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Abstract: In this paper a nonlinear Reduced Order Model (ROM) for a frequency domain
aerodynamic model based on functional or Volterra series expansion is presented. It relies on
the numerical identification of the higher order Volterra Kernels by a continuous time impulse
method and the transformation into the frequency domain with multidimensional Fourier trans-
forms. This frequency domain ROM allows the nonlinear computation of the output power
spectra as function of the input power spectra, showing an independence on the randomness of
the phase for random Gaussian stationary processes. Gust and continuous turbulence encoun-
ters are considered for a rigid wing empennage configuration flying in the transonic regime.
Results obtained with the nonlinear frequency domain ROM are compared against CFD Euler
computations for a discrete gust case showing a very good agreement. For continuous turbu-
lence encounters the influence of the nonlinearity in the root mean square of the output when
increasing the turbulence intensity is considered, showing a cubic dependency with the root
mean square value of the turbulence for a second order Volterra series expansion. Additionally,
convergence issues experienced by full-order CFD simulations when the turbulence intensity is
increased are pointed out.

1 INTRODUCTION

Dynamic loads due to atmospheric disturbances are of capital importance when designing and
sizing an aircraft. There are very well established linear methods to compute the aerodynamic
loads, both in the frequency and the time domain, which properly represents the physics for
subsonic cases, where the aerodynamic remains linear. Probably the best known is the Doublet-
Lattice Method (DLM) in the frequency domain [1], which solves the unsteady compressible
potential equation. In order to consider the compressible effects inherent to the transonic region,
linear(ized) aeroelastic ROMs have been presented by several authors. The term linear(ized)
refers to the fact that the nonlinear nature of the steady aerodynamic state is taken into account
and only the unsteady incremental aerodynamic effects around the steady state are considered to
be linear. A review on linear(ized) aeroelastic ROMs including Proper Orthogonal Decomposi-
tion (POD) and Eigensystem Realisation Algorithm (ERA) as presented by Silva [2] is given by
Ripepi [3] and Quero [4]. The proposed aeroelastic ROM by Quero [4] makes use of a reduced
number of high-fidelity reference computations. A review on nonlinear aerodynamic ROM
methods including Volterra series, indicial functions, Harmonic Balance (HB), Taylor series
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expansion, surrogate-based and neural networks approaches is given by Ripepi [3]. Quero [4]
presents an extension for the nonlinear aerodynamic effects when encountering discrete gusts.
However and to the best of the author’s knowledge a nonlinear aerodynamic ROM for general
atmospheric disturbance excitations in the frequency domain has not yet been presented.

In this work the analysis is restricted to vertical disturbances but can be extended to distur-
bances acting on different spatial directions. The presented ROM is able to notably improve
the nonlinear aerodynamic response prediction when compared to the linear(ized) methods and
additionally is able to predict a nonlinear dependency of the aerodynamic output root mean
square (rms) values as function of the turbulence rms where full-order simulations fail to con-
verge. These predictions are obtained in a computational time up to four orders of magnitude
smaller than that required by the high-fidelity methods.

2 FUNCTIONAL SERIES

In this work the (nonlinear) aerodynamic system under consideration is given by Eq. 1, which
represents the state equation after spatial discretization of the flow equations, where yw repre-
sents the flow variables, uh and

�
uh the generalized structural deformation and its time derivative

and vd the gust velocity vector at each considered node in the flow. The system input is defined
as u = [uTh u̇h

T vTd ]T . Note that these three components are dealt separately for the sake of
clarity. Also, the explicit dependency on the Reynolds number Re∞ has been omitted, as its
value is assumed to be known in the case that viscous effects are considered. The dependency
on the steady angle of attack αs is shown in order to highlight the dependency of the proposed
methods with the steady state. Both parameters M∞ and αs specify boundary conditions for the
spatial discretized flow equations.

�
yw (t,M∞, αs) = F

(
yw (t) ,uh (t) ,

�
uh (t) ,vd (t) ,M∞, αs

)
(1)

The function F does not depend explicitly on time, as the Navier-Stokes equations do not have
any coefficients that are explicit functions of time. As stated by Silva [5] the Navier-Stokes
equations are, by definition, time invariant. A condition of consistency requires that, in the
limit, the discretized system approaches the original continuous time system. Therefore, given
appropriate discretization and convergence of the residual (error), the discretized Navier-Stokes
are time invariant as well.

The output equation provides the vector of aerodynamic quantities Pg at the different spatial
locations, see Eq. 2. The vector Pg represents the aerodynamic loads acting at the structural
nodes. Under the assumption of small structural displacements the dependency of the function
G may be reduced to Pg (t,M∞, αs) = G (yw (t) ,M∞, αs).

Pg (t,M∞, αs) = G
(
yw (t) ,uh (t) ,

�
uh (t) ,vd (t) ,M∞, αs

)
(2)

Now the Volterra or functional series expansion for a general Single Input Multiple Output
(SIMO) is described. The Volterra series representation can be used to described systems with
fading memory [6] and which do not contain subharmonics [7]. Some modification on the regu-
lar Volterra representation allows its extension to include subharmonic components [8] and are
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not considered in this work. In theory any system which can be described by a time invariant Or-
dinary Differential Equation (ODE) can be described by a Volterra series, as any time invariant
ODE can be converted into an integral equation and solved for its Volterra kernels [9, 10].

For a nonlinear Single Input Multi Output (SIMO) system stable at the zero equilibrium point
and which can be described in the neighborhood of the equilibrium point by the Volterra series,
the output component yj (t) fulfills Eq. 3, where u (t) is the system input and hnj (τ1, ..., τn)
is the nth-order Volterra kernel for the output component j, where j = 1, ..., Ny, with Ny the
number of outputs. The maximum order of nonlinearity taken into account is denoted byNn. In
this work Nn = 2 and thus a second order Volterra or functional series expansion is considered.

yj (t) =
Nn∑
n=1

ynj (t) =
Nn∑
n=1

ˆ ∞
−∞

...

ˆ ∞
−∞

hnj (τ1, ..., τn)
n∏
k=1

u (t− τk) dτk (3)

When the system is excited by the general input u (t) = (1/2π)
´∞
−∞ u (ω) eiωtdω with fre-

quency content u (ω), the homogeneous term ynj (t) is given by Lang et al. [11],

ynj (t) =
1

(2π)n

ˆ ∞
−∞

...

ˆ ∞
−∞

ynj (ω1, ..., ωn) ei(ω1+···+ωn)tdω1...dωn

where ynj (ω1, ..., ωn) = Hnj (ω1, ..., ωn)
∏n

k=1 u (ωk). The function Hnj (ω1, ..., ωn) is referred
to as frequency domain Volterra kernel. The Volterra kernels of higher order hnj (τ1, ..., τn) are
not unique and several forms are available. In this work, the symmetric form is considered.

By applying the transformation of variables ω = ω1 + · · ·+ωn the term ynj (t) can be expressed
as ynj (t) = (1/ (2π)n)

´∞
−∞ ynj (ω) eiωtdω, where ynj (ω) is given in Eq. 4 according to Lang

et al. [11]. This transformation of variables is referred to as association of variables when
considering the multidimensional Laplace transform as described by Lebnath et al. [12]. The
term ynj (ω) defines the frequency domain content of the output of the homogeneous system.

ynj (ω) =
1

(2π)n−1

ˆ ∞
−∞

...

ˆ ∞
−∞

ynj (ω1, ..., ω − ω1 − · · · − ωn−1) dω1...dωn−1 (4)

2.1 Continuous time impulse method for numerical Kernel identification

A review on the application of the Volterra theory to nonlinear aeroelastic systems is given by
Silva [13]. Most of the aeroelastic applications including Volterra series expansion have in-
cluded the consideration of structural nonlinearities, as done by Marzocca et al. [14], where the
Volterra kernels are derived analytically in the frequency domain with the harmonic probing
method [15]. An analytical form cannot in general be obtained when considering the aerody-
namic contribution of the aeroelastic system and thus identification algorithms for the deter-
mination of the Volterra kernels must be used. Balajewicz et al. [16] and Khawar et al. [17]
considered simultaneous heave and pitch aerodynamic excitations and computed the nonlinear
response with the Volterra series expansion in the time domain. In this work the aerodynamic
contribution of the aeroelastic system due to atmospheric disturbances is considered and a fre-
quency domain formulation of the Volterra series is presented.
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There are several possibilities in order to identify the system Volterra kernels, as described by
Prazenica [10]. Balajewicz et al. [16] used training inputs from the full-order system and a stan-
dard least squares approach. Lee and Schetzen [18] proposed white noise and cross correlation
methods based on the Wiener orthogonalization of the Volterra series [19]. Prazenica [10] and
Kurdila et al. [20] approximated the Volterra kernels with wavelets functions. Different sets of
basis functions are also available, among them Laguerre polynomials [21], decaying exponen-
tials [22] and artificial neural networks as applied by Wray et al. [23]. The Volterra kernels can
be measured by applying impulses to the system. Silva [24] used this approach for discrete time
systems by applying unit sample inputs, the discrete analog to impulse inputs, to certain CFD
models.

The application of discrete impulses for the Volterra kernels identification may introduce some
numerical errors, as explained by Raveh [25]. A discussion on step inputs for the identification
of the Volterra kernels can be found in Schetzen [26]. Additionally, when applied to flow
solvers, the high gradient produced by the discrete impulse can lead to convergence issues due
to the time derivative terms as described by Silva [27]. Thus, a method for identification of the
Volterra kernels using smooth discrete impulse signals is preferred when dealing with numerical
solvers and is thus applied in this work. This approach is denoted as continuous time impulse
method as proposed by Milanese et al. [28], where the influence of the impulse amplitude was
considered. In this work additionally the input shape is considered. Note that the derivative of
the unit discrete impulse tends towards infinity at the initial time while the smooth impulse has
finite values during the duration of the pulse. The continuous time impulse method assumes that
the nonlinear system representation in the frequency domain is the same for both the discrete
and the narrow smooth signal. It seems then clear that the smooth pulse signal must be narrow
in order to have a shape very close to that of the ideal discrete pulse. Fig. 1 shows a comparison
between the unit discrete impulse and the smooth impulse signal used as input.

The amplitude of the input impulse used for the Volterra kernel identification is dependent on
the kernel degree. In particular the input amplitude used to identify the first order is smaller
than the one used for the second order, where some level of the system nonlinearity must be
present. For the first order the input is given in Eq. 5, where A1 can be chosen A1 � 1 in order
to extract the linear contribution and δse (t) is the smooth impulse of unit amplitude with tmax
the impulse duration as proposed by Marques et al. [29].

u1 (t) = A1δse (t) , δse (t) =

4
(

t
tmax

)2
exp

(
2− 1

1−(t/tmax)

)
, 0 ≤ t ≤ tmax,

0, t ≥ tmax
(5)

The input signal for the nth-component nonlinearity is defined in Eq. 6 as a linear combination
of n delayed smooth impulses.

un (t) = An

[
δse (t) +

n−1∑
k=1

δse (t−4tk)

]
(6)

In Eq. 6 4ti is a time delay between the different impulse components and An is a factor
dependent on the kernel degree. The maximum input amplitude is achieved when the impulse
δse (t) is applied n times simultaneously (δti = 0 for all i = 1, ..., n− 1) and is equal to nAn. If
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An = An−1 the maximum input amplitude increases linearly with n. TypicallyAn/An−1 > 1 so
that the input is progressively increased in order to include more nonlinear behaviour. However
the quotient An/An−1 must be carefully chosen, as increasing values may produce shadowing
effects from the higher order kernels in the one to be identified as pointed out by Milanese et
al. [28].

Next the application of the continuous time impulse method to the identification of the first and
higher order Volterra kernels for Single Input Multiple Output (SIMO) systems is described.

First order

The continuous time impulse method is an extension of the scheme to compute the transfer
function for linear systems by means of an smooth impulse input signal, see Eq. 7 as provided
by Marques et al. [30]. There u1 (t) represents the smooth impulse imposed as input to the
system, see Eq. 5, and h̄1j (t) the corresponding dynamic response to u1 (t) (obtained by direct
numerical simulation) for the component yj of the output vector y, where j = 1, ..., Ny. As
pointed out above both the amplitude and shape of the impulse signal are taken into account
through the term

´∞
−∞ u1 (t) e−iωtdt. The first kernel h1j (t) can be obtained by means of the

inverse Fourier transform applied to the identified transfer function or first order frequency
domain Volterra kernel H1j (ω).

H1j (ω) =

´∞
−∞ h̄1j (t) e−iωtdt´∞
−∞ u1 (t) e−iωtdt

, h1j (t) =
1

2π

ˆ ∞
−∞

H1j (ω) eiωtdω (7)

In order to avoid numerical issues when applying the identified first order transfer function
H1j (ω) the frequency values satisfying the condition |u1 (ω)| /max (|u1 (ω)|) ≥ ωε are consid-
ered, where the tolerance ωε has been set to ωε = 0.1. At the frequency ω̃1 the equality condition
is reached. For frequencies |ω| > ω̃1 the first order transfer function H1j (ω) is set to zero.

Higher order

When considering higher order terms in the Volterra or functional series Eq. 8 is used for the de-
termination of the frequency domain Volterra kernelsHnj (ω1, ..., ωn), where h̄nj (t1, ..., tn) rep-
resents the dynamic response to un (t) given in Eq. 6 from a direct simulation of the nonlinear
system. Note that h̄nj (t1, ..., tn) 6= ynj (t1, ..., tn), where ynj (t1, ..., tn) is the nth-component yj
of the system response to the input un (t). Note that the multidimensional input un (t1, ..., tn)
is formed by smooth pulses and not with unit discrete pulses. The Volterra kernels in time
domain hnj (t1, ..., tn) can be obtained with the inverse multidimensional Fourier transform,
hnj (t1, ..., tn) = (1/ (2π)n)

´∞
−∞ ...

´∞
−∞Hnj (ω1, ..., ωn) ei(ω1+···+ωn)tdω1...dωn.

Hnj (ω1, ..., ωn) =

´∞
−∞ ...

´∞
−∞ h̄nj (t1, ..., tn) e−i(ω1+···+ωn)tdt1...dtn∏n

k=1

´∞
−∞ un (t) e−iωktdt

(8)

For a second order approximation via Volterra or functional series the term h̄2j (t1, t2) is given
by Silva [24],
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Figure 1: Continuous time impulse (A1 = 1) input
u1 (t) = A1δse (t).

Figure 2: Continuous time impulse (A2 = 1) input
u2 (t) = A2 [δse (t) + δse (t−4t)].

h̄2j (t1, t2) =
1

2
[y2j (t1, t2)− y1j (t1)− y1j (t2)]

, where y2j represents the output to an input u2 (t1) = A2 [δse (t1) + δse (t2)], y1j (t1) the output
to an input u1 (t1) = A1δse (t1) and y1j (t2) the output to an input u1 (t2) = A1δse (t2). The
variables t1 and t2 are not independent as they fulfill the relation t2 = t1 −4t, where4t is the
spacing between the two impulses δse (t), see Fig. 2.

In order to avoid numerical issues when applying the identified frequency domain Volterra ker-
nel Hnj (ω1, ..., ωn) the frequency values fulfilling the condition given in Eq. 9 are considered,
where the tolerance ωε has been set to ωε = 0.1 as for the first order frequency domain Volterra
kernel. At the frequency ω̃n the equality condition is fulfilled. For frequencies |ωk| > ω̃n for
k = 1, ..., n the frequency domain Volterra kernel Hnj (ω1, ..., ωn) is set to zero.

|unn (ω)|
max (|unn (ω)|)

≥ ωε (9)

Due to the symmetry of the Volterra kernels in the time domain the Volterra kernels in the fre-
quency domainHnj (ω1, ..., ωn) satisfy the conjugate symmetry propertyHnj (−ω1, ...,−ωn) =
H∗nj (ω1, ..., ωn) as specified by Billings et al. [31]. In order to apply the multidimensional
Fourier transform the integrals in Eq. 8 have to converge and thus the Volterra kernels in the
time domain h̄nj (t1, ..., tn) must damp out for increasing time values. If not, multidimensional
Laplace transforms must be taken into account [12, 32].

Note that for well damped dynamic systems this approach takes advantage of the small simula-
tion times required for the response to the impulses compared to the simulation times required
for a zero-mean stationary Gaussian random input. When applied to the systems under consid-
eration in this work the well damped condition of the dynamic system implies:
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• No buffeting instability occurs when applied to purely aerodynamic systems.
• No flutter / Limit Cycle Oscillation (LCO) occurs when applied to aeroelastic systems.

2.2 Nonlinear numerical solution from functional series expansion

In order to compute the nonlinear response the second order Volterra model can be applied in
two numerically discretized forms:

• By applying convolution in the time domain to the output component yj (t) according to
Eq. 10, where a change of each variable of integration has been used.

yj (t) =

ˆ ∞
−∞

h1j (t− τ1)u (τ1) dτ1 +

ˆ ∞
−∞

ˆ ∞
−∞

h2j (t− τ1, t− τ2)u (τ1)u (τ2) dτ1dτ2 (10)

The discretized version of Eq. 10 is given in Eq. 11, where k = 1, ..., N , with N the total
number of time sample values considered. The matrix Ts =

[
Ik 0

]
of size k × N selects

the first k entries of the vector u =
[
u (t1) · · · u (tk) · · · u (tN)

]T , where Ik denotes the
identity matrix of size k. Also, t1 = 0 and tN = tf , where tf denotes the simulation time.

yj (tk) =
4t
2
h̃1j (tk)Ts (tk)u +

4t2

4
[Ts (tk)u]T h̃2j (tk)Ts (tk)u (11)

A trapezoidal rule has been implemented for the convolution integrals. Matrices h̃1j and h̃2j

are given in Appendix A.

• By computing the higher order frequency domain Volterra kernels by multidimensional
Fourier transforms (the numerical implementation is the fftn) and recovering the re-
sponse in the time domain by applying a multidimensional ifftn as presented by Mar-
zocca et al. [14], see Eq. 12 for the output component yj (ω) of a second order Volterra
system in the frequency domain.

yj (ω) = y1j (ω) + y2j (ω) (12)

= H1j (ω)u (ω) +
1

2π

ˆ ∞
−∞

H2j (ω1, ω − ω1)u (ω1)u (ω − ω1) dω1

A particular aspect of the frequency domain description of the Volterra series expansion is that
the output frequency range of the term y2j (ω) is wider than that for y1j (ω). When considering
a unidimensional frequency range defined by ω ∈ [−ωmax, ωmax], the integral given in Eq. 12
for y2j (ω) defines an output frequency range ω ∈ [−2ωmax, 2ωmax] as described by Billings et
al. [31]. However, for the numerical application of the Volterra series, Eq. 9 is applied. With
this condition typically ω̃n < ω̃n−1 < ωmax and thus the new frequencies above ωmax are not
taken into account.

The numerical discrete version of Eq. 12 is given in Eq. 13, where the output vector defined by
yj =

[
yj (ω1) · · · yj (ωk) · · · yj (ωN)

]T contains now the complex values of the signal
at the discrete frequency set, where the number of frequency samples N in the range ω ∈
[−ωmax, ωmax] is equal to the number of time samples, with ω1 = −ωmax and ωN = ωmax.
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The symbol ◦ represents the Hadamard product, that is, an element-wise multiplication. The
vector u =

[
u (ω1) · · · u (ωk) · · · u (ωN)

]T contains the frequency values of the input
signal and the square matrix U of size N contains in each column the vector u. The maximum
possible frequency is given by the Nyquist frequency ωmax = π/ts, where ts denotes the time
step. In this work N has been selected to be odd in order to include the frequency zero. The
frequency spacing is given by 4ω = 2π/tf with tf the total simulation time tf = Nts. The
vector e of length N contains one entries. The matrices and operators of Eq. 13 are defined in
Appendix A.

yj = H̃1j ◦ u +
1

tf

[
eTantidiags

(
H̃2j ◦U ◦UT

)
S1

]T
(13)

In this work a nonlinear ROM for the numerical solution in the frequency domain based on
Volterra or functional series is considered. It combines the continuous time impulse method
from Section 2.1 for system identification with the nonlinear response computation in the fre-
quency domain according to Eq. 13. Thus, the knowledge of the higher order frequency domain
Volterra kernel in analytical form is not required and the nonlinear response to inputs defined by
their frequency spectrum can be computed. As it will be seen in Section 3 this approach offers
several advantages:

• The application of Eq. 13 in the frequency domain is computationally more efficient than
Eq. 11 in the time domain. This is due to the fact that for the time domain solution the
matrices Ts, h̃1j and h̃2j in Eq. 11 have to be computed at each time step. In order to
avoid the new computation of these matrices at each time step Toeplitz and doubly block
Toeplitz matrices (using a rectangular instead of a trapezoidal integration rule) can be
used, as described by Jain [33]. However, the doubly block Toeplitz matrices required
for the second order term of the Volterra series results in a square matrix of size N2,
much bigger than the rectangular matrix of size N × (2N − 1) for the frequency domain
counterpart, see Appendix A.
• The computational time required by Eq. 13 is several orders of magnitude lower than that

required by full-order simulations, in particular for CFD applications, see Section 3.
• It provides results even for inputs for which the full-order simulations do not converge

due to high incremental values in the random Gaussian time history of the input signal.

2.2.1 Nonlinear frequency domain solution to random Gaussian excitation

For random input excitation it is usual to work with the Power Spectra Density (PSD) φ̄yj (f) 1,
defined as two-sided (for negative and positive frequencies) as defined by Corinthios et al. [34],
φ̄yj (f) = lim

tf→∞
(1/tf ) |yj (f)|2 , ∀f ∈ (−∞,∞).

Assuming the input to be a zero-mean stationary Gaussian process with two-sided power spec-
trum φ̄u (f) the output PSD φ̄yj (f) for a second order approximation by a Volterra system is
given by the Mircea-Sinnreich series [35, 36], see Eq. 14. The two-sided output PSD φyj (f) is
obtained from the two-sided output PSD as φyj (f) = 2φ̄yj (f), ∀f ∈ [0,∞).

1In this work power signals are considered. This means that they contain an infinite energy if the regular
definition of PSD for energy signals is applied, φ̄yj

(f) = |yj (f)|2 , ∀f ∈ (−∞,∞)
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φ̄yj (f) = φ̄u (f)

∣∣∣∣H1j (f) +
1

2

ˆ ∞
−∞

φ̄u (f1)H3j (f, f1,−f1) df1
∣∣∣∣2 (14)

+
1

2

ˆ ∞
−∞

φ̄u (f1) φ̄u (f − f1) |H2j (f1, f − f1)|2 df1

It is important to note that due to the nonlinear representation of the Volterra series the second
order approximation (those which include the product of two φ̄u) contains the third order fre-
quency domain Volterra kernel H3j . This means that in order to compute the proper output PSD
φyj there are two possibilities:

• To compute the output component yj in the time or the frequency domain considering a
representative simulation time in order to converge to the theoretical random Gaussian
process of infinite duration.
• To consider the third order Volterra kernel H3j in the frequency domain.

Both options will increase the computational time when compared to a deterministic process
of finite time duration. In this work the first option is chosen as it offers a reduction in the
computational time compared to that required for the identification of the third order Volterra
kernel. Thus Eq. 14 is not directly used but it highlights a very important property: the output
PSD φ̄yj obtained by the nonlinear system approximation depends exclusively on the input PSD
φ̄u, i. e. the output PSD does not depend on the phase of the random Gaussian input signal.

Once the one-sided output PSD φyj has been obtained the root mean square (rms) value σyj is

obtained as σyj =
(´∞
−∞ φ̄yj (f) df

)1/2
=
(
2
´∞
0
φ̄yj (f) df

)1/2
=
(´∞

0
φyj (f) df

)1/2. In order
to obtain a random Gaussian time history from the PSD the time signal may be considered to
be generated by the superposition of an infinite number of sinusoidal components, which differ
infinitesimally in frequency from one another and with a prescribed infinitesimal amplitude,
being each randomly phased relative to the others. This is expressed in Eq. 15, where ωk is the
radian frequency of each component. The PSD Φu (ωk) provides the complete measure of the
frequency content of the process [37]. For time domain computations it is convenient that the
input signal starts at the value zero. To achieve that, a shift is applied in the time domain so that
the turbulence value starts at zero, keeping its rms value, as done by Barbati et al. [38].

u (t) =
∞∑
k=1

√
2Φu (ωk)4ωcos (ωkt+ ψk) , ψk ∼ 2πU (0, 1) (15)

In order to determine a proper time discretization both the time step ts and the simulation time
tf have to been specified by imposing a convergence to the theoretical Gaussian distribution.
This is done in two steps, assuming that the input PSD φu and its rms value σu are known:

1. First the maximum frequency fmax to be considered is determined by imposing a convergence
in the rms of the input signal σu,

∣∣∣∣∣
(ˆ fmax

0

φu (f) df

)1/2

− σu

∣∣∣∣∣ /σu ≤ σε (16)
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Figure 3: First order kernel (continuous time im-
pulse method and analytical) for nonlin-
ear oscillator.

Figure 4: First order transfer function (continuous
time impulse method and analytical) for
nonlinear oscillator (magnitude).

A frequency spacing4f depending on the particular input PSD φu is defined for the numerical
integration. Once the frequency spacing is defined the maximum frequency fmax is increased
until the condition defined by Eq. 16 is reached. The tolerance value has been set to σε = 0.01.
The maximum or Nyquist frequency fmax specifies the required time step, ts = 1/2fmax.

2. Second the simulation time tf is increased until convergence in the rms of the input signal
σu is achieved,

∣∣∣∣∣
(

1

tf

ˆ tf

0

|u (t)|2 dt
)1/2

− σu

∣∣∣∣∣ /σu ≤ σε (17)

In Eq. 17 the Parseval theorem has been applied and the factor 1/tf appears for power signals.
The signal u (t) is computed in the time domain considering a finite summation in Eq. 15 up to
ωmax = 2πfmax, where the maximum frequency fmax has been obtained in step 1. As for step
1 the tolerance is set to σε = 0.01. The time step ts from step 1 together with the simulation
time tf from step 2 specify the time discretization required for the second order Volterra system
representation for a random Gaussian input.

2.3 One degree of freedom nonlinear system

In this Section a one degree of freedom nonlinear oscillator as considered by Prazenica [10] is
analyzed. The system output y (t) satisfies the nonlinear differential equation given in Eq. 18,
where u (t) denotes the system input.

mÿ (t) + cẏ (t) + k1y (t) + k2y
2 (t) = u (t) (18)

The system parameters are m = 1 (kg), c = 6 (N m/s), k1 = 4π2 (N/m) and k2 = 4π2 (N/m2).

10
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Figure 5: Second order Volterra kernel (analytical)
for nonlinear oscillator.

Figure 6: Second order Volterra kernel (continuous
time impulse method) for nonlinear oscil-
lator.

First the Volterra kernels of first and second order are identified with the continuous time im-
pulse method presented in Section 2.1. For the nonlinear oscillator the kernels in the frequency
domain can be computed analytically with the harmonic probing method [15] and may be used
for validation purposes, see Appendix B. Note that the higher order frequency domain Volterra
kernels are independent of the signal input. The analytical version of the kernels in the time
domain correspond to the multidimensional inverse Fourier transform of the analytical higher
frequency domain Volterra kernels. Fig. 3 and 4 show a comparison of the first Volterra kernel
obtained with the continuous time impulse method and the analytical functions in the time do-
main and frequency domain. As it can be seen, the agreement is excellent. Fig. 5 and 6 show the
second Volterra kernel in the time domain obtained in analytical form and with the continuous
time impulse method, respectively. Again, a very good agreement with the analytical form is
observed.

Several tests have been conducted for the nonlinear oscillator system by imposing several inputs
defined by Prazenica [10], showing a very good agreement between the second order Volterra
series approximation and the direct nonlinear numerical simulation. These tests are not shown
in this paper but have been used for validation. Next a random Gaussian input with von Kármán
PSD Φu defined in Eq. 22 of Section 3.2 is considered after setting Φpk = Φu and σw = σu. The
two conditions given in Eq. 16 and 17 together with a frequency spacing 4f = 0.46U∞/4πL
as recommended by Hoblit [39] (U∞ is the gust translational speed and L the scale of the
turbulence, see Section 3.2) a time step value of ts = 0.033 (s) and a simulation time of tf = 236
(s) are obtained. These values ensure that the rms value σu obtained from the time histories are
representative of the infinite duration Gaussian process. Fig. 7 shows the output y (t) for a
random Gaussian input with rms value of σu = 1.3333 (N). The first order and second order
response obtained with the frequency domain Volterra kernel according to Eq. 13 are compared
to the full-order simulation. The zoomed region shows the appearance of nonlinearities and its
proper prediction by the second order Volterra series. Fig. 8 shows the dependency of the output
rms σy as function of the input rms σu. The zoomed region shows that the Volterra second order
expansion predicts the proper trend when compared to the full order simulation. There are two
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Figure 7: Output to Gaussian random signal com-
puted with the frequency domain Volterra
kernel for nonlinear oscillator. The input
rms is set to σu = 1.3333.

Figure 8: Output rms σy as function of input rms
σu.

additional limitations that have to be considered:

• The second order Volterra expansion is valid up to a particular rms input σu value, above
which a higher order approximation is required. For this system the second order Volterra
expansion shows a satisfactory trend in the σy (σu) curve up to values of σu ≈ 2 (N).
• The full ODE simulation shows convergence problems for increasing σu values. For this

system the numerical integration scheme does not converge above σu ≈ 5.5 (N).

3 NONLINEAR FREQUENCY DOMAIN AERODYNAMIC MODEL

In this work the structural model is considered to be rigid and does not undertake any mo-
tion. The only aerodynamic input degree of freedom considered is the nondimensional (through
U∞) vertical gust velocity wd(t) at a reference point, fixed at the aircraft nose. The sys-
tem output is the vector of length Nh (with Nh the number of considered generalized co-
ordinates) of Generalized Aerodynamic Forces (GAF), which are obtained after projection
of the acting aerodynamic loads Pg into the structural modes contained in the matrix φgh,
GAF (M∞, k, αs) = φT

ghPg (M∞, k, αs), where M∞ is the freestream Mach number, k the
reduced frequency and αs the steady angle of attack. The reduced frequency k is defined as
k = 2πfLref/U∞, where Lref is a reference length, typically the half of the Mean Aerody-
namic Chord (MAC), and U∞ the freestream velocity.

In order to account for aerodynamic nonlinearities in the frequency domain, a Volterra or func-
tional series expansion is considered, see Eq. 19, based on Eq. 4.

GAF (M∞, k, αs) = Qhd1 (M∞, k, αs)wd (k) (19)

+
U∞

2πLref

ˆ ∞
−∞

Qhd2 (M∞, k1, k − k1, αs)wd (k1)wd (k − k1) dk1

The first term Qhd1 in Eq. 19 represents the linear(ized) part. For a complete aeroelastic model
including aircraft free flexible motion the aeroelastic ROM presented by Quero [4] can be used

12
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Property Wing Horizontal Tail
Plane

Vertical Tail Plane

Span (m) 57.80 18.00 11.75
Aspect ratio 8.7 4.1 1.7

Root chord (m) 13.02 6.49 10.2
Sweep angle at

leading edge (deg)
35.9 47.7 41.4

Taper ratio 0.591 0.354 0.317

Table 1: Geometrical properties.

Figure 9: Inviscid wing empennage configuration. Steady pressure coefficient distribution at M∞ = 0.84 and
αs = 2 (deg).

for its determination. The matrices Qhd1 and Qhd2 are of size (Nh × 1), as wd refers to the
nondimensional disturbance velocity at the aircraft nose. In this work the matrices Qhd1 and
Qhd2 are obtained with the continuous time impulse method described in Section 2.1.

Now the continuous time impulse method is applied to a wing empennage configuration. The
geometrical properties are shown in Table 1. The reference length for the reduced frequency is
Lref = 4.5 (m). The Mach number is set to M∞ = 0.84 and the initial (steady) angle of attack
to αs = 2 (deg), see Fig. 9, which shows the presence of a shock wave over the upper wing
surface. Once the frequency domain Volterra kernels have been identified, discrete 1-cos gust
and continuous turbulence encounters are considered.

When considering the gust as input the impulse shape δsc is considered to be of 1-cos shape
rather than the exponential form of Eq. 5, see Eq. 20, where Lg denotes the gust length. Note
that the gust penetration effect is included automatically by convecting the gust profile with
a translational speed U∞. The gust reduced frequency is given by kg = 2πLref/Lg and is
inversely proportional to the gust length Lg.

δsc (t) =

{
1

2U∞

[
1− cos

(
1
Lg

(2πU∞t)
)]
, 0 ≤ t ≤ Lg

U∞
,

0, else
(20)

The corresponding nondimensional gust input for the first and second order Volterra kernel
identification wd1 and wd2 are given in Eq. 21 respectively. The values A1 = π/180 and
A2 = 4π/180 have been chosen, which represent a 1 − cos pulse of equivalent angle of attack
αeq = tan (An/U∞) of 1 and 4 (deg) respectively. Fig. 10 shows the corresponding dimensional
gust field at the initial time t = 0. For the second order kernel identification the corresponding
gust field for a value of4t = 0.26 (s) is shown.
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(a) Input U∞wd1 (t) for first order kernel identification. (b) Input U∞wd2 (t) for second order kernel identifica-
tion,4t = 0.026 (s).

Figure 10: Gust field input at initial time t = 0 for Volterra kernel identification.

wd1 (t) = A1δsc (t) , wd2 (t) = A2 [δsc (t) + δsc (t−4t)] (21)

In order to identify the first order Qhd1 and second order Qhd2 frequency domain Volterra ker-
nels, a damped aerodynamic system is required, see Section 2.1. In the case the numerical
solution to the gust impulse functions does not tend to an exact zero value, a detrend scheme
is implemented for the first order Volterra kernel in the time domain. This scheme ensures that
the output signal starts and ends at zero avoiding numerical noise when applying the Fourier
transform by substracting the linear trend between the initial and end values of the numerical
solution, as discussed by Teufel et al. [40]. For higher order Volterra kernels the possible non-
zero value lim

4t→∞
Qhd2 (t1, t2) is substracted from Qhd2 (t1, t2). For the practical implementation

the time lag 4t is usually smaller than the simulation time, max (4t) = 4tf < tf , and thus
the value Qhd2 (t1, t1 −4tf ) is substracted from Qhd2 (t1, t2). Fig. 11 shows the second order
Volterra kernel in the time domain and in the frequency domain from the atmospheric distur-
bance wd (t) to the GAF projected into the pitch mode, computed according to the continuous
impulse method of Section 2.1 and after a numerical bidimensional Fourier transform for the
frequency domain counterpart. The condition defined by Eq. 9 has also been applied after
setting u2 = wd2.

3.1 Discrete gust

In this Section a 1-cos discrete gust of amplitude αeq = 3.62 (deg) and half gust length H =
Lg/2 = 350 (ft), the longest according to the regulations [41], equivalent to a gust reduced
frequency kg = 0.13, is considered. Note that this gust amplitude lies in between the gust
amplitudes of αeq = 1 (deg) and αeq = 4 (deg) used for the Volterra kernels identification. The
nonlinear ROM output is computed in the frequency domain as described in Eq. 13. Fig. 12
shows a comparison between the linear(ized) or first order Volterra, the second order Volterra
series expansion and the full-order CFD computation. The peaks predicted by the first order
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(a) Second order Volterra kernel. (b) Second order frequency domain Volterra kernel.

Figure 11: Second order Volterra kernel from atmospheric disturbance wd to generalized aerodynamic pitch mo-
ment. M∞ = 0.84 and αs = 2 (deg).

Volterra series expansion are higher than those predicted by CFD. The second order Volterra
series expansion notably improves the predicted linear(ized) results, reducing the maximum
relative peak deviation from 7.7 % for the first order Volterra expansion down to 1.9 % for
the generalized aerodynamic vertical force and from 8.5 % down to 4.1 % for the generalized
aerodynamic pitch moment. Regarding the computational time, the nonlinear ROM presents
a reduction on the computational time of four orders of magnitude compared to the full-order
CFD simulation for the discrete gust case. The computational case for this example has been
5 (s) for the nonlinear ROM (carried out on an Intel Xeon X5690 processor at 3.47 GHz and
cache size of 12 MB) and 10500 (s) for the CFD computation (carried out on an Intel Xeon
X5650 processor with 32 cores at 2.67 GHz and 12 MB).

3.2 Continuous turbulence

In this Section a random Gaussian input is considered as atmospheric disturbance. Two different
functions for describing the gust PSD in continuous turbulence have been commonly used, the
Dryden and the von Kármán spectrum, provided in Eq. 22 as Φpk (ω) (one-sided) depending on
the parameters p and k, where σw represents the rms value of the turbulence [42]. For Dryden
p = 1/2 and k = 1, whereas for von Kármán p = 1/3 and k = 1.339. Due to the better fit to
atmospheric data, the von Kármán spectrum is used here. The scale of turbulence L is set to
2500 (ft) as proposed by Hoblit [39].

Φpk (ω) = σ2
wfpk (ω) = σ2

w

(
L

πU∞

)
1 + 2 (p+ 1) (kLω/U∞)2[

1 + (kLω/U∞)2
]p+3/2

, ω ≥ 0 (22)

Fig. 13 shows the relative percent deviation of the GAF rms (projected into the heave and pitch
modes) obtained by second order Volterra series expansion σGAF2 with respect to the rms value
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(a) Heave mode. (b) Pitch mode.

Figure 12: GAF for gust input αeq = 3.62 (deg) and kg = 0.13. M∞ = 0.84 and αs = 2 (deg).

obtained by the first order Volterra series expansion or linear(ized) solution σGAF1, computed
as 100 (σGAF2 − σGAF1) / |σGAF1|, versus the turbulence rms σw up to a maximum value of
σw = 12 (m/s). Similar to the nonlinear oscillator of Section 2.3 a small reduction of the
GAF rms σGAF is predicted by the nonlinear Volterra series expansion of second order. Note
that an additional convergence study adding the third order Volterra kernel would reveal up to
which value of the turbulence rms σw the second order expansion is appropriate, but it has not
been further investigated. Additionally a polynomial quadratic fit for the curves in Fig. 13 is
shown. As it can be observed the quadratic fit reproduces very well the predicted nonlinear
deviation behaviour of the GAF rms values. The computational time of the nonlinear ROM
for this case has been of 650 (s), higher than for the discrete gust, due to the small frequency
spacing 4f = 0.004237 (Hz) produced by the long simulation time tf = 236 (s) imposed by
Eq. 17 and obtained in Section 2.3. In the case of continuous turbulence no reference data from
CFD could be generated due to the following issues:

• The CFD simulation does not converge for turbulence rms values higher than σw ≈ 2
(m/s) due to the high incremental values experience in the turbulence disturbance wd (t)
in one time step.
• Very long simulation times are required in order to reproduce the Gaussian random dis-

tribution. By taking into account the computational time required by CFD for the discrete
gust in Section 3.1 this would mean an approximately computational time of 4.956 · 105

(s) if the solution were to converge. This would represent an approximate reduction in
the computational time of up to four orders of magnitude, similar to that obtained for the
discrete gust case.

According to the quadratic fit shown in Fig. 13 the nonlinear GAF rms vector of length Nh

as predicted by the second order Volterra series expansion σGAF2 can thus be expressed as
function of the turbulence rms σw with a cubic polynomial approximation, see Eq. 23, where
σGAF1 corresponding to the first order approximation of the Volterra or functional series is
obtained by setting α1 = α2 = 0.
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(a) Heave mode. (b) Pitch mode.

Figure 13: GAF rms σGAF deviation of second order with respect to first order Volterra series expansion as func-
tion of the turbulence rms σw. M∞ = 0.84 and αs = 2 (deg).

σGAF2 = σw

[ˆ ∞
0

|Qhd1 (ω)|2 fpk (ω)

]1/2 (
1 + α1σw + α2σ

2
w

)
(23)

For the case considered the vectors α1 and α2 of length Nh = 2 corresponding to the heave and
pitch GAF are

α1 =

[
−1.5541
−3.2305

]
10−3 (1/ (m/s)) , α2 =

[
0.7835
2.2811

]
10−4

(
1/ (m/s)2

)
4 CONCLUSION

To the author’s knowledge the Volterra series expansion had not yet been applied to the non-
linear aerodynamic contribution due to turbulence encounters in the frequency domain. In this
work a novel nonlinear ROM based on the identification of the Volterra kernels with continuous
time impulses and its numerical application in the frequency domain for the nonlinear aerody-
namic response prediction to gust and continuous turbulence encounters has been presented.
The method notably improves the linear(ized) prediction. A nonlinear dependency of the GAF
rms as function of the turbulence rms has been obtained for Gaussian continuous turbulence
encounter. This relation is only dependent on the turbulence frequency content and independent
of the phase content.

The presented nonlinear ROM provides several advantages:

• The nonlinear system identification follows from the application of continuous (with high
frequency content) and not discrete input impulses, which improves the convergence of
the CFD simulations required for the Volterra kernel identification.
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• The nonlinear response can be computed by the present ROM much faster than by a
full-order nonlinear simulation, provided the Volterra kernels have been identified. Addi-
tionally the frequency domain implementation requires less computational effort than the
time domain implementation.
• It is applicable to cases for which the full-order nonlinear simulation does not converge.

Massive CFD convergence problems have been observed for continuous turbulence pro-
files with a root mean square (rms) value higher than approximately 2 (m/s). This seems
to be a serious limitation, specially when turbulence encounters specified by the regula-
tions contain rms values higher than 10 (m/s).

As continuation of this work several extensions are proposed:

• Consideration of multi-input systems for several aerodynamic excitations acting simulta-
neously. This implies the consideration of cross Volterra kernels [15].
• Development of a nonlinear aeroelastic solver in the frequency domain by coupling the

nonlinear ROM with the structural model. In order to achieve this the multi-input formu-
lation has to be implemented, as the effects of both the atmospheric disturbance and the
aircraft motion have to be considered.
• Application to optimization problems in order to find the worst gust case scenario as an

extension of the linear Matched Filter Theory following the idea of Scott et al. [43].

APPENDIX A: MATRICES IN THE NUMERICAL IMPLEMENTATION OF VOLTERRA
OR FUNCTIONAL SERIES EXPANSION

The matrix h̃1j of size 1× k in Eq. 11 is given by:

h̃1j (tk) =
[
h1j (tk) 2h1j (tk−1) · · · 2h1j (ti) · · · 2h1j (t2) h1j (t1)

]
, where i = 1, ..., k. The square matrix h̃2j of size k is:

h̃2j (tk) =



h2j (tk, tk) 2h2j (tk−1, tk) · · · · · · 2h2j (t2, tk) h2j (t1, tk)
2h2j (tk, tk−1) 4h2j (tk−1, tk−1) 4h2j (t2, tk−1) 2h2j (t1, tk−1)

...
... . . . ...

...

2h2j (tk, ti) 4h2j (tk−1, ti)
. . . 4h2j (t2, ti) 2h2j (t1, ti)

...
...

...
...

2h2j (tk, t2) 4h2j (tk−1, t2) 4h2j (t2, t2) 2h2j (t1, t2)
h2j (tk, t1) 2h2j (tk−1, t1) · · · · · · 2h2j (t2, t1) h2j (t1, t1)


In Eq. 13 the discrete versions of the frequency domain Volterra kernel obtained by uni- and
bidimensional Fourier transforms for the output component yj have been used,

H̃1j =
[
H1j (ω1) · · · H1j (ωN)

]T
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H̃2j =


H2j (ω1, ω1) · · · H2j (ω1, ωk) · · · H2j (ω1, ωN)

...
...

...
H2j (ωk, ω1) H2j (ωk, ωk) H2j (ωk, ωN)

...
...

...
H2j (ωN , ω1) · · · H2j (ωN , ωk) · · · H2j (ωN , ωN)


, where the matrix H̃2j is symmetric. The operator antidiags takes the proper anti- or secondary
diagonals of a square matrix. Applying the operator antidiags to a square matrix A of size N
results in a rectangular matrix of size N × (2N − 1), which is responsible for the extension of
the frequency interval to ω ∈ [−2ωmax, 2ωmax],

antidiags (A) = antidiags





A11 A12 · · · A1k · · · A1,N−1 A1N

A21
...

... A2,N−1 A2N
...

...
...

...
...

Ak1
... Akk

... AkN
...

...
...

...
...

AN−1,N AN−1,2
...

... AN−1,N
AN,1 AN,2 · · · ANk · · · AN,N−1 AN,N





=



A11 A21 · · · Ak1 · · · AN−1,1 AN,1 AN,2 · · · ANk · · · AN,N−1 ANN

0 A12
...

... AN−1,2
...

... AN−1,N 0
... 0 A1k

...
...

... AkN 0
...

...
... 0

...
...

... 0
...

...
...

...
...

...
...

...
...

...
...

...
...

... A1,N−1 A2,N−1 A2,N
...

...
...

0 0 0 0 0 0 A1,N 0 0 0 0 0 0



The sum over the complex elements of the matrix antidiags
(
H̃2j ◦U ◦UT

)
is carried out by

the row vector eT with one entries of length N in Eq. 13. The matrix S1 =
[
0T IN 0T

]T
of size (2N − 1)×N selects the frequency range ω ∈ [−ωmax, ωmax], where IN is the identity
matrix of size N . The zero submatrices are of size (N − 1) /2×N .

APPENDIX B: HIGHER ORDER FREQUENCY DOMAIN VOLTERRA KERNELS FOR
NONLINEAR OSCILLATOR

The higher order frequency domain Volterra kernels for the nonlinear oscillator can be com-
puted by means of the harmonic probing technique as described by Worden et al. [15]. For the
nonlinear oscillator defined in Eq. 18 they are provided up to the third order in Eq. 24, 25 and
26.

H1 (ω) =
1

−mω2 + icω + k1
(24)
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H2 (ω1, ω2) = −k2H1 (ω1)H1 (ω2)H1 (ω1 + ω2) (25)

H3 (ω1, ω2, ω3) = −2k2
3
H1 (ω1 + ω2 + ω3) (26)

[H1 (ω1)H2 (ω2, ω3) +H1 (ω2)H2 (ω3, ω1) +H1 (ω3)H2 (ω1, ω2)]
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