
International Forum on Aeroelasticity and Structural Dynamics
IFASD 2017

25-28 June 2017 Como, Italy

TOPOLOGY OPTIMISATION OF REPRESENTATIVE AIRCRAFT
WING GEOMETRIES WITH AN EXPERIMENTAL VALIDATION

David J. Munk1, Gareth A. Vio1, Nicholas F. Giannelis1, Jonathan E. Cooper2

1School of Aerospace, Mechanical and Mechatronics Engineering
The University of Sydney, Sydney, NSW 2006 Australia

david.munk@sydney.edu.au
gareth.vio@sydney.edu.au

nicholas.giannelis@sydney.edu.au

2Department of Aerospace Engineering
University of Bristol, Bristol BS8 1TH The United Kingdom

j.e.cooper@bristol.ac.uk

Keywords: Topology, optimisation, vibrations, resonance

Abstract: Increasingly aircraft are being designed to be more environmentally friendly and
fuel efficient, as defined by the 2020-Vision and Flight-Path EU initiatives. This entails a re-
duction in aircraft weight while still maintaining all the other constraints. The conventional,
semi-monocoque, aircraft design has not changed for the past 50 years. Recently, developments
in aircraft design has mainly come from the use of novel materials. A technique has recently
been proposed, whereby topology optimisation is used, to determine the material distribution
of simple flat plate wings for improved flutter characteristics. It was found that by modifying
eigenmode shapes and separating the static natural frequencies the flutter velocity of the simple
models could be improved. However, topology optimisation of continuum structures for dy-
namic stability is, thus far, limited to relatively small design problems. Therefore, this study
has two aims. Firstly, it is to extend the method to representative aircraft wing structures and
secondly to verify the theoretical results by experiment.

1 INTRODUCTION

Structural topology optimisation strives to find, through material distribution, the optimum for a
given objective and constraints, such as a prescribed amount of material [1]. Topology optimi-
sation has evolved dramatically over the past two decades [2]. However, has only been recently
applied to aircraft design. One such example is the design of the inboard inner and outer fixed
leading edge ribs and fuselage door intercostals of the Airbus A380 aircraft [3]. This application
is estimated to have saved 1000kg per A380 aircraft, resulting in reduced fuel burn. Early efforts
to apply topology optimisation to aircraft design used truss topology optimisation to design the
internal structure for aircraft wings [4]. More recently, the Solid Isotropic Material with Penal-
isation (SIMP) method has been applied to cut-out design, in pre-defined internal structures [5]
and to find optimal internal wing structures, with respect to stiffness, without a predefined in-
ternal structure [6,7]. Therefore, topology optimisation has previously been used for improving
aircraft wing designs, providing alternatives to the traditional structural layout. However, the
full potential of topology optimisation for aircraft design has not been realised, since the objec-
tive has primarily been limited to considering strength criteria. Thus, the dynamic criteria of a
wing has only be considered as an objective for simple wing models [8, 9].
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Topology optimisation with respect to eigenfrequencies of structural vibration was first con-
sidered by Diaz and Kikuchi [10]. They dealt with single frequency design of plane disks.
Subsequently, several studies presented different formulations for simultaneous maximisation
of several frequencies for free vibrating plate and disk structures [11–13]. These early studies
noticed numerical instabilities that are present in topology optimisation for dynamic stability,
such as localised spurious modes and mode switching, which often caused non-convergence of
the solution. A technique to avoid these spurious modes was given by Pedersen [14], who dealt
with maximum fundamental eigenfrequency design of plates. More recent studies applied a
variable bound formulation [15], for the facilitation of multiple eigenfrequencies [16,17]. These
studies deal with the maximisation of the separation of adjacent eigenfrequencies for single and
bi-material plates. Furthermore, the maximisation of the dynamic stiffness of elastic structures
subjected to time-harmonic external loading of given frequency and amplitude have been solved
by topology optimisation [18–20]. Similarly, topology optimisation for minimum vibration am-
plitude response for a given range of excitation frequencies has been performed [21, 22]. For
recent papers on minimum frequency response the reader is advised to seek out the work of
Yoon [23] and Shu et al. [24].

In topology optimisation it is often found that, although an eigenfrequency is simple during the
initial stages of the iterative design procedure, at a certain stage it may become multiple due
to coincidence with one or more of its adjacent eigenfrequencies [25]. In order to capture this
behaviour, a more general solution procedure that allows for multiplicity of the eigenfrequency
must be applied. Furthermore, the appearance of artificial modes in low density regions, which
occur as very localised modes in regions with relatively large mass to stiffness ratio, become
significant in eigenvalue optimisation [26]. For the SIMP interpolation model this occurs as
the density goes to zero. To overcome these problems, recently Munk et al. proposed a novel
moving iso-surface threshold technique [27, 28]. The authors showed that if the element mass-
to-stiffness ratio remains finite as density is reduced then the erroneous appearance of localised
modes are avoided. Moreover, by ensuring that all modes stay within a pre-defined tolerance
from each other one can ensure that the eigenvalues do not become multiple during the entire
optimisation. Additionally, for hard-kill methods (where the finite elements are completely
removed from the design space), it was recently shown that convergence issues may arise when
the sensitivity number of an element varies significantly with respect to its normalised density
[29]. Thus a connectivity filter, where the connectivity of the structure is ensured throughout
the design process, is implemented to avoid convergence issues.

In aircraft structures the onset of flutter, a dynamic instability characterised by a sustained
growth in vibration amplitude, is normally due to the coupling of two neighbouring modes.
Traditional methods to eliminate flutter in the aerospace industry usually involve adding extra
mass to the leading edge of the wings; solving the problem with the expense of extra weight. If
it were possible to design a wing structure that is not based on the traditional model, one might
be able to decouple the critical modes for the entire flight envelope. This paper aims to extend
the theoretically concepts developed in [8] to structures representative of aircraft wings and to
provide an experimental validation for the theoretical results.

2 METHODOLOGY

This study uses the SIMP method for the dynamic stability of structures, through frequency
and mode shape manipulation, to maximise the fundamental frequency and separation between
neighbouring modes of aircraft wings. SIMP was initially introduced [30] as an easy, but artifi-
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cial, way of reducing the complexity of the earlier homogenization approach [1]. Furthermore,
improving its convergence to solid-void topologies. However, since then, a physical justifica-
tion of SIMP has been provided [31] and it has gone on to become one of the most popular
techniques for structural topology optimisation [32]. The objective is to separate neighbouring
frequencies with a constraint on the fundamental frequency and likeness of mode shapes, deter-
mined through the Model Assurance Criteria (MAC) [33]. Therefore, the optimisation problem
can be defined by,

Maximise: ωnk
− ωnl

Subject to: ([K]− ω2
n[M]) {Φn} = 0

{Φn}T [M] {Φn} = 1∑i=n
i=0 xi ≤ V

ωn1 ≥ ξ
MAC ≤ ε
x = [xmin, 1]n

(1)

where ωn is the eigenfrequency and Φn the corresponding eigenvector, here the subscript k and
l specify the modes that are being separated. [K] and [M] are the stiffness and mass matrices,
respectively. V is volume constraint, or the maximum volume of solid material allowed in the
final design, x is the vector of the design variables, xi, xmin is the minimum value the design
variable can take (10−3) and n is the total number of elements in the model. ξ and ε are the
minimum fundamental frequency, ωn1 , and maximum likeness of the mode shapes, respectively.

In Finite Element Analysis (FEA) the dynamic behaviour of structures is modelled by the eigen-
value problem:

(
[K]− ω2

n[M]
)
{Φn} = 0 (2)

Therefore, the eigenvalue, ωn, can be related to the eigenvector, {Φn}, through the Rayleigh
quotient:

{Φn}T [K] {Φn}
{Φn}T [M] {Φn}

(3)

From Eq. 3, the sensitivity of the objective function (Eq. 1) can be calculated by,

∂ωn

∂xi
= 1

2ωn{Φn}T [M]{Φn}

[
2∂{Φn}T

∂xi
([K]− ω2

n[M]) {Φn}+ . . .

{Φn}T
(

∂[K]
∂xi
− ω2

n
∂[M]
∂xi

)
{Φn}

] (4)

From Eq. 1 it is known that: ([K]− ω2
n[M]) {Φn} = 0 and {Φn}T [M] {Φn} = 1. Therefore,

Eq. 4 can be simplified to:

∂ωn

∂xi
=

1

2ωn

[
{Φn}T

(
∂[K]

∂xi
− ω2

n

∂[M]

∂xi

)
{Φn}

]
(5)
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Using the material interpolation scheme as given in [27], the derivatives of the mass and stiffness
matrices are found by,

∂[K]

∂xi
=

1− xmin

1− xpmin

pxp−1
i [K]0 (6)

∂[M]

∂xi
= [M]0 (7)

Here [K]0 and [M]0 are the element mass and stiffness matrices for solid elements. Thus, sub-
stituting Eqs. 6 and 7 into Eq. 5 gives:

∂ωn

∂xi
=

1

2ωn

[
{Φn}T

(
1− xmin

1− xpmin

pxp−1
i [K]0 − ω2

n[M]0

)
{Φn}

]
(8)

The sensitivity number (Eq. 8) is an indicator of the change in the eigenvalue, ω2
n, as a result

of the removal of the ith element. Thus, for the separation of two frequencies, k and l, the
sensitivity number, α, can be found by,

α =
∂ωnk

∂xi
− ∂ωnl

∂xi
(9)

Similarly, a sensitivity number must be derived for the mode shape constraint. As already
mentioned, the MAC criteria is used to find the likeness of modes, which can be found by:

MAC =

(
{Φk}T {Φl}

)2(
{Φk}T {Φk}

)(
{Φl}T {Φl}

) (10)

Therefore, by differentiating Eq. 10 with respect to the design variables, xi, the sensitivity
numbers can be found by,

∂MAC

∂xi
= αT

n

∂[K]

∂xi
{Φn}+

[
a {Φn}T − ω2

nα
T
n

] ∂[M]

∂xi
{Φn} (11)

where the Lagrange multipliers, a and αn are unknown scalers given by,

a =


(
{Φk}T {Φl}

)
(
{Φk}T {Φk}

)(
{Φl}T {Φl}

) {Φk}T −

(
{Φk}T {Φl}

)2(
{Φk}T {Φk}

)(
{Φl}T {Φl}

) {Φl}T

 (12)

and
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αn = −αT
p [M] {Φn} · {Φn}+ αp (13)

where αp is the particular solution. Therefore, using the sensitivity numbers defined in Eqs. 8,
9 and 11 the optimisation problem (Eq. 1) can be solved.

It has been shown that, for eigenfrequency objectives, numerical instabilities can arise during
the optimisation procedure (Sect. 1). These numerical instabilities are magnified for non-linear
complex large scale structures [2]. To alleviate this issue, Munk et al. developed a simple
alternative method for topology optimisation with dynamic objectives [34]. They noticed that
nominal stress contours could be derived by applying the vibration mode shapes as displacement
fields, defined as the dynamic von Mises stress. They showed that the dynamic von Mises stress
and frequency sensitivity numbers (Eq. 9) are equivalent for element removal and addition.
Therefore, the sensitivity of the objective function (Eq. 1) can be calculated by,

σ2
vmd

= {Φn}T [B]T [Z][B] {Φn} (14)

where [Z] = [D]T [T][D], [D] and [B] denote the elastic and strain matrices, respectively and [T]
is the coefficient matrix defined by,

[T] =

 1 −0.5 0
−0.5 1 0

0 0 3

 (15)

Thus, to avoid numerical instabilities, for the representative aircraft wing geometries Eq. 14 is
used as the sensitivity function.

3 RESULTS AND DISCUSSION

In this section the results from this study are presented and discussed. First, the simplified plate
wing models will be optimised, solving Eq. 1 with and without a constraint on the fundamental
frequency. This is followed by an experimental analysis on the optimised wing geometries
determining their dynamic characteristics. Finally, the method is applied to a representative
wing model, the NASA Common Research Model (CRM), verifying that the method can be
extended to large scale design problems.

3.1 Simplified plate wing

A simplified, rectangular, aircraft wing is optimised for maximum frequency separation to im-
prove its dynamic characteristics. The wing model (Fig. 1) has an aspect ratio of 3 with a chord
of 20cm and a span of 60cm and is discretised by 40 × 120 four node plate elements. The
wing has a uniform thickness of 1mm and is made from aluminium, having a Young’s modulus
of E = 70GPa, Poisson’s ratio of ν = 0.3 and a density of ρ = 2700kg/m3. The boundary
conditions of the wing are a locked root chord, creating a cantilever model. The initial model
for the simplified plate wing is illustrated in Fig. 1.
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Figure 1: Initial simplified plate wing model.

First the dynamic characteristics of the simplified flat plate wing are determined by running a
flutter analysis. From this the flutter speed of the initial wing can be determined, and also the
speed at which the wing begins to experience a reduction in damping, and hence, the speed at
which the wing will have a reduction in stiffness and begin to oscillate under the dynamic loads.

The corresponding frequency-damping plot for the initial plate wing model (Fig. 1) is shown in
Fig. 2.

Figure 2: Frequency-damping plot for initial simplified plate wing model.

The first four natural frequencies are plotted, however the first ten were calculated to ensure that
the higher energy frequencies are not influential to the dynamic stability of the wing (Fig. 2). As
is seen by Fig. 2, at the low speed range, v = [0, 40]ms−1, the first and third natural frequencies
undergo significant change, with the third immediately dropping below the second as soon as
velocity is applied to the wing. The first natural frequency rapidly drops once a velocity of
v = 20ms−1 is reached. For this speed range (Fig. 2), there are two instability modes. The first,
is due to the third mode, resulting in a flutter instability at approximately v = 18ms−1. This
is seen by the damping ratio of the third mode going from negative to positive damping (Fig.
2). The second, is due to the first mode, resulting in a divergence instability at approximately
v = 23ms−1. This is seen by the first mode frequency rapidly declining to zero and the damping
ratio converging to zero (Fig. 2). Thus, the model has no stiffness and, as a result, diverges.

The static natural frequencies for the initial model (Fig. 1) can be seen in Fig. 2 by looking at
the frequency plot for a velocity of v = 0ms−1. Two main points are observed. First, the second
and third natural frequencies are very close, having a natural frequency of ωn2 = 14.3822
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and ωn3 = 14.5501Hz, respectively. Second, the fundamental frequency is comparatively low,
having a natural frequency of ωn1 = 2.3289Hz. Therefore, the close proximity of the third and
second frequencies suggest an instability in one of these modes and the low magnitude of the
fundamental frequency promotes divergence. Since, the first instability of the wing is flutter of
the third mode (Fig. 2) the separation of the frequencies is more critical to its dynamic stability.

The simplified plate wing is now optimised with the objective of maximum separation between
the first ten frequencies (Eq. 1). For this first analysis, the constraint on the fundamental
frequency is set to ξ = 0Hz, i.e. it is not constrained to give the optimiser complete freedom.
Furthermore, to ensure the aspect ratio of the wing is not changed by the optimiser a geometrical
constraint is added, defining the border of the plate as non-designable solid material. This
technique was also employed in [27]. The wing is optimised for a final volume of 85% of the
initial model (Fig. 1), thus reducing the initial mass by 15%. The optimised geometry is given
in Fig. 3.

Figure 3: Final design for initial simplified plate wing model without fundamental frequency constraint.

The optimiser has removed material from three zones of the wing (Fig. 3). The largest zone
is near the tip of the wing, i.e. the furthest point from the locked boundary condition. This
results in a reduction in the second natural frequency, which corresponds to the second bending
mode of the wing. Since the wing is still symmetric about the vertical axis, the third mode,
which corresponds to the first twisting mode, is practically unchanged. Thus, the optimiser has
increased the gap between neighbouring modes by reducing the second and keeping the third
constant so that it does not approach the fourth mode. Material is also removed near the root
of the wing, where the locked boundary condition is enforced (Fig. 3). This will decrease the
first mode, which corresponds to the first bending mode, such that the second mode does not
approach the first, avoiding a first and second mode coupling. Therefore, the final design has a
minimum frequency separation of ∆ωn = 8.3626Hz. However, the fundamental frequency has
been reduced by 42% to 1.3567Hz. Therefore, it is expected that the final wing design will be
more susceptible to divergence than the initial wing design.

Next, to avoid increasing the wings susceptibility to divergence, a frequency constraint is ap-
plied to the optimisation by setting ξ = ω10 . Where ω10 is the fundamental frequency of the
initial wing design, i.e. 2.3289Hz. Again the wing is optimised for a final volume of 85% of the
initial model (Fig. 1). The optimised geometry is given in Fig. 4.

In this case, the optimiser has considerably reduced the amount of material that is removed
from near the locked boundary condition. This is to keep the fundamental frequency above
the constraint. Furthermore, less material from near the tip has been removed to keep the
second fundamental frequency from being decreased down to near the fundamental frequency.
Again the wing is symmetric about the vertical axis, hence the frequency of the third mode is
almost unchanged. Therefore, the final design has a minimum frequency separation of ∆ωn =
7.413Hz. Thus, the minimum frequency separation has been reduced compared to the previous
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Figure 4: Final design for initial simplified plate wing model with a fundamental frequency constraint.

optimisation problem, however is still considerably higher than for the initial design (∆ωn =
0.1679Hz). Furthermore, the fundamental frequency has been slightly increased compared to
the initial design, from 2.3289Hz to 2.3424Hz. Therefore, this design should not be more
susceptible to divergence.

The ability of topology optimisation to design the natural frequencies of simple plate wings
has been demonstrated here. The optimiser is able to increase the frequency separation further
when there are less physical constraints applied to the problem. However, without the physical
constraints the fundamental frequency is significantly reduced, resulting in the promotion of
other adverse phenomena, such as stiffness reduction and earlier divergence. The theoretical
results from this section will be confirmed experimentally in Sect. 3.2.

3.2 Experiment analysis

The experiments were carried out in the 4 × 3ft low-speed wind tunnel of the University of
Sydney, with a minimum speed of approximately 8.9 m/s and a maximum speed of 60 m/s
(clean). The aluminium plates were cut as per the BESO analysis, as shown in Fig. 5. The
plates were clamped to the wooden floor of the wind tunnel using a pair of aluminium brackets
and steel bolts at zero angle of attack. The wings were decreased with ethanol and a clear
plastic stick-on cover was applied over the zones where material was removed, to simulate the
wing skin such that the aerodynamic profile remains unchanged. This process was performed
on both sides. Marker dots for tracking the wing position were applied. The wing response was
recorded using a single high speed SONY RX-100 IV camera, filming at 250 frames per second.
It should be noted that only one camera was used, hence any recording would not provide the
true displacement, but a projection onto a 2D surface of the 3D displacement.

Figure 5: Manufactured wings.

An impulsive test was performed at wind-off condition to check that the equipment was record-
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ing and the wing was correctly placed in the field of view, while minimising reflections and it
was correctly bolted to the floor brackets. Once the tunnel was started, the speed was slowly
increased and recordings of the motion taken. A qualitative indication of the response for both
wings is provided in table 1 and 2 at the different airspeeds.

Test speed, ms−1 Qualitative Description Test speed, ms−1 Qualitative Description
of Motion of Motion

00.0 Wind off impulsive test. 13.9 Increase in
static deflection.

09.1 Noticeable static 15.0 Divergence. The wing
deflection. slowly folded to

one side. Fig. 6.
12.1 Some unsteadiness is

introduced with buffeting
appearing.

Table 1: Wing without frequency constraint.

(a) (b)

Figure 6: Wing failure without a frequency constraint.

(a) (b)

Figure 7: Wing failure with a frequency constraint.

3.3 Representative wing model

The NASA CRM wing model is optimised for frequency separation to improve its dynamic
characteristics. The wing model (Fig. 8) is a full-scale cantilevered wing. The CRM is rep-
resentative of a modern single-aisle transport aircraft configuration, which was created for col-
laborative research within the aerodynamics community. It has a wingspan of 58.77m, with an
aspect ratio of 9, a taper ratio of 0.275, a leading edge sweep angle of 35◦ and a break along
the trailing edge at 37% of the semi-span. The CRM is discretised by 14 × 126 × 3 eight
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Test speed, ms−1 Qualitative Description Test speed, ms−1 Qualitative Description
of Motion of Motion

00.0 Wind off impulsive test. 19.7 High frequency
oscillation becomes
more prominent with an
increase in amplitude
(top section of the
wing).

11.0 No apparent motion 20.4 The oscillation has
visible, just minor static extended to the whole wing
displacement. section in a low frequency

mode.
15.3 Increase in tip 20.5 First torsion is becoming

displacement. apparent with large
amplitude oscillation of the
trailing edge.

17.0 Some unsteadiness is 20.8 Oscillation growing in
introduced with buffeting amplitude with the
appearing. trailing edge showing a

high frequency response.
17.5 Low frequency flapping 21.1 Increase in frequency

motion is introduced. across the whole wing
in spanwise and
chordwise.

19.0 High frequency 21.6 Low frequency flap of the
oscillation at the tip of the whole wing coupling
wing. with high frequency of top

section of the wing and
collapse of the top section
as shown in Fig. 7.

Table 2: Wing with frequency constraint.

node solid elements. The CRM is manufactured from aluminium, having a Young’s modulus
of E = 70GPa, Poisson’s ratio of ν = 0.3 and a density of ρ = 2700kg/m3. The boundary
conditions of the wing are a locked along the entire root chord, to model the cantilever. The
initial model for the CRM wing is illustrated in Fig. 8.

Figure 8: Initial NASA CRM wing model.

A real eigenvalue analysis is performed on the initial CRM wing model to determine its natural
frequencies. It is found that the wing model has an initial fundamental frequency of ωn1 =
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0.56918Hz and an initial minimum frequency separation, for the first ten modes, of ∆ωn =
0.7755Hz. Similarly to the simplified plate wing model, the neighbouring models that have the
least separation are the third and second modes. For this analysis, the optimisation problem
with a frequency constraint, again defined by ξ = ω10 , is solved. Where ω10 is the fundamental
frequency of the initial CRM wing design, i.e. 0.56918Hz. The CRM wing is optimised for a
final volume of 50% of the initial model (Fig. 8). The optimised internal structure is given in
Fig. 9.

Figure 9: Final design for NASA CRM wing model with a fundamental frequency constraint.

For this analysis the volume constraint is quite low, i.e. the optimiser removes 50% of the initial
wing structure. This has resulted in the removal of all the internal structure from the tip section
of the wing. This is similar to what was seen in the simple plate wing analysis (Sect. 3.1) and is
done to keep the fundamental frequency above the constraint. Furthermore, material has been
removed just before the break along the trailing edge. Unlike the simple plate models, in this
case the final internal structure is not symmetric about the vertical axis. Therefore, the third
mode, which is again the first twisting mode, is increased. However, the initial structure is not
symmetric about the vertical axis, unlike the simplified plate wing model, and hence might be
why symmetry of the final structure is not observed. The final design has a minimum frequency
separation of ∆ωn = 3.1503Hz, which is a considerable increase from the initial design of
0.7755Hz. Furthermore, the final fundamental frequency has been increased from 0.56918Hz
to 1.3574Hz. However, there are some further points to consider. Namely, no stress or buckling
constraints have been implemented, and therefore, the wing is not designed with any strength
objectives considered. This is obvious by the large skin panels that have been left without any
internal structure. This would definitely result in panel buckling and excess stresses once the
aerodynamic load is applied. Therefore, to obtain more realistic internal structure designs these
considerations must also be treated by the optimiser.

The ability of topology optimisation to design the natural frequencies of a representative wing
model has been demonstrated here. The optimiser is able to increase the frequency separa-
tion, whilst also satisfying the physical constraint on the fundamental frequency. Furthermore,
no numerical instabilities are present, showing that such methods can be used on large scale
problems.

4 CONCLUSION

This work presents a topology optimisation methodology, based on the SIMP method, for the
design of the natural frequencies and mode shapes of structures. The method uses the recent
dynamic von Mises stress criterion to extend the analysis to representative wing structures.
Comparison of the simplified plate model design to low speed wind tunnel experiments show
that a constraint on the fundamental frequency is necessary to ensure divergence does not occur,
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before the flutter instability. Furthermore, it was shown that the flutter speed could be increased
despite the mass being reduced by 15%. This work adds to the current literature on topology
optimisation applications to aircraft design and to dynamic objectives in topology optimisation.
Finally, it is noted that the current study is solely concerned with dynamic objectives. Especially
for the CRM wing model, this results in buckling and stress criteria being exceeded. Therefore,
future work is to consider strength objectives along side the dynamic to achieve realisable de-
signs.
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