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Abstract: This paper introduces a new method to calculate design sensitivities in high-fidelity
fluid-structural interactions problems. As the intended application is on aeroelastic systems,
characterized by many design variables and a small number of objective functions, gradients
are computed from the fully-coupled adjoint equation. This is cast here as an iterated sequence
for which convergence is guaranteed. The system is finally obtained using algorithm diffe-
rentiation on the fully-coupled primal problem and its solution is then sought using a block
Gauss-Seidel method, which preserves the partitioned structure of the primal coupled solver.
This solution architecture has been implemented in the open-source SU2 software suite for the
solution of industrial-scale aeroelastic optimization problems with viscous fluids and structures
with nonlinear geometric and material response.

1 INTRODUCTION

Our interest here is in high-fidelity computational solutions for nonlinear aeroelastic design.
Computational methods in fluid-structure-interaction (FSI) are by now mature enough to pre-
dict coupled responses involving complex physics and, in particular, nonlinear response in the
structure (albeit still with a relatively large computational overhead). High-fidelity optimization,
however, is mostly done at the discipline level [1,2], and, for coupled problems the vast majority
of the published research is restricted to either linear structural behaviour [3] or potential-flow
aerodynamics [4]. For fully nonlinear aeroelastic systems (that is, nonlinear structure and vis-
cous flow), optimization strategies have typically been based on either monolithic simulation
environments [5], which bring restrictions in geometrical complexity, or on the differentiation
of the direct equations [6], which puts a limit to the number of design parameters in the problem.

Adjoint methods are shown to be an efficient approach for problems with a large number of
design variables, and they are nowadays the basis for most large-scale wing aerodynamic and
aeroelastic optimization solutions. The main challenge is that the adjoint equations are built on
an exact linearization of the primal problem, which can be difficult to obtain analytically for
problems with complex physics. To overcome this, algorithmic differentiation (AD) strategies
[7] have been developed, in which the derivatives are obtained automatically by manipulation
of the computer code that solves the primal problem. AD is normally used to compute a subset
of the derivatives for discrete adjoints in FSI applications [3]. Instead, we propose a general
approach that consistently applies AD to a full partitioned FSI solver, using the framework

1



IFASD-2017-149

defined by Albring [8] for aerodynamic and aeroacoustic optimization. We will show in this
work that this approach is suitable to compute accurate gradients for FSI problems involving
viscous flows and non-linear solid mechanics with a moderate computational cost and memory
requirements.

2 METHODOLOGY

2.1 FSI formulation

We have implemented a partitioned, strongly-coupled FSI solver in the open-source SU2 soft-
ware suite [1,9]. The general solution is based on a time-marching algorithm, although here we
will restrict ourselves to steady-state problem for the applications in design optimization. The
solution of the primal (or direct) problem is based on a three-field formulation [10], as shown
in Fig. 1. The fluid domain is solved using a finite-volume discretization of the compressi-
ble Navier-Stokes equations, which will be symbolically represented as F (w, z) = 0. Here,
w = (ρf , ρfv, ρfe) is the flow conservative variable vector, where ρf is the fluid density, v is
the vector of flow velocities in a three-dimensional Cartesian coordinate system, and e is the
total energy of the flow per unit mass. Finally, z is the position of the fluid mesh nodes of the
finite-volume discretization.

The structural domain is solved through a finite-element equations of the finite-strain formula-
tion of nonlinear solid mechanics, which will be analogously written as S (u, z,w) = 0, where
u be the vector of displacements of the structural nodes. The third field is the mesh, for which
large deformations are allowed by means of a pseudo-elastic linear problem [11]. The coupling
is defined at the interface through a consistent transfer of tractions λT from fluid to structure,
and of the displacements, uΓ from structure to fluid. The direct problem is solved iteratively
using a Block-Gauss-Seidel method with approximated Jacobians.

Fluid

Fluid Mesh

F (w, z) = 0

M  (z, u) = 0

Interface

λ

Structure

S (u, w, z) = 0Γ (w, z) , uΓ(u)
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λΓ (w, z)

u
z

Figure 1: Three-field formulation for Fluid-Structure Interaction problems

To obtain the coupled sensitivities, the three sub-problems are first rewritten in the form of
fixed-point iterations. This is easily obtained by defining the iteration sequence as the solution
of the Newton method on the original equations, noting that only an approximated Jacobian
is required for convergence. If (u∗,w∗, z∗) denote the (converged) equilibrium solution of the
primal problem, the three subproblems defined above are rewritten as

S (u∗, z∗,w∗,α) = 0⇔ u∗ = S(u∗, z∗,w∗,α),

F (w∗, z∗,α) = 0⇔ w∗ = G(w∗, z∗,α),

M (u∗, z∗) = 0⇔ z∗ = M(u∗,α)

(1)

where we have explicitly identified the design variables α, which, in general, may be parameters
acting on any of the three fields in the problem. We can now define the following optimization
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problem results in a suitable range of the design and state parameters,

min J (w(α), z(α),u(α),α)

subject to u(α) = S (u(α),w(α), z(α),α)

w(α) = G (w(α), z(α),α)

z(α) = M (u(α),α)

(2)

To seek numerical solutions of this problem, we will first define the Lagrangian of the coupled
problem, which can be written as

L(α,u, ū,w, w̄, z, z̄) = J(u,w, z,α)

+ w̄T [G(w, z,α)−w]

+ ūT [S(u,w, z,α)− u]

+ z̄T [M(u,α)− z]

(3)

where the Lagrange multipliers (ū, w̄, z̄) are the adjoint variables associated to the primal va-
riables in the problem. Note first that the governing equations in the right-hand side of the
equations are identically satisfied for each evaluation of the design variable, α. Consequently,
the total derivative of the Lagrangian corresponds to dL

dα
= dJ

dα
, which allows to write the gra-

dient of the objective function in terms of the adjoint variables, as

dJ

dα
=
∂J

∂α
+ ūT ∂S

∂α
+ w̄T ∂G

∂α
+ z̄T ∂M

∂α
(4)

The solution to the optimization problem is obtained by differentiating (3) with respect to sta-
tes, adjoints and design variables, which yields the well-known Karush-Kuhn-Tucker (KKT)
conditions [12]. In particular, differentiating with respect to the structural variables, u, the flow
conservative variables, w, and the mesh variables z, we obtain the fixed-point equations for
their corresponding adjoints, as

ūT =
∂J

∂u
+ ūT ∂S

∂u
+ z̄T ∂M

∂u

w̄T =
∂J

∂w
+ w̄T ∂G

∂w
+ ūT ∂S

∂w

z̄T =
∂J

∂z
+ w̄T ∂G

∂z
+ ūT ∂S

∂z

(5)

Combining (4) and (5) we can now evaluate the sensitivity of the objective function with respect
to the design parameters, around feasible solutions of the FSI problem. The challenge is to
obtain the partial derivatives of the fixed-point operators, which were defined in (1), with respect
to the problem variables. This is normally quite challeging challenging for the cross-terms (e.g.
the derivative of the structure operator with respect to the fluid variables, ∂S

∂w ), but also for the
block diagonal terms (e.g. ∂S

∂u ) when also with complex governing equations in either the solid or
the fluid subdomains. To overcome this, solution of (1) will be sought here through algorithmic
differentiation, as discussed in the following section.
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2.2 Solution of the adjoint equations using algorithmic differentiation

The solution process is based on the strategy developed by Albring et al. [8] for the solution
of the adjoint equations in aerodynamic and aeroacoustics problems, and that is already imple-
mented in SU2. To facilitate the discussion, consider only the structural adjoint problem, for
which the solution process is shown in Fig. 2.

1. The starting point is the solution of the direct problem, u∗, which can be obtained using
standard process of minimisation of the residual equations (not necessarily via a fixed-
point iteration).

2. Then a single iteration on the fixed-point equation is carried out, that is, u∗ + ∆u∗ =
S (u∗,α) ≈ u∗.

3. The jacobian of the function, ∂S
∂u can be now directly obtained usign the direct mode of

AD. However, as the objective is to compute the adjoint, the reverse mode will be used
instead. In that case, all the operations are recorded instead and the displacement field is
registered as the input variables to the AD. The recording step is done using expression
templates [13], which is a highly efficient strategy with minimum computational and
memory overheads.

4. Before stopping the recording, one evaluation of the cost function J(u∗,α) is also recor-
ded, and the structural displacements are also registered as outputs, as the objective is to
compute their adjoints ū.

5. The adjoint variables are now initialized to zero, ū0, and fixed-point iterations of the form
ūn+1 = ∂J

∂u

>
+ ∂S

∂u

>
ūn = S̄(ūn) are carried using the recorded computational graph until

convergence.
6. The resulting adjoint ū is then used in (4) (retaining only structural terms) to obtain the

sensitivities with respect to the design variables.

Figure 2: Top-level approach to the structural adjoint calculation using AD

For the coupled problem (5), the solution is sought using an iterative Block-Gauss-Seidel (BGS)
procedure, as it was done with the primal solver. The algorithm above then is now repeated for
each of the three fixed-point operators S, G, and M and with respect to all its input variables –
assuming in each BGS iteration that two out of the three sets of variables (u,w, z) are fixed. It
can be shown [8] that if the primal equations converge, the adjoint equations will also converge.
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Finally, ofnce the adjoint variables (ū, w̄z̄) are obtained, then (4) gives the sensitivities of the
objective function with respect to the design variables.

3 NUMERICAL EXAMPLE

We will examplify the methodology introduced above with a flexible cantilever in a low-Reynolds
channel flow, as shown in Fig. 3. The design variable is the Young’s modulus, E ∈ [13 − 28]
kPa, of the structure, which is modelled using solid elements. The objective will be to achieve
a desired shape in the equilibrium condition, which will be obtained with the cost function

J(u) = (u− uref )TC(u− uref ), (6)

which will be chosen as C = kI, k = 106 and uref = 0, where k is a penalty factor to avoid
scaling effects in the structural domain.

Figure 3: Test case: A very flexible cantilever in a channel flow (L=1.6 cm, t=0.1 cm).

This is a relatively inexpensive computational problem, but that shows the physics of inte-
rest. The flow needs to be fully-resolved using the Navier-Stokes equations, while the structure
follows a Neo-Hookean material model and displays geometrically-nonlinear effects. As an
example of this, the equilibrium conditions for the limit cases, in the range of Young’s mo-
dulus considered, are shown in Fig. 4. Note that with E = 13 kPa, the amplitude of the tip
displacement at the tip is nearly 0.4L.

0.0 0.2 0.4 0.6

Cantilever displacement (cm)

E = 28 kPa E = 13 kPa
0.0 0.2 0.4 0.6

Cantilever displacement (cm)

Figure 4: Streamlines of the flow and deformation of the structure for the limit values of Young’s modulus.

Finally, in Fig. 5, the objective function, the sensitivity dJ/dE, and the relative error with
respect to the Forward Mode of AD, which has also been implemented, are shown. The solution
with the Central Differences scheme is obtained with h = 0.5 kPa. As it can be seen, there are
minimum differences between all three methods. However, the reverse AD is based on a single
simulation and indeed this is the case regardless of the number of design variables. To exemplify
this, Fig. 6 shows the sensitivities to Young’s modulus on 10 different regions of a cantilever of
E=21 kPa. Solutions are obtained again using the reverse mode of AD and central differences,
and they agree very well with the forward mode of AD. Note the the central differences requires

5



IFASD-2017-149

21 simulations, the forward-mode 10 simulations, and the reverse mode, only 2 simulations (the
iteration to convergence of the primal solver, and the subsequent recording and iterations of the
adjoint solver).

14 16 18 20 22 24 26 28

E (kPa)

0.0

2.0

4.0

6.0

8.0

10.0
Objective Function

14 16 18 20 22 24 26 28

E (kPa)

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

Relative Error to Forward Mode

AD-based Discrete Adjoint
Central Differences

14 16 18 20 22 24 26 28

E (kPa)

−2.0

−1.5

−1.0

−0.5

0.0
×10−3 Sensitivity

Figure 5: Objective function, sensitivity and relative error between AD-based Discrete Adjoint and Central Diffe-
rences with respect to Forward Mode.

Figure 6: Far left: design variables. Left: Sensitivities for the design vector. Center: Relative error with the
forward mode of AD. Right: Absolute error of the same magnitude.

4 CONCLUSIONS

This paper has described a new approach to compute derivatives in computational aeroelasticity.
The method puts no restrictions to the governing equations on fluid and structure and it has been
implemented for problems involving the (compressible) Navier-Stokes equations coupled with
a geometrically-nonlinear structure (modelled using solid elements). A numerical example on
a simple structure undergoing large deformations has shown the excellent performance of the
approach.
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