is assumed to be cantilevered at the leading-edge and hori-
zontal in its undeformed configuration (χ = 1). With this choice and imposing that the leading
edge is at the origin of the x-plane, Eq. (25) gives

h =
`

2
(c1 − c2) (26)

Assuming the angle θ ∈ (−π,+π] as parameter for the body boundary, the local tangent unit
vector is

τ (θ; t) = ∓ c1(t) + 4c2(t) cos θ

|c1(t) + 4c2(t) cos θ|
where the minus sign is used for 0 ≤ θ ≤ π (upper side) and the plus sign for −π < θ ≤ 0
(lower side). Due to the assumed boundary conditions, the tangent vector must be in the negative
direction of the horizontal axis at the leading edge, namely τ (π; t) ≡ −1. Therefore, the
Laurent coefficient verify the following constraint:

c1(t)− 4c2(t) = γ(t) (27)

where γ > 0 is a real quantity. Using Eq. (25), the conservation of the body length is written as

` =

∫ π

0

dθ |∂θx| =
`

2

∫ π

0

dθ sin θ
[
m2

1 + 8m1m2 cos(ϕ1 − ϕ2) cos θ + 16m2
2 cos2 θ

]1/2
This integral is conveniently evaluated by introducing the variable ξ = cos θ. With some ma-
nipulation, the result is recast as a nonlinear equation of the form f(γ, c2, ϕ2) = 0. This is
solved via the Newton-Raphson method by assigning c2(t) = m2(t) exp[iϕ2(t)] to obtain γ(t).
The functions c1(t) and h(t) are next evaluated using Eqs. (27) and (26). The imposed motion
of the body boundary is finally obtained by substituting the functions h(t), c1(t), and c2(t) into
the map in Eq. (25) evaluated for ω ∈ C.

5.2 Case study

A motion obtained as in Sec. 5.1 is imposed to a flexible thin airfoil cantilevered at the leading
edge. The body has undeformed length ` = 1 m and it is immersed in a steady flow of freestream
velocity u∞ = 1 m/s. The time history of c2(t) is assigned in terms of its modulus m2(t) =
m20 +∆m2 cos(2πt/Tm) and phase ϕ2(t) = ϕ20 +∆ϕ2 sin(2πt/Tϕ), withm20 = 0.03, ∆m2 =
0.02, ϕ20 = 0◦, ∆ϕ2 = 20◦, and Tm = Tϕ = 1 s. The time histories of c1 and h are obtained
as in Subsec. 5.1 in order to conserve the body length during the oscillation. The true-scale
airfoil deformed configurations are shown at different times over a period in Fig. 9. The body
deflection over chord is up to 5%.

The unsteady aerodynamics around the flexible thin airfoil due to its imposed motion is sim-
ulated by integrating the free wake dynamics via a fourth-order Runge-Kutta time marching
algorithm. Details on the numerical procedure are provided in Ref. [16]. The unsteady pres-
sure jump distribution along the chord is evaluated analytically at any time using Eq. (25).
The noncirculatory effects, body-circulation effects, and wake effects are separated in the lin-
ear time-derivative term, whereas the quadratic terms are considered together. The distribution
of the total pressure difference coefficient defined as Cp = −2[p]/(ρu2∞) and of its separate
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Figure 9: Cantilevered flexible thin airfoil undergoing imposed motion in a steady axial flow: true-scale deformed
configuration at t = j Tm/16 s (j = 0, 1, . . . , 16) for ` = 1 m, χ ≡ 1, Tm = 1 s, and c2(t) =
[0.03+ 0.02 cos(2πt/Tm)] exp{i[(π/9) sin(2πt/Tm)]} in Eq. (25) under the condition of constant body
length.

contributions at different times during the third complete oscillation of the airfoil and the cor-
responding wake geometries are illustrated in Figs. 10 and 11. The plots on the left-hand side
shows that the quadratic contributions and the time-derivative contribution due to the wake in
the total pressure difference coefficient [Eq. (25)] remain small along the chord compared to
the time-derivative contributions due to noncirculatory effects and to the body circulation. As
a consequence, the total pressure difference coefficient is approximatively given by the sum
of the latter terms. The time-derivative term due to noncirculatory effects increase during the
ascending and descending phases, as expected due to the consequent increase in modulus of
the body boundary acceleration (see Figs. 10(a), 10(c), 11(c), and 11(e)). Conversely, they are
small when the airfoil is in horizontal configuration (see Figs. 10(e), 10(g), 11(a), and 11(g)).
The time-derivative terms due to the body circulation is larger when the vorticity shed into the
wake experiences a sign change, which results in the generation of a new macroscopic vortex
structure (see Figs. 10(c), 10(e), 11(a), 11(e), and 11(g)). The wake configurations in the plots
on the right-hand side of Fig. 11 show a starting vortex due to the zero initial circulation around
the body. Since the vorticity shed into the wake changes sign during the airfoil oscillation, the
wake organizes in dipoles due to the rotation of vortices having circulation of opposite sign
about each other. The dipoles are convected downstream approximatively with the velocity of
the undisturbed flow and do not show a significant global rotation about any of the two poles,
so showing that the total vorticity content associated with each pole is about equal in modulus.

6 CONCLUDING REMARKS

A semi-analytical formulation for the unsteady aerodynamics of flat plates has been extended
to flexible thin airfoils. The velocity field has been described by means of a complex potential,
which has been evaluated by mapping the airfoil boundary onto a circle. This well-established
approach traditionally adopted in several small disturbance theories has been generalized to air-
foil rigid-body motion and deformation of arbitrary amplitude, under the only assumptions of
attached flow and constant body length. Non-planar wake has been taken into account using
a discrete-vortex method to model vorticity shedding from the airfoil trailing edge. A semi-
analytical solution for the unsteady pressure jump on the body has been obtained that simulta-
neously takes into account large-amplitude rigid-body motion, body flexibility, and free wake.
This result may be used for parametric studies and as complex benchmark for assessment of
high-order fully numerical models. The limits of the proposed model for very large body defor-
mation have been discussed by comparing two vortex-induced velocity fields with a numerical
solution from a panel code. It has been shown that the model well describes the velocity field
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(a) t = 2.125 s (b) t = 2.125 s

(c) t = 2.25 s (d) t = 2.25 s

(e) t = 2.375 s (f) t = 2.375 s

(g) t = 2.5 s (h) t = 2.5 s

Figure 10: Cantilevered flexible thin airfoil undergoing imposed motion in a steady axial flow: pressure difference
coefficient and wake configuration at t = 2 + j Tm/8 s (j = 1, 2, 3, 4) for ` = 1 m, χ ≡ 1, c2(t) =
[0.02+0.03 cos(2πt/Tm)] exp{i[(π/9) sin(2πt/Tm)]} in Eq. (25) under the condition of constant body
length.
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(a) t = 2.625 s (b) t = 2.625 s

(c) t = 2.75 s (d) t = 2.75 s

(e) t = 2.875 s (f) t = 2.875 s

(g) t = 3 s (h) t = 3 s

Figure 11: Cantilevered flexible thin airfoil undergoing imposed motion in a steady axial flow: pressure difference
coefficient and wake configuration at t = 2 + j Tm/8 s (j = 5, 6, 7, 8) for ` = 1 m, χ ≡ 1, c2(t) =
[0.03+0.02 cos(2πt/Tm)] exp{i[(π/9) sin(2πt/Tm)]} in Eq. (25) under the condition of constant body
length.
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for airfoil curvatures of aeronautical interest, while a methodology to further improve the pre-
diction for very large deformations has been outlined. To demonstrate the applicability of the
present formulation to practical fluid-structure interaction problems, the model has been im-
plemented to to simulate a cantilevered flexible airfoil undergoing imposed motion in a steady
axial flow. Numerical results for the unsteady pressure jump on the body and free wake configu-
rations have been discussed. Future work will address comparison of the theoretical model with
experimental results and its integration with a consistent structural model to perform aeroelastic
simulations of flexible thin airfoils in arbitrary motion.
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