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Abstract: We introduce a nondimensional state-space formulation of the unsteady vortex-
lattice method for time-domain aerodynamics. It deals with 2- or 3-dimensional geometries,
resolves frequencies up to a spatio-temporal Nyquist limit defined by the wake discretization,
and has a convenient form for linearization, model reduction and coupling with structural dyna-
mics models. No assumptions are made relating to the kinematics of the fluid-structure interface
(inputs) and use of Joukowski’s theorem to compute forces naturally resolves all components
of the unsteady aerodynamic forcing (outputs). Linearized expressions are written about ar-
bitrary non-zero reference geometries, velocities and loading distributions and as such yield
models that are as general as possible given the assumptions in the underlying fluid mechanics.
The implementation is verified against classical solutions in the unsteady aerodynamics, and in
aeroelastic stability analysis of cantilever wing configurations.

1 INTRODUCTION

Despite the substantial computational and methodological advances in CFD-based unsteady ae-
rodynamics, analysis methods for loads and aeroelastic analysis heavily relies on potential-flow
theory for practical applications. In particular, the doublet-lattice method (DLM) [1,2] has long
been the tool of choice for frequency-domain aerodynamics at subsonic speeds for applications
in which the structural dynamics can be described in modal space. In the standard formulation
only induced-velocities, kinematics and resulting forces that are normal to the free-stream are
resolved, and any contribution to the unsteady aerodynamics from the steady-state loading dis-
tribution is lost [3]. Also, an infinite flat wake that is parallel to the free-stream flow is assumed,
which has prevented the method from being applied in problems where this is not a reasonable
assumption, such as wind-turbine aeroelasticity [4]. When time-domain models are required,
rational function approximations (RFA) of the DLM unsteady aerodynamics are needed [5–7].
In this approach the aerodynamic lag effect, which arises from convection of vorticity down-
stream in the wake, is approximated in the frequency domain using a least-squares fit.

An alternative approach for incompressible flows was proposed by Hall [8], who wrote a linea-
rized form of the unsteady vortex-lattice equations in state-space form, thus directly obtaining
time-domain models. Eigenanalysis of his equations, and aeroelastic equations that used the
same fluid model, revealed the structure of eigenvalues underlying the unsteady aerodynamics
model and their interaction with structural dynamics degrees-of-freedom [9, 10]. Murua [11]
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has more recently developed a more general approach in which induced-drag, in-plane motions,
and the effects of steady-state aerodynamic loading were captured, using a UVLM linearized in
the degrees-of-freedom of a beam finite-element model. This model was then shown to success-
fully predict the characteristics of T-tail flutter [12], which depend strongly on static loading and
in-plane vibrations and are not captured by the standard DLM.

One potential drawback of using vortex-based methods to directly formulate linear time-domain
models is the large number of degrees-of-freedom required to discretize the wake in a converged
model. The usual assumption is that vorticity in the discrete wake moves downstream one
element per time step. Therefore, the streamwise discretization of the wake sets the temporal
discretization of the dynamics in the problem. A small wake spacing will therefore resolve a
large frequency range, but at a large cost. If the UVLM equations are linearized, this can be
addressed using standard methods of model order reduction. This was first proposed by Hall [8],
who projected the equations onto a reduced set of aerodynamic eigenstates, and proceeded
by Baker et al. [13] who used balanced realizations. Rule et al. [14] subsequently compared
balanced realizations with direct projection on the system eigenvalues and showed a much better
performance for a given system size. This has been recently extended to unsteady aerodynamic
problems around non-zero reference conditions by Hesse et al. [15].

Simpson et al. [16] have recently shown that Joukowski’s theorem becomes necessary to com-
pute all three components of the aerodynamic force for problems with arbitrary kinematics. This
will be further explored here by presenting the full linearisation of the resulting UVLM formu-
lation. No assumptions will be made relating to the kinematics of the fluid-structure interface
and all components of the unsteady aerodynamic forcing are resolved. Furthermore, the linea-
rized equations will be built in nondimensional form, which will scale the aerodynamic loading
with the reference dynamic pressure. This will facilitate efficient aeroelastic analyses across the
(incompressible) flight envelope. The rest of the paper is structured as follows: A discrete-time
state-space description of unsteady aerodynamics with arbitrary kinematics is first outlined in
section 2, which is followed by a linearisation around an arbitrary reference configuration, so
as to include the effect of non-zero loading, deformed geometries and arbitrary perturbations
on the wing kinematics. A brief description on the aeroelastic models using these aerodyna-
mic models is then presented in section 3. The linearized aerodynamics are then exercised in
problems of the two-dimensional unsteady aerodynamics of aerofoils and aeroelastic stability
of cantilever wings in section 4. Balanced realizations are finally included to demonstrate the
potential for model reduction of the proposed approach.

2 THREE-DIMENSIONAL UNSTEADY AERODYNAMICS WITH ARBITRARY KI-
NEMATICS

A discrete-time state-space description of the nonlinear unsteady vortex-lattice-based aerody-
namics in nondimensional form is first outlined in this section, followed by the linearization
around arbitrary reference conditions. Lifting surfaces will be discretized using a lattice of qua-
drilateral vortex rings. The description here is done for a single wing, as shown in figure 1,
although this can be easily generalized for multiple surfaces [11]. A reference velocity V is
considered for nondimensionalization, which will correspond to the forward-flight velocity in
the reference condition for linearization (or to the reference blade tip velocity in wind-turbine
aerodynamics). The reference length will be a typical semi-chord, b (e.g. at the wing root). This
results in the usual scaling of time b/V found in aeroelastic applications. We will refer to t the
physical time and s = tV/b the reduced time.
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2.1 Lattice discretization

Consider a lifting surface with M rings in the chordwise direction and N rings in the spanwise
direction, and K = MN . The corresponding wake lattice has Kw = MwN rings with Mw >>
M . Each of the vortex rings has a scalar circulation strength, after normalization with bV these
are collected in vectors Γ ∈ RK and Γw ∈ RKw that correspond to the surface and wake
nondimensional vorticity distributions, respectively.

Figure 1: Vortex lattice geometry and circulation distribution.

The instantaneous lattice geometry is described by Kζ = (M + 1)(N + 1) lattice vertices on
the surface with Kζw = (Mw + 1)(N + 1) in the wake. The nondimensional coordinates of
those points, given with respect to a certain inertial reference frame, will be ζ(t) ∈ R3Kζ and
ζw(t) ∈ R3Kζw for the surface and wake geometries, respectively. In particular, the time history
of the wing kinematics, ζ(t), is assumed to be known, while the wake is in general assumed to
move according to the local flow velocity (i.e., a free wake).

Moreover, a background fluid velocity field is also defined at both the surface and the wake. This
may include the presence of a mean flow, atmospheric turbulence and other spatially and/or
temporally varying features. It will be defined by a vector of the three components of the
instantaneous background flow velocity at the lattice vertices, that is, ν(t) ∈ R3K and νw(t) ∈
R3Kζ for the surface and wake lattice, respectively.

Using this description, the instantaneous induced velocity field generated by the vortex lattice
is obtained applying the Biot-Savart law to each side of the vortex rings [17]. This is used in
particular to enforce the non-penetrating boundary condition on the lifting surfaces, which is
done at collocation points at the centre of each vortex ring. The induced velocity field at each
collocation point is projected along the local normal vector to the surface. Consequently, the
non-penetration condition can be expressed, at the discrete time step n+ 1, as

A(ζn+1)Γn+1 + Aw(ζn+1, ζn+1
w )Γn+1

w +W (ζn+1)
(
νn+1 − ζ ′n+1

)
= 0. (1)

where A(ζ) ∈ RK×K and Aw(ζ, ζw) ∈ RK×K are the aerodynamic influence coefficient ma-
trices corresponding to wing and wake, and the matrix W (ζ ∈ RK×3Kζ projects the kinematic
and background fluid velocities, given at the vertex corners, along the normal vectors at the
collocation points. In particular, a bilinear interpolation is used for the velocities within each
vortex ring. Note that the coefficients terms depending of the Biot-Savart law (A and Aw) will
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need in general to be updated at every time step for wings undergoing large geometry changes,
which introduced a nonlinearity into the problem. In general, the interpolation matrix W will
also need updating to account for the deformation of the vortex rings, although in practice that
can be often neglected. Finally, (·)′ indicates the derivative with respect to reduced time, s.

2.2 Wake model

Unsteady effects are included through convection of the wake coordinates ζw and circulation
Γw in the fixed reduced time-step ∆s. The convection of the wake lattice is given by [11]

ζn+1
w +Cζζ

n+1 = Cζwζ
n
w + ∆s (A1(ζn, ζnw)Γn + A2(ζnw)Γn

w + νnw) , (2)

whereCζ ∈ N3Kζw×3Kζ is a sparse, constant matrix that joins the wake lattice with the trailing-
edge of the surface lattice at the current time step, whileCζw ∈ N3Kζw×3Kζw shifts the elements
of ζw downstream by one chordwise row. Matrices A1(ζ, ζw) ∈ R3Kζw×K and A2(ζw) ∈
R3Kζw×Kw account for the fluid velocities induced by the surface and wake vortex rings at the
wake lattice vertices, respectively, and are obtained again from Biot-Savart law. Including these
velocities allows the UVLM to capture wake roll-up.

The convection of circulation strengths can be simply written as

Γn+1
w = CΓΓn + CΓwΓn

w, (3)

in which CΓw ∈ NKw×Kw is a sparse constant matrix that shifts the wake circulation downstream
by one chordwise element. Similarly, CΓ ∈ NKw×K propagates the circulation strength from
the trailing-edge at the previous time step into the first row of wake vortex rings. The particular
form of Eqs. (2)-(3) corresponds to a first-order, explicit, time-stepping scheme, which is widely
used in UVLM implementations [17–19].

2.3 Aerodynamic forces

The aerodynamic forces that arise from the surface’s motion through the fluid are developed
using the Joukowski method [16]. The forces are divided steady and unsteady contributions.
The quasi-steady forcing, including induced-drag and leading-edge suction effects, is obtained
from applying Joukowski theorem to each of the segments of the lattice. The unsteady contri-
butions are the added mass terms, which are calculated by applying Bernoulli’s equation across
the surface.

For each of the s = 1, . . . , 4K segments the (dimensional) quasi-steady force contribution
acting at the midpoint of each segment, fs ∈ R3, can be written as

fs = −ρV 2bl̃svsΓk with k =

⌊
s− 1

4

⌋
+ 1, (4)

where ls is the dimensional line segment describing the vortex geometry, and vs is the fluid-
segment relative nondimensional velocity, defined as

vs = ums +H>s (ν − ζ ′) , (5)

where ums is the induced velocity by the vortex lattice at the midpoint of segment and H>s
linearly interpolates the velocities defined in (1) from the segment vertices to the same midpoint.
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When calculating ums , it is often the case that the target segment lies on a line collinear with the
source vortex segment, and if would seem that the Biot-Savart law would yield infinite induced
velocities. However, writing the kernel in terms of small perturbations from the collinear line
reveals that induced velocities are identically zero there and have an analytically obtainable
gradient. The velocities induced by a segment on itself are singular, however, and are avoided
by cutting-off the Biot-Savart kernel, i.e. by setting the velocity to zero.

The added mass terms are directly evaluated at the k-th collocation point as

fuk = ρV AknkΓ
′
k, (6)

where the product of vortex ring area Ak and normal vector nk is a quadratic function of the
surface geometry. Γ′k is calculated using backward differencing, in-keeping with the first order
approximation.

Gathering the contributions of (4) and (6), the vector of aerodynamic force components, fa ∈
R3Kζ , defined at the lattice vertices, has the form

fna = Hfn + Ξ>fnu (7)

in which quasi-steady force contributions, f ∈ R12K , act at the midpoint of each vortex segment
and the unsteady contributions, fu ∈ R3K , act at the collocation points. The sparse matrix
H ∈ R3Kζ×12K is used to distribute force contributions from the vortex segments to the lattice
vertices, and is based on the same bilinear relationships as Ξ.

2.4 Discrete-time state-space description

To achieve as general a description of the method as possible, and to avoid assumptions in the
subsequent derivation of the linearized surface boundary conditions and aerodynamic forcing,
the states and inputs with which the nonlinear form of the UVLM is now described are chosen,
respectively, as

x̂a := [ Γ; Γ′; ,Γw; ζw ] , (8)

and
ûa := [ ζ; ζ ′; ν; νw ] . (9)

All of the states and inputs are nondimensional, which allows the unsteady aerodynamics model
to be written independently of the free-stream dynamic pressure, and are given in terms of the 3-
component vectors that comprehensively describe the geometry and kinematics of the problem
(as opposed to the typical scalar values of local panel chord, angle-of-attack, lift force, etc.).
This uses therefore the actual instantaneous geometry of the surface and wake, which may be
undergoing large dynamic deflections or additionally, in the case of the wake, be subject to
roll-up.

Finally, the nonlinear equations introduced above can be written in the form of a discrete-time
state-space equation of the form

p(x̂n+1
a , ûn+1

a ) = q(x̂na , û
n
a), (10)

yn = r(x̂na , û
n
a). (11)

where we have explicitly introduced the dynamic pressure (times two) in the output terms as,

y =
1

ρV 2
fa (12)

force terms
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2.5 Consistent linearization

A linearization of the aerodynamics described by (10) and (11) is now sought which will allow
the formulation of linear aeroelastic models with several advantages over the traditional DLM-
based approach. Aside from those inherent in any linearization the only assumption made in the
development of the linear model is that the wake geometry is frozen, but can take any shape, for
example a nonplanar prescribed wake or that obtained from nonlinear time-marching of the ae-
rodynamic equations (1) - (3). The approach is therefore very general: discrete-time state-space
models are obtained directly; they include the effects of a nonzero reference condition in all the
states and inputs of the model, and; can predict linear induced drag effects. Additionally, the
description is independent of any structural model, and yields a formulation that is independent
of the free-stream dynamic pressure.

To perform the linearization the circulation states are decomposed as

Γ = Γ0 + ∂Γ, Γw = Γw0 + ∂Γw, and Γ′ = Γ′0 + ∂Γ′, (13)

along with the geometric and kinematic variables, which take the form

ζ = ζ0 + ∂ζ, ζ ′ = ζ ′0 + ∂ζ ′, and ζw = ζw0 , (14)

where the ∂(·) symbol indicates small perturbations around arbitrary reference values (·)0. Ad-
ditionally, the reference background fluid velocity field is decomposed as ν = ν0 + ∂ν. Conse-
quently, the reference velocity Vref must be chosen as a fluid-lattice relative velocity representa-
tive of the reference conditions ζ ′0 and ν0 due to the coupling of spatial and temporal scales in
the treatment of the wake.

Linearizing (1), using the definitions of (13) and (14), leads to a general expression for the
perturbations in the normalwash, which can be written as

∂(AΓ0)

∂ζ
∂ζn+1 + A0∂Γn+1 +

∂(AwΓw0)

∂ζ
∂ζn+1 + Aw0∂Γn+1

w . . .

+

(
∂(Wν0)

∂ζ
− ∂(Wζ ′0)

∂ζ

)
∂ζn+1 +W0

(
∂νn+1 − ∂ζ ′n+1

)
= 0,

(15)

where all the matrices are functions of the nondimensional reference geometry, and terms in-
volving derivatives of AIC matrices are the matrix-valued functions

∂(AΓ0)

∂ζ
∈ RK×3Kζ , and

∂(AwΓw0)

∂ζ
∈ RK×3Kζ , (16)

whose elements are obtained by linearizing the Biot-Savart kernels analytically. In addition, the
matrix-valued functions in (15),

∂(Wζ ′0)

∂ζ
∈ RK×3Kζ , and

∂(Wν0)

∂ζ
∈ RK×3Kζ , (17)

give the perturbations in normalwash due to changes in the lattice geometry, and, in particular,
any changes in orientation of the surface normal vectors. Note that the costly evaluation of
third-order tensors in (16) - (17) is avoided by analytically differentiating the corresponding
matrix-vector products directly.
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The second equation required for the linear model describes the propagation of circulation
through the wake, and is given by the linearization of (3) as

∂Γn+1
w = CΓ∂Γn + CΓw∂Γn

w, (18)

where the matrices keep their original definitions. Finally, perturbations of the rate-of-change
of circulation strengths on the body are calculated using the backwards difference formula

∆s∂Γ′n+1 = ∂Γn+1 − ∂Γn. (19)

Defining the linear1 aerodynamic state vector as

xa := [ ∂Γ; ∂Γw; ∂Γ′ ] , (20)

and the linear inputs as
ua := [ ∂ζ ′; ∂ζ; ∂ν ] , (21)

the linearized equations (15), (18) and (19) can be written in the state-space descriptor form

Eaxn+1
a = Faxna +Gaun+1

a , (22)

where the matrices Ea,Fa ∈ R(2K+Kw)×(2K+Kw) have the form

Ea =

 A0 Aw0 0
0 IKw 0
−IK 0 ∆sIK

 (23)

and

Fa =

 0 0 0
CΓ CΓw 0
−IK 0 0

 (24)

in which IK is a K × K unit matrix, and the input matrix for the state equation, Ga ∈
R(2K+Kw)×9Kζ , has the form

Ga =

 W0

(
−∂(AΓ0)

∂ζ
− ∂(AwΓw0 )

∂ζ
+

∂(Wζ′0)

∂ζ
− ∂(Wν0)

∂ζ

)
−W0

0 0 0
0 0 0

 . (25)

Note that the inputs on the right-hand-side of (22) are, atypically, taken at time n+ 1. This is a
consequence of (1), and hence (15), being elliptic equations – i.e. the effect of a fluid disturbance
is felt everywhere instantaneously. Hence, all of the unsteadiness in the fluid response arises
from the time-history of instantaneous solutions to (15), typically with time-varying boundary
conditions, through the propagation equation (18). Also, since Ea is non-singular, the state-
space form xn+1

a = Aaxna + Baun+1
a can be obtained, if necessary, where Aa = E−1

a Fa and
Ba = E−1

a Ga. The descriptor form is retained for numerical efficiency however (since E−1
a

need rarely be evaluated explicitly).

1The linear states and inputs are made distinct from those defined in the nonlinear description, (8) & (9), since
the wake geometry is no longer a state of the system and the quantities in (20) & (21) are all perturbations. The
∂(·) symbol is omitted on the left-hand-side of these definitions for notational brevity.
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The outputs, ya ∈ R3Kζ , are defined to be the perturbations in aerodynamic forces at the lattice
vertices and are obtained through linearization of (7), giving

yna = ∂fna = H∂fn + Ξ>∂fnu , (26)

where the force perturbations on the s-th segment are

∂fs
ρV 2b

= ṽ0sl0s∂Γk + Γ0k ṽ0s

∂ls
∂ζq

∂ζq − Γ0k l̃0s∂vs, (27)

where q = 1, . . . , Kζ is an index through the lattice vertices, and the variations in velocities at
the segment midpoints are expressed as

∂v = Am
0 ∂Γ +

∂(AmΓ0)

∂ζ
∂ζ + Am

w0
∂Γw +

∂(Am
wΓw0)

∂ζ
∂ζ . . .

+ H> (∂ν − ∂ζ ′) ,
(28)

in which the AIC matrices Am
0 ∈ R12K×K and Am

w0 ∈ R12K×Kw map the surface and wake
circulation distributions to induced velocities at the segment midpoints. The added mass force
contribution at each collocation point, from (6), has the linearized form

∂fuk

ρV 2
= A0knk0∂Γ′k + Γ′0k

∂(Aknk)

∂ζq
∂ζq. (29)

Gathering the equations (26) - (29) allows a state-space representation of the output equation,
which has the form

ya = Caxa +Daua, (30)

where Ca ∈ R3Kζ×(2K+Kw) andDa ∈ R3Kζ×9Kζcan be written as

Ca =
[
H (Y1 − Y3Am

0 ) , −HY3Am
w0
, Ξ>Y4

]
, (31)

and

Da =
[
HY3H

>, . . .

HY2 −HY3

(
∂(AmΓ0)

∂ζ
+
∂(Am

wΓw0)

∂ζ

)
+ Ξ>Y5, . . .

−HY3H
> ] ,

(32)

in which Y(1−5) are relatively-simple block-diagonal or sparse matrices. Since this description
is based on linearizations of the three-dimensional form of the Joukowski theorem, (4), no com-
ponent of the problem kinematics or force distribution is neglected. This means that the effects
of arbitrary (small) kinematics – including in-plane motions – are all captured, and that the
unsteady induced drag is resolved naturally as a component of the resulting force distribution.
Moreover, the only previous linear UVLM to capture such effects was formulated with respect
to a subset of the degrees-of-freedom of an underlying beam structural dynamics model [19],
whereas this formulation is independent of the kinematic assumption on the fluid-structure in-
terface.

Together with the state equation, (22), the output equation (30) describes the unsteady aerodyn-
amics linearized around an arbitrary reference state. It provides a physics-based formulation for
incompressible potential-flow aerodynamics in the time-domain. Note finally, that frequency-
domain representations can also be obtained by direct manipulation of the system matrices and
the z-transform.
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3 INTEGRATION INTO AEROELASTIC MODELS

The unsteady aerodynamic formulation presented above is such that it can be integrated ea-
sily with any structural dynamics model. Only two mapping procedures are required to define
the fluid-structure interface (FSI): Firstly, transformation from the physical coordinates of the
structural model, η, and their rates of change, η′, to the displacements and velocities the surface
lattice, ζ and ζ ′, denoted Tas; and secondly, transformation of the force distribution on the sur-
face lattice, fa, to the boundary of the structure, f , denoted Tsa. It is also helpful to note that,
providing the structural force distribution and geometry is expressed at coincident locations,
the transformation of the linearized structural displacement/rotation field to the surface lattice
displacements is simply T>sa [20].

The discrete-time aerodynamics of (22) and (30) can then be projected into the generalized
coordinates of the structure as

Eaxn+1
a = Faxna +GaTasΦmxnm
Qn = Φ>TsaCaxna + Φ>TsaDaTasΦmxnm

(33)

where xm = [ q ; q′ ] is a concatenation of the structure’s generalized coordinates, and

Φm =

[
Φ 0
0 Φ

]
.

3.1 State-space model of beam dynamics

To exemplify the application to aeroelastic analysis in this work a modal model of cantile-
ver beam dynamics is used. Defining the displacements and parameterized rotations along
a (beam) reference line as η(x) = [ r(x); θ(x) ], where x is the beam arc-length, a set of
mass-orthonormalized modes are assumed such that η(x) = Φ(x)q, where q are the modal
amplitudes. Thus, using reduced time introduced above, the beam dynamics can be expressed
as (

V 2/b
)
q′′ + Ω2q = ρV 2Q(s), (34)

where Ω = diag {ω1, ω2, . . . , ωn} is the diagonal matrix of modal frequencies, and Q(s) =
Φ>F (x, s) are the normalized generalized forces. Note that as this is a beam description, in
which there are rotational degrees of freedom, the notation F is used to denote the forces and
moments applied along the beam reference line. Since a state-space realization of the aeroelastic
equations is desired, (34) is written in first-order form using the definition of xm from section 3
and Ω̄ := b

V
Ω = diag {k1, k2, . . . , kn}, resulting in the continuous-time, linear, time-invariant

equations x′m = Acxm + BcQ where

Ac =

[
0 −Ω̄2

I 0

]
, and Bc =

[
(ρb2) I

0

]
.

A discrete-time equivalent of this system is then found – with the same sampling period as (22)
– by assuming zero-order-hold on the inputs, which gives the discrete-time modal form of the
structural dynamics equations as

xn+1
m = Amxnm + BmQ

n,

ynm = xnm,
(35)
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where Am = e∆sAc and Bm = A−1
c

(
e∆sAc − I

)
Bc [21].

A relationship is finally needed between the displacements/rotations of the beam reference line
and the displacements of the surface lattice vertices. To facilitate this the aerodynamic discreti-
zation is chosen such that there are j = 1, . . . , N + 1 cross-sections – assumed to be rigid –
that intersect the beam reference line at arc lengths xj , where each cross section is defined by
the i = 1, . . . , M + 1 dimensional coordinates, ξij ∈ R3. Consequently, for the general case
in which the beam is deformed in its reference state, the expression

∂ζq =
1

c

(
∂rj −C>j ξ̃ijTj∂θj

)
(36)

gives the perturbations in lattice geometry as a linear function of the beam degrees-of-freedom.
The matricesCj = C(θ0(xj)) ∈ R3×3 and Tj = T (θ0(xj)) ∈ R3×3 are coordinate transforma-
tion and tangential operator matrices [22], respectively, and are defined by the orientation of the
cross-sections, and the index q is a one-to-one function of the indices (i, j). Conveniently, using
(36) to define a transformation ∂ζ = Ξas∂η, allows the transformation matrix from aerodyna-
mic forces to the forces and moments on the beam to be expressed as Tas = Ξ>as ∈ R6(N+1)×3Kζ .

Using the same quantities the velocity perturbations at the lattice vertices can be expressed as

∂ζ ′q =
1

c

(
∂r′j −C>j ξ̃ijTj∂θ′j

)
. (37)

Finally, the mapping Tas ∈ R9Kζ×12(N+1) is defined by collecting (36) and (37).

4 NUMERICAL INVESTIGATIONS

In this section the goal is to leverage the form of the new linear model, equations (22) and (30),
to investigate the dynamic response of aerofoils and wings, and verify the modelling approach
in a comprehensive way. In addition to this, the effects of non-zero reference conditions on the
linearized unsteady aerodynamics will be investigated in the context of vibrations and aeroelas-
tic stability of cantilever wings with large deformations in their reference configurations.

4.1 Frequency response of a thin aerofoil with trailing-edge flap

The frequency-domain aerodynamic response of thin aerofoils at zero incidence is now inves-
tigated using the linearized model described above for the case of a single chordwise row of
panels with very large spanwise aspect ratio. Its inputs, which are perturbations of the lat-
tice geometry and velocities, are written in terms of the pitch angle, α (with time-derivative α′),
about the quarter chord, and the angle of a trailing-edge flap, β (with time-derivative β′), hinged
at the three-quarter-chord.

Magnitude and phase plots of the lift and moments (also about the quarter-chord) that result
from oscillations in these degrees-of-freedom are presented in Figure 2 over a range of reduced
frequencies. As the number of vortex rings, M , discretizing the chord is increased the response
obtained from the vortex-based method converges to Theodorsen’s analytical solution. The
reduced time step is set such that the vortex rings in the wake have the same chordwise extent
as those on the surface, i.e. ∆s = 2/M , which has the effect of linking the temporal and surface
discretizations.
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Figure 2: Frequency-response between angle of incidence and flap deflection (inputs), and lift and moment coeffi-
cients (outputs). Results from analytical models, and the linearized vortex-lattice with Mw/M = 30.

The aerofoil is also subject to a travelling vertical gust that moves with the airspeed and has an
instantaneous nondimensional upwash wg(t) at the leading edge. If the upwash due to gusts on
the airfoil at time sn is νng ∈ RM+1, the upwash at time sn+1 will be obtained by the lag operator

νn+1
g,1 = wg(sn+1)
νn+1
g,j = νng,j−1 for j = 2, . . . ,M + 1,

(38)

For a given time-history of the gust (38) can be solved alongside the aerodynamic system equa-
tions. Augmenting the state-space aerodynamic model with the gust states νg, with dynamics
given the dynamics of (38), we obtain the response to arbitrary gusts profiles. The frequency-
response function of that augmented problem corresponds to Sears’ analytical solution to a
sinusoidal gust at the leading edge of a thin plate [23]. The lift response obtained by the aug-
mented state-space model is compared to that of Sears in Figure 3.

In both cases, forced and gust response, a relatively slow convergence with the number of
chordwise is observed, which is a well-known characteristic of time-domain solutions in unste-
ady aerodynamics using vortex ring discretizations. The total size of the resulting linear system
is dominated by the discretization of the wake, which typically needs to be modelled for over
20 chord lengths to properly incorporate unsteady effects. This calls for methods for model
reduction for linear-time-invariant state-space systems, which are readily available. Here, this
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Figure 3: Frequency-response gust velocity and lift coefficient. Results from analytical models, and the linearized
vortex-lattice with Mw/M = 30.

will be demonstrated using a balanced realization of the system [24].

Figure 4 shows, in logarithmic scale, the first 50 normalized Hankel singular values of the
forced-response problem with no gust. As they decrease in amplitude very quickly, only a few
balanced states are necessary to represent the system dynamics. This is confirmed in Figure 5,
which shows the frequency response functions between inputs and lift and moment coefficients
(divided by 2π). The description naturally deal independently with angles and rates and they are
present separately. The converged full model solution, with a 30-chord wake and 100 chordwise
panels along the aerofoil, has been reduced to systems of dimension Nr =2, 4, and 6. As it can
be seen, the full dynamic response of the original converged system (of dimension 3100) at low
frequencies can be accurately obtained with a reduced system as small as Nr = 4.
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Figure 4: Hankel singular values for a thin aerofoil with pitch/plunge/flap degrees of freedom.

4.2 Dynamic aeroelasticity of cantilever wings

The wing model defined by Goland [25] is finally used to illustrate 3-D results. This is a
prismatic cantilever wing with a structural model given by a beam of constant sections described
by the parameters in Table 1. The first four natural modes are shown in Figure 6, where the
wing surface has been constructed under the assumption of rigid cross-sections. Due to the
local pitch-plunge inertial coupling introduced by the offset of the inertial axis from the elastic
axis, all of the modes are coupled bending/torsion modes.
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Figure 5: Frequency-response functions of the aerofoil problem for balanced residualizations of order Nr.

Convergence of the aerodynamic discretization can now be carried out within the context of
the modal beam dynamics. For this purpose the frequency response of (33) is studied in the
frequency-domain for different spanwise discretizations in the aerodynamic model, i.e. the
number of spanwise vortex rings, N , and shown in Figures 7 & 8. In all combinations of
generalized forces and modal amplitudes 40 spanwise vortex rings are required to achieved a
converged magnitude and phase response in the modal coordinates.

For verification purposes the flutter characteristics of the Goland wing is now calculated. In the
test case the air density is ρ∞ = 1.02 kg·m−3, and the wing is at zero incidence. Consequently,
as there is zero reference loading at all flight velocities, only one modified aerodynamic model
is required to construct aeroelastic models for the entire flight envelope owing to the model’s
nondimensional form. Thus, in computing successive non-trivial solutions to the eigenproblem

A (V∞) xi = e∆tλixi for i = 1, . . . , n, (39)

where A ∈ Rn×n is the discrete-time state-transfer matrix of the aeroelastic model with eigen-
vectors xi = [ xai ; xmi

], only the relatively-small structural dynamics sub-matrices need to be
updated. The terms λi are continuous-time eigenvalues of the aeroelastic system, which when
plotted for a range of free-stream velocities yield root-loci of the coupled system dynamics, as
shown in Figure 9.

The converged coupled system has dimension n = 8808 with very many highly-damped,
predominantly-aerodynamic eigenvalues visible across the whole frequency spectrum, while
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chord 1.8288 m
semi-span 6.096 m
elastic axis 33% chord
center of gravity 43% chord
mass per unit length 35.71 kg/m
polar moment of inertia 8.64 kg·m
torsional stiffness 0.99× 106 N·m2

bending stiffness 9.77× 106 N·m2

Table 1: Goland wing properties. [25]
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Figure 6: First four natural modes of the Goland wing projected on the aerodynamic lattice.

the critical mode, found in the low-frequency region near the origin in Figure 9(c), originates
from the second in vacuo structural mode. While capturing all of the eigenvalues shown in Fi-
gure 9a is perhaps unnecessary, it is a consequence of the discrete vortex-based method, which,
to its advantage, is general and directly gives discrete-time models. A summary of the computed
flutter characteristics and a scomparison with the analytical and computational resultsof other
authors in Table 2. The results show that at the finest aerodynamic discretization the flutter
speed and frequency are converged with less than 1% error, and compare well to results in the
literature.
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Figure 7: Full-order model frequency responses of the Goland wing aerodynamics for inputs in the first four ae-
roelastic modes and outputs in the first two modes. Amplitudes normalized by the N = 40 steady-state
values. Chordwise discretization is M = 20,Mw = 200.

Source Discretization (M ×N ) States Vf , m·s−1 ωf , Hz
Present 10× 20 2200 166.2 10.4
Present 15× 30 4950 169.3 10.5
Present 20× 40 8800 170.0 10.6
Wang et al. [18] - - 174.3 -
Hesse and Palacios [26] 16× 26 4550 169 11.1

Table 2: Flutter characteristics of the Goland wing calculated with different aerodynamic discretizations.

5 CONCLUSIONS

Linearizations of unsteady vortex-lattice aerodynamics have been shown to provide a gene-
ral framework for time-domain representations of the aerodynamic loading in aeroelasticity at
low-Mach (incompressible) speeds. The description naturally results in a linear time-invariant
discrete-time state-state formulation suitable for feedback connection with structural dynamics
in either modal or physical coordinates. Nondimensionalization of the equations scales the
description with the dynamic pressure, thus overcoming the need for re-evaluation of the coeffi-
cients at different flight conditions (e.g., for flutter analysis). The linearization has been perfor-
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Figure 8: Full-order model frequency responses of the Goland wing aerodynamics for inputs in the first four ae-
roelastic modes and outputs in the third and fourth modes. Amplitudes normalized by the N = 40
steady-state values. Chordwise discretization is M = 20,Mw = 200.

med around non-zero reference conditions, so as to include the effect of induced drag, steady
forces, or large wing deformations in equilibrium in the unsteady forces. The large model size
due to the wake discretization is tackled by using standard methods of model reduction for li-
near systems. Here, balance residualization is seen to reduced the size of the system by more
than two orders of magnitude without loss of accuracy at the reduced frequencies of interest.
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