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Abstract: This paper presents the application of higher order dynamic mode decomposition
(HODMD) to flutter flight test data in order to extract aircraft frequencies and damping. The
method is an extension of DMD, a method typically used to extract flow patterns and frequencies
from unsteady fluid dynamics measurements or simulations. In the fluid dynamics field, it has
been shown to be able to extract modes, frequencies and damping from very noisy and large
signals, in a robust and efficient way, with reduced manual interaction.

1 INTRODUCTION

Flight flutter testing is a requirement for civil transport category aircraft certified in the United
States under the Code of Federal Regulations, Part 25. Flight flutter testing often involves taking
the aircraft to parts of the flight envelope it has not been to prior and performing stability checks
at those points.

Normal flight clearance typically involves flying very fast at a broad range of altitudes, including
multiple fuel and payload configurations, meaning that the testing can be very expensive in
terms of both fuel and time. This places an emphasis on efficient testing techniques, including
test point sequencing, piloting techniques and near real time data reduction and modal parameter
extraction techniques.

The execution of the flight flutter testing consists on mounting on the aircraft an array of ac-
celerometers that measure the structural dynamics response to several inputs coming from the
control surfaces or any mounted flutter excitation system (FES). Accelerometer responses to-
gether with some other type of data extracted from the flight, such as control surface displace-
ments for pulses or control surface sweeps, force measurements from the FES and flight param-
eters, are stored with the aim of analyzing them. The main goal is to obtain the aircraft damping
rates ζm and frequencies ωm that are related to the flutter phenomenon. The computational re-
sources required within this data acquisition process and analysis are directly linked to both the
quantity of data stored (memory) and the time employed in the damping/frequency calculations
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(computational time). These two issues are highly dependent on the numerical method used for
the analysis.

Several methods for the damping, frequency and mode shapes extraction are presented in the lit-
erature such as, moving-block approach (MBA) [1], least-squares curve-fitting method (LSCFM)
[2], auto-regressive moving-average method (ARMA) [3, 4], some advanced signal processing
techniques [5], etcetera. McNamara & Friedman [6] have shown the ARMA method to be
highly efficient and effective, leading to the reduction of computational cost in both, memory
and time. This aspect makes ARMA suitable for performing damping/frequency analysis in
flight flutter testing. The method, as presented by McNamara & Friedman [6], assumes that
there is a linear relationship between the state X̃k (at time instant tk) and subsequent state X̃k+1

(at time instant tk+1). Such linear relationship is independent of k, and may be represented by
a matrix whose eigenvalues determine the frequencies and damping rates of the system.

There is a tight link between the ARMA method and dynamic mode decomposition (DMD)
[7], a method commonly used in fluid dynamics to study the frequencies and damping rates
(also known as growth rates) of a flow system. The standard DMD algorithm is based on
the Koopman assumption [8], which relates each snapshot (state vector) with the subsequent
snapshot via the linear operator R as

Xk+1 ' RXk for k = 1, . . . , K − 1. (1)

When the snapshots are organized in snapshots matrices of the form

XQ
p = [xp,xp+1, . . . ,xk,xk+1, . . . ,xQ−1,vQ] (2)

equation (1) can also be written as

XK
2 ' RXK−1

1 ' XK−1
1 C, (3)

where C is a companion matrix. The dynamics of the system (damping rates and frequencies)
are determined from the eigenvalues of either R or C, as in the ARMA method. When DMD
analysis is performed via the linear operator R instead of the companion matrix, the results are
improved, since, as it will be explained in Section 2, it is possible to remove spatial redundancies
(too many samples) or to clean their noise.

It is remarkable the similarity between ARMA and DMD algorithm, since both algorithms
relate subsequent vector states by a companion matrix. The differences found between these
two methods lie in the generation of the vector state, in each case ordered in different ways, and
consequently, the coefficients and the structure of the companion matrix are also different. The
companion matrix is defined in the ARMA method as

C̃ ≡


−a1 1

¯
0 . . . 0

−a2 0 1
¯

. . . 0
. . . . . . . . . . . . . . .
−aK−1 0 0 . . . 1

¯−aK 0 0 . . . 0

 . (4)
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while in standard DMD it is defined as

C ≡


0 0 . . . 0 c1

1
¯

0 . . . 0 c2

0 1
¯

. . . 0 c3

. . . . . . . . . . . . . . .
0 0 . . . 1

¯
cK

 . (5)

where a1, · · · ,aK and c1, · · · , cK are the coefficients calculated for each companion matrix.
Since the state vector contains relevant temporal information, the essence of these two algo-
rithms is, however, the same. Thus, different distributions of each one of the components of the
state vector would vary the coefficients of the companion matrix but would provide the same
results. It is important to mention that, to obtain consistent results in both ARMA and standard
DMD, it is necessary to maintain the same order of the state vector components at each time
instant (columns of the sate vector).

In temporal signals, it is possible to decompose the original data xk (xk represents each one of
the state variables) as an expansion of M Fourier-like modes in the following way

xk ' xapprox.k ≡
M∑
m=1

amume
(ζm+iωm)(k−1)∆t, k = 1, . . . , K, (6)

where the number of terms M , can be referred to as the spectral complexity, K ≤ n is the
temporal dimension, um are the spatial coefficients or modes (unitary vector) and am are their
corresponding amplitudes. The dimension of the subspace generated by the M modes is the
spatial complexity N .

Using standard DMD algorithm, not only the damping rates and frequencies are easily obtained,
but also the associated spatial modes and their corresponding amplitudes. The benefits of DMD
have been put in evidence several times in the literature [9–11]. However, the method does
not always give the expected results when the signal (or flow) studied is noisy and complex
[12], or when the spatial complexity N is smaller than the spectral complexity M . Therefore,
Le Clainche & Vega [13] proposed an extended algorithm, called higher order dynamic mode
decomposition (HODMD), in order to address such problems. The method, similarly to ARMA
or standard DMD, is highly effective in terms of computational cost. Additionally, it has been
shown to provide more accurate results with a shorter length signal than DMD (see Figure 5.1
in [13]). In this article, this new method is applied to a set of experimental flight flutter testing
data, obtained during a flutter flight test campaign, and its good performance is put in evidence.
Three different flight test points have been analyzed.

2 HIGHER ORDER DYNAMIC MODE DECOMPOSITION

The main goal of HODMD is to express a set of instantaneous (spatio-temporal) data as an
expansion of modes as shown in equation (6), thus it is possible to study the main frequencies
and growth rates composing a signal. For convenience, a set of K time equispaced snapshots
obtained in a flight test (the signal of an accelerometer) are collected in the following matrix

V K
1 = [v1,v2, . . . ,vk,vk+1, . . . ,vK−1,vK ], (7)
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where each vector vk is composed by the signal at time instant tk collected in each one of the
accelerometers of the flight test. Then, the HODMD algorithm proceeds in two main steps.

• Step 1: Dimension reduction. In a first step, the spatial dimension J (number of ac-
celerometers) of the original data set of snapshots is reduced to a set of linearly depen-
dent vectors of dimension N , reducing the noise of the signal. In this way, singular value
decomposition [14] (SVD) is applied to the snapshots matrix as

V K
1 'W ΣT>, (8)

where W TW = T TT = the N × N unit matrix and the diagonal of matrix Σ contains
the singular values σ1, · · · , σK . The number of retained SVD modes, N , is calculated
through the standard SVD-error estimated for a certain tolerance ε (set by the user) as

σ2
N+1 + · · ·+ σK
σ2

1 + · · ·+ σK
≤ ε. (9)

Then the reduced snapshots matrix of dimension N ×K is written as

V̂
K

1 = ΣT>, with V K
1 = WV̂

K

1 (10)

• Step 2: DMD-d. The following higher order Koopman assumption (written in matrix
form)

V K
d+1 ' R1V

K−d
1 + R2V

K−(d−1)
2 + . . .+ RdV

K−1
d . (11)

is applied to the reduced snapshots matrix. Pre-multiplying (11) by W>, where the re-
duced Koopman operator yields R̂k = W TRkW , one leads to the following expression

V̂
K

d+1 ' R̂1V̂
K−d
1 + R̂2V̂

K−d+1

2 + . . .+ R̂dV̂
K−1

d . (12)

The main system dynamics (frequencies, damping rates and DMD modes) are contained
in all these linear operators that can be encompased in the modified Koopman matrix (that
contains the dynamics of the system) of dimension Nd×Nd, defined as

R̃ ≡


0 I 0 . . . 0 0
0 0 I . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . I 0

R̂1 R̂2 R̂3 . . . R̂d−1 R̂d

 . (13)

Using a modified reduced snapshot matrix, it is possible to write a more general higher
order Koopman assumption as

Ṽ
K−d
2 = R̃ Ṽ

K−d+1

1 . (14)

In a first step, as in the standard DMD algorithm (or ARMA), the modified Koopman
matrix is calculated. Next, the eigenvalue problem of such matrix is solved. The eigen-
values obtained give the frequencies and damping rates of the DMD expansion (6), and
the eigenvectors are used to calculate the DMD modes um. Finally, the amplitudes re-
lated to each mode are calculated using a least squares fitting. A second tolerance ε1 is
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set by the user to retain the most relevant DMD modes, as a function of their amplitudes.
A more detailed description of this algorithm is presented in the literature [13].
The parameter d identified in equation (11) is set by the user after some calibration, look-
ing for robustness of the results (similar results for different d and ∆t) [12]. It is remark-
able that if d = 1, the algorithm is similar to standard DMD algorithm, formulated in
equation (1). Thus, when standard DMD succeeds HODMD provides the same results
(for values of d≥ 1), and in the case that it fails (noisy or transient flows) it improves its
performance.

After the HODMD calculation has been performed, it is possible to reconstruct the original
results using the general DMD expansion of equation (6). Thus, in cases in which the results
are very noisy and complex (a signal defined by a large number of frequencies), it is possible
to improve the performance of HODMD using the method iteratively [12]. Once HODMD is
applied to the original data, it is reconstructed as in (6). Then, it is possible to apply HODMD
to the reconstructed data, obtaining a new DMD expansion, and so on. The iterative HODMD
method is the one that has been used for the present analysis.

Since the data analyzed is very noisy and complex, the data presented in the snapshots matrix (7)
is transformed using the auto-correlation matrix [5]. Then, the HODMD algorithm is applied
to the part corresponding to the positive lags of the correlation matrix. In this way, the data is
cleaner, and consequently the dominant frequencies are more accurate. However, the calculated
damping rates are modified. The results (frequencies) obtained using the auto-correlation matrix
are also shown in this article, and they are used to estimate the value of the frequency in the
analysis using the raw data.

3 RESULTS

HODMD has been applied to a set of data coming from real aircraft flutter flight testing with
the aim of calculating the most relevant frequencies, damping rates and their associated mode
shapes. Three different flight test have been carried out, using 92 accelerometers, which rep-
resent the spatial complexity J = N of the system. The number of snapshots used for this
analysis is K = 4301 (of a total number of 21508 samples), equispaced in time ∆t. On the
one hand, as mentioned before, classical methods fail in the damping/frequency calculations if
N < M . For example, if the signal is too complex (a large number of frequencies and damping
rates M >> N ) or if the number of accelerometers is too low (N << M ). Thus, HODMD
seems a suitable choice to perform this analysis. On the other hand, DMD algorithm using
companion matrix (or ARMA) would make profit of the spatial redundancies of the data (the
companion matrix is based on the linear dependence of the data) [15], and they might capture
the most relevant frequency, but with smaller accuracy, and some of the results also might be
misunderstood [12]. HODMD cleans the spectra from noise and captures more than a single
relevant frequency.

HODMD is based on the robustness of the results, thus if the method is applied to the same
data set at different time instants, using different time intervals, d or ε, ε1, the same results are
obtained. To illustrate the method, HODMD has been applied to the output of the 92 accelerom-
eters of the first flight test of a flutter flight test campaign, using either the original raw data or
the positive lags of the auto-correlation matrix and different test parameters, d, ε, ε1.

Figure 1 shows the results obtained for this analysis. As it can be seen, in all cases it is possible
to identify clearly 6 peaks, related to different frequencies. The amplitude of 4 of these peaks is
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large, and they are very well defined in the spectrum (straight vertical line that defines ω1, ω2,
ω3 and ω4). However, the amplitude of the frequency related to the 2 remaining peaks (ω5 and
ω6) is smaller, and these frequencies are more mixed with the spurious modes, related to the
noise of the signal.

Table 1 shows the value of the frequency and damping rate of the highest amplitude mode in
each of the vertical lines shown in Figure 1. The data is obtained in the three test iterations
by applying HODMD to the time data (not the auto-correlation). As it can be seen, the results
are consistent and robust. Similar frequencies and growth rates are obtained in the three cases.
However, there is a slight inconsistency in test cases T2 and T1 in the calculations of the damp-
ing rates related to ω5 and ω6, respectively. As previously mentioned, these are lower amplitude
frequencies, mixed with noise. Thus, to calculate these modes (to improve the data cleaning), it
is necessary to use smaller tolerances (ε = ε1 < 5 · 10−3) and larger values of d (d > 500), as
seen in T3.

Figure 2 shows the modes related to the four highest amplitude frequencies ω1, ω2, ω3 and ω4.
Real and imaginary part of DMD modes alternate every semi period (of the frequency captured)
in time (π). The module of the mode gives an idea of where the main activity (sensor activity)
is focused. The modes with highest value represent the sensor that is relevant for capturing
such frequency. Figure 3 shows DMD modes whose absolute value is larger than one. As it
can be seen, only a few sensors (∼ 30 from 92) are related to these frequencies, thus with a
smaller number of sensors, located at some specific places, it would be possible to obtain the
same solution.

Following the same methodology, HODMD has been performed for the two remaining flight
test. Figure 4 shows the evolution of each of the three highest amplitude frequencies and damp-
ing rates as function of the test case.
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Figure 1: Spectrum of frequencies and aplitudes obtained unsing HODMD and different tolerances (ε, ε1) and d,
in the first flight test.

6



IFASD-2017-135

0 10 20 30 40 50 60 70 80 90
Sensor

-3

-2

-1

0

1

2

3
D

M
D

 m
od

e

0 10 20 30 40 50 60 70 80 90
Sensor

-3

-2

-1

0

1

2

3

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

0

1

2

3

4

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

-2

-1

0

1

2

3

4

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

0

0.5

1

1.5

2

2.5

3

3.5

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

-3

-2

-1

0

1

2

3

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

-3

-2

-1

0

1

2

3

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

0

0.5

1

1.5

2

2.5

3

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

-1

0

1

2

3

4

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

-1

-0.5

0

0.5

1

D
M

D
 m

od
e

0 10 20 30 40 50 60 70 80 90
Sensor

0

0.5

1

1.5

2

2.5

3

3.5

D
M

D
 m

od
e

Figure 2: DMD modes in each one of the 92 sensors for the first flight test. From left to right: real part, imaginary
part and module. From top to bottom: DMD modes of ω1, ω2, ω3 and ω4.
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Figure 3: Four highest amplitude DMD modes, with absolute value larger than 1 for the real and imaginary part
(left and middle), and with absolute values larger than 2 for the module (right).
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2f∆t ζ
T1 0.0169 0.02
T2 0.0169 0.02
T3 0.0170 0.03
T1 0.0255 0.075
T2 0.0248 0.08
T3 0.0253 0.06
T1 0.0113 0.05
T2 0.0122 0.044
T3 0.0116 0.05
T1 0.0704 0.02
T2 0.0705 0.03
T3 0.0703 0.025
T1 0.0270 0.08
T2 0.0266 0.027
T3 0.0267 0.03
T1 0.0077 0.015
T2 0.0077 0.08
T3 0.0077 0.017

Table 1: Frequencies and damping rates obtained using HODMD in the first fight test in with three different toler-
ances (ε, ε1) and d, corresponding to the highes amplitude frequency of each frequency group shown in
Figure 1. From top to bottom: ω1, ω2, ω3, ω4, ω5 and ω6.
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Figure 4: Frequency (left) and damping rate (right) variation in each one of the three flight test performed.
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4 CONCLUSIONS AND FUTURE WORK

The application of the, recently developed, HODMD method to the extraction of aircraft modal
characteristics from flutter flight testing data, has been presented in this paper. The method
originates from the standard DMD (which is similar to the ARMA method) and improves it to
be able to deal with higher spatial dimension, lower signal durations and higher signal to noise
ratio.

The method has been able to extract, in a robust and efficient manner, the most relevant air-
craft modes from test data in an operational sense, that is without making use of any known
excitation.

The results are very promising, but the suitability of the method needs to be corroborated with
the analysis of a higher number of test points, as well as the comparison of the results with data
extracted using industry standard methods.
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