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Abstract: Real–time simulation is a valuable tool for aircraft development. However, flexible
aircraft models are computationally expensive and can be prohibitive for fast simulations. This
paper investigates the applicability of a nonlinear model order reduction technique to a moderate
flexible aircraft for real–time simulation purposes. Details of the implementation and test cases
are presented. Results show that the reduced–order model can be simulated in real–time and
produces better results than linearized model and rigid–body model with aeroelastic correction
and we conclude that the technique is promising for real–time simulations.

1 INTRODUCTION

Real–time flight simulation is a valuable tool for aircraft development. The benefits are beyond
design. Financial costs can be reduced and development process can be accelerated by using
flight simulators instead of flying prototypes. Furthermore, safety can be increased by provid-
ing pilots ground training, reconstructing flight conditions involved in accidents or simulating
abnormal situations that could be dangerous to be reproduced in real flight.

Because of the benefits, real–time flight simulation models are widely used by industry and
academic research. They are fundamental part of hardware–in–the–loop (HIL) and pilot–in–
the–loop (PIL) simulations and have plenty of applications. For example, HIL simulations can
be used to validate control systems [1, 2] and PIL simulations can be used to evaluate flying
qualities [3] or for pilot induced oscillations (PIO) studies [4].
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However, real–time flight simulation for flexible aircraft is currently a challenge. The interac-
tion between fluid, structure and flight dynamics results in mathematical models with many state
variables and highly nonlinear equations, which are computationally expensive to be calculated
in real–time. In addition, linear models cannot represent the aeroelastic effects accurately when
large aircraft body deformation or large angles of incidence are involved.

In face of these difficulties, new simulation strategies must be studied. This work investigates
the applicability of a nonlinear model order reduction technique [5] for real–time simulation
purposes. The technique is applied to a moderate flexibility aircraft model, the Generic Narrow
Body Airliner (GNBA) in its most flexible configuration (W025F025) [6] and the results are
compared with fast simulation approaches: the classical rigid–body approximation with quasi–
steady aeroelastic correction and the linearized full–order flexible model.

2 THE MODEL ORDER REDUCTION TECHNIQUE

The nonlinear model order reduction technique employed in the current work was developed by
Da Ronch et al [5]. It was conceived for flight control law design of flexible aircraft. In sum-
mary, the technique uses information on the eigenspectrum of the Jacobian matrix and projects
the system through a Taylor series expansion onto a small basis of eigenvectors representative
of the system dynamics, retaining terms of second and third order.

Consider a flexible aircraft with dynamics represented by the state equation

ẋ = F (x,u), (1)

where F is a nonlinear function, u is the control input vector and x is a n–dimensional state
vector containing rigid–body, structural and fluid state variables:

x =

xrb

xs

xf


n×1

. (2)

Consider now ∆x = x− x0 a small perturbation in the state vector with respect to an equilib-
rium point x0 and ∆u = u − u0 a small perturbation in the control input vector with respect
to the equilibrium point u0. The nonlinear state equation represented by Eq. (1) is expanded in
a Taylor series around x0 and u0 and the system dynamics is approximated by

∆ẋ ≈ A∆x+
∂F

∂u
∆u+

1

2!
B(∆x,∆x) +

1

3!
C(∆x,∆x,∆x), (3)

whereA,B and C represents the first, second and third Jacobian operators defined by

Aij =
∂Fi(x0)

∂xj
, (4)

Bi(a, b) =
n∑

j,k=1

∂2Fi(x0)

∂xj∂xk
ajbk, (5)

Ci(a, b, c) =
n∑

j,k,l=1

∂3Fi(x0)

∂xj∂xk∂xl
ajbkcl. (6)
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The Taylor series expansion (3) must be projected onto a small basis formed by m (m � n)
eigenvectors of the Jacobian matrixAwhich are representative of the aircraft dynamics. Denote
φi and ψi the right and left eigenvectors ofA, i.e.

Aφi = λiφi, for i = 1, ..., n, (7)

ATψi = λ̄iψi, for i = 1, ..., n. (8)

It is convenient that the set of eigenvectors that forms the reduced–order model basis satisfies
the biorthonormality conditions, i.e.

〈φi,φi〉 = 1, for i = 1, ...,m, (9)

〈ψj ,φi〉 = δij , for i = 1, ...,m, (10)
〈ψj , φ̄i〉 = 0, for i = 1, ...,m, (11)

where δij represents the Kronecker delta and the inner product is defined as 〈a, b〉 = āTb.

Consider the transformation of coordinates

∆x = Φz + Φ̄z̄, (12)

where
Φ =

[
φ1 ... φm

]
(13)

and z ∈ Cm is the reduced–order model state variable vector. Applying the transformation of
coordinates (12) into Eq. (3) and then premultiplying each term by the conjugate transpose of
of the left modal matrix, results in

ψ̄T
j (φiżi + φ̄i ˙̄zi) = ψ̄T

j

(
Aφizi +Aφ̄iz̄i +

∂F

∂u
∆u+

1

2!
Bi(∆z,∆z) +

1

3!
Ci(∆z,∆z,∆z)

)
.

(14)
Once the biorthonormality conditions (9), (10) and (11) were satisfied, the set of m equations
(14) can be simplified as

żi = λizi +ψT
j

(∂F
∂u

∆u+
1

2!
Bi(∆z,∆z) +

1

3!
Ci(∆z,∆z,∆z)

)
, (15)

where the bilinear and trilinear terms are written as

Bi(∆z,∆z) =
m∑

r,s=1

Bi(φr,φs)zrzs +Bi(φr, φ̄s)zrz̄s+

Bi(φ̄r,φs)z̄rzs +Bi(φ̄r, φ̄s)z̄rz̄s

(16)

and

Ci(∆z,∆z,∆z) =
m∑

r,s,t=1

(
Ci(φr,φs,φt)zrzszt + Ci(φr,φs, φ̄t)zrzsz̄t+

Ci(φr, φ̄s,φt)zrz̄szt + Ci(φr, φ̄s, φ̄t)zrz̄sz̄t+

Ci(φ̄r,φs,φt)z̄rzszt + Ci(φ̄r,φs, φ̄t)z̄rzsz̄t+

Ci(φ̄r, φ̄s,φt)z̄rz̄szt + Ci(φ̄r, φ̄s, φ̄t)z̄rz̄sz̄t

)
(17)

It is possible to calculate all the bilinear and trilinear contributions without calculating all the
second and third order partial derivatives analytically. They can be approximated by using finite
differences instead. The bilinear and trilinear contributions consist, in general, of 4m2 and 8m3

terms. However, it is possible to reduce the number of terms to 2m2+m and 2
3
(2m3+3m2+m)

respectively by exploiting the symmetry of the Jacobian operators [5].
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3 GENERIC NARROW–BODY AIRLINER VIRTUAL AIRCRAFT

The Generic Narrow–Body Airliner (GNBA) is a conceptual aircraft model developed by Guimarães
Neto [6] for academic research purposes, conceived to be comparable to Boeing 737–500/600,
Airbus A318/319, Embraer E–195 and Bombardier CS300. It was designed to operate at 38.000
ft altitude ISA and Mach 0.78. The main geometric parameters of GNBA are summarized in
Table 1.

Parameter Value Unit
Reference wing planform area 116.0 m2

Wing aspect ratio 9.25 –
Wing taper ratio 0.315 –

Wing span 32.756 m
Wing mean aerodynamic chord 3.862 m

Wing leading edge sweepback angle 30 deg
Equivalent wing quarter–chord sweepback angle 27.52 deg

Horizontal tail planform area 25.03 m2

Horizontal tail aspect ratio 5.5 –
Vertical tail planform area 20.49 m2

Vertical tail aspect ratio (root to tip) 1.7 –
Fuselage length 39.15 m

Maximum fuselage diameter 3.7 m

Table 1: GNBA Main Geometric Parameters [6].

The GNBA finite element model was created in MSC/NASTRAN [7] and consists of CBAR
elements for wings, horizontal tail, vertical tail, fuselage, pylons, engine and for the structural
links between the connected components. It also includes rigid bar elements used to connect the
structural nodes to the lumped–mass elements. All the materials constituting the aircraft were
assumed to be isotropic.

The GNBA has three levels of flexibility: Nominal, W050F050 and W025F025. For each
level, the stiffness properties of the beam elements in the wing and wing–fuselage connection
are multiplied by a factor σw and the stiffness properties of the fuselage beam elements are
multiplied by a factor σf . Table 2 presents the value of these factors for each level of flexibility.

Configuration σw σf

Nominal 1.0 1.0
W050F050 0.5 0.5
W025F025 0.25 0.25

Table 2: GNBA Levels of Flexibility [6].

The elastic modes were calculated via structural dynamic model and modes up to 25 Hz were
considered for modal superposition. For the W025F025 configuration, the most flexible con-
figuration, used in the present work, has a total of 42 elastic modes. Table 3 presents some of
the elastic modes and their respective frequencies for the three GNBA configurations and Fig. 1
illustrates the aircraft trimmed and the first wing and fuselage modes.
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Flexible Mode W025F025 W050F050 Nominal
First symmetric wing bending frequency [Hz] 1.07 1.50 2.13
First asymmetric wing bending frequency [Hz] 1.51 2.12 2.96
First fuselage lateral bending frequency [Hz] 2.20 3.09 4.40
First fuselage vertical bending frequency [Hz] 2.29 3.21 4.49

Symmetric engine pitching frequency [Hz] 3.47 4.45 5.53
Asymmetric engine pitching frequency [Hz] 3.54 4.77 6.21

Table 3: GNBA Flexible Modes Frequencies [6].

Figure 1: GNBA aircraft: trimmed, first wing bending mode and first fuselage bending mode [8].

The GNBA W025F025 implementation used in the current work, designated by FOM (Full–
Order Model), is based on mean axis formulation [9] with doublet–lattice aerodynamics. The
state vector contains 518 states, and is represented by

x =
[
V α q θ H β φ p r iht δe δa δr T {η} {η̇} {λ}

]T
, (18)

where V is the flow velocity, α is the angle of attack, β is the sideslip angle, p,q and r are the
angular rates, θ and φ are the Euler angles, H is the altitude, iht is the horizontal empennage
angle, δe, δa, δr are the elevator, aileron and rudder deflection angles, respectively, T is the
throttle, {η} and {η̇} are the structural generalized coordinates and their time–derivatives, each
of them containing 42 elements, and {λ} is the aerodynamic lag vector containing 420 elements,
10 aerodynamic lags for each structural mode.

The control input vector u is defined by

u =
[
ihtc δec δac δrc Tc

]T
, (19)

where ihtc is the horizontal empennage commanded angle, δec, δac and δrc are the elevator,
aileron and rudder commanded angles respectively and Tc is the commanded thrust. More
detailed information about the GNBA aircraft model can be found in reference [6].

4 THE NONLINEAR REDUCED ORDER MODEL (ROM) DESIGN

In order to evaluate the model order reduction technique [5] for real–time simulation purposes,
the reduced–order model (designated by ROM) was generated from the GNBA W025F025
dynamics [6]. The ROM basis was formed by 30 pairs of left and right eigenvectors associated
to the lowest frequencies eigenvalues of the full–order model (designated by FOM). Fig. 2
illustrates the map of poles for both models, FOM and ROM. The nonlinear part is composed
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by the quadratic terms only, the cubic terms in the Eq. (15) were neglected, i.e., the ROM
dynamics is described by

żi = λizi +ψT
j

(∂F
∂u

∆u+
1

2!
Bi(∆z,∆z)

)
. (20)
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Figure 2: FOM and ROM map of poles.

The ROM was implemented in MATLAB. In order to be computationally efficient, complex
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arithmetic was avoided. The ROM complex coefficients were separated in real and imaginary
parts and implemented as sparse matrices.

The integration algorithm chosen to perform the simulations was the MATLAB Runge–Kutta
4th–order method (ODE–4). The hardware and software configurations used to perform the
simulations and to asses performance are summarized in Table 4.

Component Specification
CPU Intel Core i7 4510U 2.6 GHz

RAM Memory 8,00 GB
Operational System Windows 10 Home

Framework MATLAB R2017a

Table 4: Hardware and Software Specification.

5 RESULTS

This section contains results obtained via simulation for specific test cases designed to explore
nonlinearities of the aircraft model. The ROM is compared with three different approaches:
the nonlinear FOM which represents the dynamics that we would like to reproduce, the linear
FOM which is a fast alternative for real–time simulations and the rigid–body with quasi–static
aeroelastic correction [6] which consists in a rigid–body approach with modified aerodynamic
coefficients such that the poles relative to rigid–body dynamics match with the corresponding
poles in the flexible model.

Velocity and altitude signals were evaluated in the aircraft center of gravity while the angles and
angular rates were evaluated in the aircraft cockpit, i.e. they include rigid–body and flexibility
effects.

5.1 Response to a rudder doublet

This test case demonstrates the limitation of the linearized model in reproducing the aircraft
longitudinal behavior due to a rudder command. A 10 degree doublet command was applied
to the rudder (Fig. 3), the longitudinal and lateral responses are presented in the Figs. 4 and 5,
respectively.
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Figure 3: Rudder 10 degree doublet excitation.
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Although the three approximations could represent the lateral–directional dynamics behavior
well, it is worth note that the linear FOM longitudinal response remains close to the initial
conditions during the entire flight while the nonlinear FOM indicates that the aircraft is actually
performing a coupled longitudinal motion. Both, ROM and rigid–body approximation, were
able to reproduce the longitudinal dynamics. However, the ROM achieved a more accurate
response.
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(c) Pitch rate.
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Figure 4: Longitudinal response due to a 10 degree rudder doublet.
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(a) Sideslip angle.
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(d) Yaw rate.

Figure 5: Lateral response due to a 10 degree rudder doublet.

5.2 Response to an aileron and elevator doublet

This test case demonstrates the aircraft longitudinal (Fig. 7) and lateral responses (Fig. 8) due
to a 10 degree simultaneous aileron and elevator doublet (Fig. 6).
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Figure 6: Aileron and elevator 10 degree doublet excitation.

In general, the ROM fits the FOM response better than the other approaches. Note that rigid–
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body approach can not represent vibrations produced by the elastic deformation, as shown in
Fig. 7(c) and in Fig. 8(d). Additionally, the rigid–body approach could not represent the altitude
response accurately, as shown in Fig. 7(e). On the other hand, the linear approach had problems
representing the bank angle response, as shown in Fig. 8(b), while the proposed ROM could
represent all the responses accurately.
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(d) Pitch angle.
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Figure 7: Longitudinal response due to a simultaneous 10 degree aileron and elevator doublet.
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(c) Roll rate.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t [s]

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

r 
[d

eg
/s

]

Nonlinear FOM
Linear FOM
Rigid Body with aeroelastic correction
Nonlinear ROM

(d) Yaw rate.

Figure 8: Lateral response due to a simultaneous 10 degree aileron and elevator doublet.

5.3 Method Limitations

The model order reduction technique [5] is based on Taylor series expansion around an equilib-
rium point which means the approximation is local. As the operation point moves away from
the equilibrium, the ROM approximation loses accuracy.

To illustrate the effect of this limitation, Fig. 9 shows the pitch angle and altitude responses due
to a step excitation that increases the thrust by 20% of its equilibrium value while Fig. 10 shows
the responses of the same variable for an increase of 50%. Note that for the second case, the
ROM approximation becomes slightly worse than the first one.
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Figure 9: Pitch angle and altitude responses due to a thrust step of 20% of the trimmmed thrust (T0 = 29, 866N).
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Figure 10: Pitch angle and altitude responses due to a thrust step of 50% of the trimmmed thrust (T0 = 29, 866N).

5.4 Assessment of Computational Cost

The objective of this subsection is to demonstrate the performance gain of the ROM relatively
to the FOM. This gain is mainly achieved by the simpler polynomial ROM formulation, the
reduced number of equations and state variables. Additionally, the increase of the simulation
time step size necessary for convergence also contributes to a even lower average simulation
time. Since the ROM is formed by low frequency modes only (Fig. 2), there is no need to use
small time step sizes as in the FOM.

The timing measurements were made in the computer described in Table 4. Five 15–seconds
flight simulations were performed for each case. Table 5 presents the average simulation time
and the respective standard deviation for each case.

Model Time step (ms) Average simulation time (s) Standard deviation (s)
FOM 5 892.091 3.822
ROM 5 8.555 0.131
ROM 10 4.453 0.150

Table 5: Comparison between FOM and ROM simulation time of a 15–seconds flight.

Comparing the first two lines of Table 5, where ROM and FOM were simulated with the same
time step, it is observed a gain of 104.2 times in the simulation time due to the smaller number
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of equations and simpler polynomial formulation. When we consider the time step increase, the
total simulation time gain is equal to 200.33 times.

6 CONCLUSION

In this paper, we applied a nonlinear model order reduction technique to an aircraft of mod-
erate flexibility for real–time simulation purposes. Test cases were presented to compare the
approximation made by the reduced–order model with other traditional fast simulation mod-
els. Furthermore, a comparison between the reduced–order model and the full–order model
simulation time was made showing significant performance improvement.

Results showed that the reduced–order model was able to approximate in real–time the full–
order model dynamics around the equilibrium point better than the linearized model and the
rigid–body model with aeroelastic correction.

The overall assessment is that the technique is promising for real–time simulations of flexible
aircraft.

Future work will focus on the application of the reduced order model to a highly flexible aircraft
and on the control synthesis design for maneuver and load alleviation.
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