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Abstract:

This paper aims to review and explain fundamental tasks of the UQ process, particularly in the
context of non-intrusive methods, which sample the deterministic model at points in the mul-
tidimensional input parameter space. Low Discrepancy Design (LDD) and Global Sensitivity
Analysis (GSA) are shown to be effective analytical tools to define which parameters are rel-
evant, the so-called Design Variables (DVs) and to quantify how the variance of the output is
affected by the variance of the inputs. On the other side, especially for computationally expen-
sive models, the direct use of the analytical model, i.e. Finite Element Model (FEM), can be
extremely time-consuming. Hence, for complex systems, it is often necessary to generate first a
meta-model and then, using it, complete the sensitivity analysis. The reliability and robustness
of the method are demonstrated considering two structures with different level of complexity.
In the first example the frequency response of a doble pinned beam is studied and discussed.
In the second example the uncertain nonlinear vibrations of the RAM Air Inlet (RAI) system
are considered. The stochastic reaction forces acting on the rods of the RAI mechanism are
studied, considering prescribed density distributions on the interfaces, in terms of free-plays
and stiffnesses, on the excitation force and on its dominant frequency. In this case the modal
information is computed in NASTRAN and is translated to a MATLAB code, where the pro-
cess is completed and the results evaluated. In both cases the relevant parameters are defined
and the influence of each one on the variance of the output is clearly quantified. At the end of
each example the results are discussed with a deep look at the physical coherence of the GSA
Indices. Moreover, the second example gives the opportunity to discuss the use of Polynomial
Chaos Expansion (PCE) meta-model in the frame of nonlinear vibration analysis.
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1 INTRODUCTION TO UNCERTAINTY QUANTIFICATION (UQ)

Uncertainties Quantification can be defined as the science of identifying, quantifying and re-
ducing uncertainties associated with the models, numerical implementations, experiments and
quantities of interest.
Uncertainty Quantification (UQ) takes its bricks from classical statistics and numerical analysis
theory, but they need to be included in a more systematic approach which takes into account
the uncertainties of the inputs, how they are propagated through the model, which the output’s
density distributions and their statistical moments are, and, in a global sense, how sensitive the
outputs are with respect the prescribed uncertain inputs. In this work the concept of UQ is
explored in the frame of reliability and predictiveness of numerical models.

Assembled structures in aerospace industry are often connected thru discontinuous and nonlin-
ear junctions whose mechanical properties are seldom well characterized experimentally. From
a modeling point of view, they are often reduced to a set of linear springs with some stiffness
values. At occurrence, during the project, these values are reviewed, argued and fine-tuned to
get a reasonable or expected dynamic response. Local parameters are changed once-a-time to
see at their effect on the outputs: the higher the number of input parameters, the more tedious
the task is, as well, the more complex the understanding of the results. Interfaces are a key
player in defining the dynamics of components and systems but considering properly their be-
havior can be a very complex task. This is especially true for dynamic studies. Their behavior
is intrinsically uncertain and as consequence, it will make stochastic the dynamic response of
the connected structures.

This work looks at the UQ process as a systematic approach to establish, quantitatively and
quantitatively, how the uncertainties of the input parameters of a physical system are propa-
gated to its outputs, focusing in the study of assembled structures. Some researchers have al-
ready investigated about considering uncertainty within the joints of assembled structures [1,2],
as well as in the assembly and manufacture of certain structural applications such as micro-
electromechanical systems [3].

UQ can be thought as a process with three fundamental phases, pre-processing, uncertainties
propagation, post-processing, each of them including different tasks. Figure 1 shows schemati-
cally these three tasks and their breakdown, as well the data-flow within the process.

• Pre-processing phase requires the problem to be set-up, hence the uncertain inputs have
to be selected and characterized, as well the Quantities of Interest, i.e. those outputs which
provides information necessary to make conclusions or decisions about the process, have
to be selected. Uncertain inputs can be represented by random variables. Classical cate-
gorization of uncertainties distinguishes between aleatoric and epistemic uncertainties.
The former are associated to the inherent variation of the parameters, cannot be reduced
by additional physical or experimental knowledge, but they can serve to better categorize
the uncertainty from probabilistic point of view. The quantification of irreducible uncer-
tainties pass by repeating experiments to establish a statistically significant sample. The
latter refers to deficiencies that result from model assumptions, missing physics, lack of
complete information about the system. These uncertainties are often biased and they are
typically less naturally defined in a probabilistic framework. Anyway the distinction be-
tween aleatoric and epistemic uncertainties is not always clear since lack of knowledge is
relative and depends on current theory and experimental capability. Often in UQ applica-
tions, epistemic uncertainties are reformulated as aleatoric, where probabilistic analysis
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Figure 1: Uncertainty Quantification overview.

is applicable. It is often difficult to define an experimental-based probability distributions
for all the uncertain inputs, and expert knowledge becomes fundamental. A common
choice is exploring the model behavior assuming uniform distributions on the inputs, but
it is worth to remark that changing the prescribed probabilities can lead to different con-
clusions and sometimes running analysis with several distributions and comparing the
results can be a useful exercise.
In practice, the model can be seen as parametric system with certain probability distribu-
tions prescribed on selected input parameters.

• Uncertain Propagation(UP) characterizes the distribution of the QoIs for a given distri-
bution of the inputs. Due to the uncertainty in the inputs, the outputs of the model become
uncertain as well, but neither statistical moments nor a probability distribution are known
a priory. They depend on the uncertainty of the parameters, which have to be propagated
through the simulation. In the context of this work non-intrusive methods are consid-
ered. They are particularly attractive for complex-system because standard codes (i.e.
FE programs) can be successfully used to model the response. Non-intrusive methods
sample the deterministic model at points in the multidimensional input parameter space,
according some specific sampling technique, to create a cloud of result points, which can
be further post-processed to obtain sample-based statistics. The most common design
is based on Monte Carlo Simulation (MCS), which relies on pure randomness. Due its
randomness some points can be clustered closely, while other intervals within the space
cannot get any samples. Hence, especially when working in high dimensions, most re-
searchers seem to agree that generic, near-uniform, distribution of the data sites is a good
strategy. Several sampling strategies try to cover this need, such as Latin Hypercube
(LHD) and Low-Discrepancy Designs (LDD). Particularly, LDD generate a deterministic
sequence of quasi-random numbers which allows one to fill uniformly a unit hypercube.
In the context of this work the Sobol’s LDD is considered. It has been found by several
researchers, i.e. Pianosi in [4], out-performing the classical MCS and LHD, appearing, in
the average, more efficient and with a faster convergence rate.
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Anyway, when the computational demand of a single deterministic run is sufficiently
high, sample-based approach based exclusively on the simulation model could be an un-
affordable strategy. Hence, the need to first consider an efficient, smaller cloud of simu-
lation points which allows to build a meta-model.

• Post-processing activities regard fundamentally the stochastic characterization of the QoIs,
which means to provide the statistics of the output density distributions. As result of
the UP, either directly by the simulation model or by a computational cheaper auxiliary
meta-model, a sample-based cloud of output points is obtained. Therefore, during a post-
processing step, the QoIs can be stochastically characterized, which means to provide
sample-based estimates of the mean, variance and their confidence intervals. In this sec-
tion we include also the Global Sensitivity Analysis, whose objective is to rank uncertain
inputs according their influence on the outputs.

In the next sections a review of the Polynomial Chaos Expansion (PCE) meta-modeling and
GSA concepts is done.

2 META-MODELING

For complex systems, where, possibly, a very large set of inputs is considered uncertain, it is
often necessary to generate first a meta-model and then, using it, complete the UP.
Generation of a meta-model, or surrogate model, considers the computer simulations as a black-
box which produces a set of outputs based on a given set of initial conditions and model pa-
rameters. The main task is to employ a scattered data fitting approach to produce a surrogate
for such computer simulations. Compared with the original one, the meta-model, expressing
the relationship between the QoIs and the input variables, is considered to be computationally
inexpensive. Evidently, its generation requires a ’computer design’, whose main objective is
sampling the deterministic numerical model efficiently. That means to deal with the curse of
dimensionality : the design should be able to effectively fill out the high-dimensional space and
ensure an accurate solution of the scattered data fitting problem.

2.1 Meta-model: Polynomial Chaos Expansion

The original Hermite Polynomial Chaos Expansion (PCE), also known as homogeneous chaos,
was first derived in [5] for the spectral representation of any stochastic response in terms of
Gaussian random variables. Hermite polynomials are a subset of the hyper-geometrical poly-
nomials, known as the Askey scheme [6], having orthogonal property with respect the gaus-
sian probability density functions (PDF).In the study of [7] the method was extended under
the Wiener-Askey scheme to others random distributions. In Table 1 the set of polynomials
that provide an optimal basis for different Probability Density Functions (PDFs) is presented.
Hence, in order to apply correctly the PCE approach, assuring optimal convergence properties,
the polynomials are required to be orthogonal with respect a weight function, which is repre-
sentative of the probability distribution of the QoIs. Really, the meta-model provides a fitting
function of the QoIs densities.

In the finite dimensional random space Γ, the Hermite PCE for a response Y (X), being X a
random variables vector, is an infinite polynomial expansion which in practice is truncated at a
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Orthogonal polynomial Weight function PDF Density function

Hermite He(x) e
−x2
2 Normal 1√

2π
e

−x2
2

Legendre Pn(x) 1 Uniform 1
2

Laguerre Ln(x) e−x Exponential e−x

Jacobi Pα,β
n (x) xαe−x Beta xαe−x

Γ(α+1)

Table 1: Correspondence between orthogonal polynomials and PDF.

finite expansion order P as follows:

Y (X) ∼=
P∑
k=0

bk ·Ψk(u) (1)

where bk are unknown coefficients and Ψk are the Hermite polynomials evaluated in the nor-
malized random variables vector u. Hence the multivariate random variable X has to be mapped
in the domain where the orthogonality of the polynomials is ensured.

Usually, Ψk(u) are multivariate polynomials that involve products of the one-dimensional poly-
nomials ψi(uj), where i is the order of the polynomial ψ and uj is the j component of the
vector u. Hence the expansion includes a complete basis of polynomials up to a fixed total-
order specification P . The one-dimensional Hermite polynomials ψi(u) are generally defined
as:

ψi(u) = (−1)i · [φ(i)(u)/φ(u)] (2)

where φ(i)(u) is the ith derivative of the PDF of the Normal distribution N(0, 1), expressed as:

φ(u) = (1/
√

2π)exp(−u2/2) (3)

From Equation 2 the set of the ith order one-dimensional Hermite polynomials can be easily
derived as:

{ψi(u)} =
{

1, u, u2 − 1, u3 − 3u, u4 − 6u2 + 3, u5 − 10u3 + 15u, ...
}

(4)

As an example, let’s consider the multidimensional basis polynomials for a second-order ex-
pansion over two random variables:

Ψ0(u) = ψ0(u1) · ψ0(u2) = 1 · 1 = 1

Ψ1(u) = ψ1(u1) · ψ0(u2) = u1 · 1 = u1

Ψ2(u) = ψ0(u1) · ψ1(u2) = 1 · u2 = u2

Ψ3(u) = ψ2(u1) · ψ0(u2) = (u2
1 − 1) · 1 = u2

1 − 1

Ψ4(u) = ψ0(u1) · ψ2(u2) = 1 · (u2
2 − 1) = u2

2 − 1

Ψ5(u) = ψ1(u1) · ψ1(u2) = u1 · u2 = u1u2
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The total number of coefficients Nc of the polynomial expansion of Equation 2 is given by:

Nc =
(n+ p)!

n!p!
(5)

where n is the number of random variables and p is the maximum order of the one-dimensional
Hermite polynomials ψ. From this expression it can be noted that increasing the number of
random variables or the order of the polynomial will cause a substantial grow in the number of
termsNc of the PCE. Hence this will imply an appreciable increase in the sample size and conse-
quently in the computational burden associated for complex analyses. Therefore it is important
to select carefully the random variables involved in order to spend a reasonable computational
time.

There are several ways to estimate the unknown coefficients bi of the PCE, for instance random
sampling, tensor-product quadrature, Smolyak sparse grids or regression models. The first three
approaches are spectral projection methods that consist of projecting the responses against each
basis function using inner products, employing the orthogonal properties to extract the coeffi-
cients as a non-intrusive approach. Multiplying both sides of Equation 1 by Ψj(u) and taking
the expected values 〈·〉, the following equation can be obtained:

〈Y (X) ·Ψj(u)〉 =
〈 P∑
k=0

bkΨk(u)Ψj(u)
〉

(6)

Due to the orthogonality properties of the PCE, the coefficients can be obtained as:

bk =
〈Y (X) ·Ψk(u)〉
〈Ψ2

k(u)〉
(7)

From this expression, the denominator is evaluated analytically while the numerator requires a
multi-dimensional integration, which can be accomplished through random sampling [8], Gaus-
sian quadrature [9] or Smolyak sparse grids [10].

On the other hand, regression models (also known as stochastic response surfaces) may also be
chosen. The order of the p polynomial expansion presented in Equation 1 can be expressed in
matrix notation for Ns samples as follows:

Y = Ψb + e (8)

where:

Y =


Y1

Y2
...
YNs

 ,Ψ =


1 Ψ1(u1) . . . Ψp(u1)
1 Ψ1(u2) . . . Ψp(u2)
...

... . . . ...
1 Ψ1(uNs) . . . Ψp(uNs)

 ,b =


b0

b1
...
bp

 , e =


e1

e2
...
eNs

 (9)

and being e the residuals. Usually, linear regression models use the method of least squares to
obtain the unknown coefficients:

b = (ΨTΨ)−1ΨTY (10)
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Once the coefficients are obtained, the fitted model Ŷ and the residuals can be expressed as:

Ŷ = Ψb e = Y− Ŷ (11)

Sobol LDD is the sampling scheme selected since it is more efficient than the MCS method.
The number of input pointsNs must be higher than the number of unknown coefficientsNc, and
depending on the complexitiy of the response the advisable number of samples may fluctuate.
Hosder in its work [11] recommends Ns = 2 ·Nc.

3 VARIANCE BASED GLOBAL SENSITIVITY INDICES

GSA defines a qualitative and quantitative mapping between the input variables and the Quan-
tities of Interest (QoIs). Sensitivity analysis are strictly related to the UP and they can be seen
as complementary to each other: UP quantifying the uncertainty in the output of the model,
while GSA focuses on apportioning output’s uncertainty to the different sources of uncertain
parameters.
A. Saltelli, M. Ratto [12] give the following definition of sensitivity analysis (SA): ”the study
of how uncertainty in the output of a model (numerical or otherwise) can be apportioned by
different sources in the model input”, where the concept of sensitivity analysis is explicitly in-
cluded in the process of uncertainty quantification. So, GSA not just allows to select what the
relevant parameters in the model are, but are able to score the different parameter according
their relevance in the QoIs. In this context, a sensitivity index is a measure of the influence of
an uncertain quantity on an output variable.
Most popular GSA techniques are based on the decomposition of variance’s output probability
distribution. These techniques rely on three basic principles:

• the uncertainty of input parameters is described by their probability density function and
therefore that induces a probability distribution of the output;
• the variance of the output probability distribution is a good indicator of output’s uncer-

tainty;
• the contribution of an input parameter, to the output’s variance,is a measure of sensitivity.

GSA allows the calculation of the Sobol’ Sensitivity Indexes. They refer to Sobol, because
the decomposition of the variance can be formulated analytically from the High Dimensional
Model Representation (HDMR) of Sobol [13]. From a practical point of view, particular inter-
est is deserved to the first order and total order sensitivity indices, respectively SIi and STi , also
called main effects and total effects.
Main effects represent the measure of the contribution of the parameter Xi to the output vari-
ance, or equivalently, the expected percentage reduction of the output variance V (Y ) obtained
when the uncertainty of input parameter Xi is eliminated.

SIi =
VXi [EX∼i(Y | Xi)]

V (Y )
=
V (Y )− EXi [VX∼i(Y | Xi)]

V (Y )
. (12)

Total effects represent the total contribution of an input parameter considering its individual
effect and its interactions with all the other factors:
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STi =
EX∼i[VXi(Y | Xi)]

V (Y )
=
V (Y )− VX∼i[EXi(Y | Xi)]

V (Y )
. (13)

The popularity of the main and total effects is also due to the relatively easy algorithms, mostly
proposed by Saltelli, which provide sample-based close-form equations for their approxima-
tion. A very good review of sample-based estimators in given in Saltelli and Annoni [14].
However, the sample size, hence the number of runs, required to achieve reliable values of the
first and total indices estimators, can be rather large, which makes the direct application of
these approaches quite unthinkable for time-consuming models. Hence, methods for reducing
the computational burn have arisen. The most widely used are those based on the Fourier Am-
plitude Sensitivity Test (FAST) and those based on meta-modelling. FAST was first developed
by Cukier in 1973 [15] for estimating the main effects and further extended (E-FAST) to the
total effects by Saltelli in 1999 [16]. Meta-modelling plays also an important rule, because a
limited set of runs is supposed to be sufficient for building a surrogate of the original model,
and then this, computationally inexpensive, is used to complete the GSA.
Moreover, GSA can be seen as a sort of dimension reduction tool and once the set of relevant pa-
rameters is selected, one can think to generate a more refined UQ process (UP, Meta-modelling,
etc...) but only including those variables having the most significant impact on the response.
Parameters belonging to this smaller set are often called Design Variables (DVs). Out of the
scope of this work, but it is evident the benefit of such approach in Design Optimization.

4 POLYNOMIAL CHAOS AND SOBOL’S INDICES

According the PCE theory, the mean and the variance of the QoIs can be estimated directly by
mean of the PCE coefficients. In fact, assuming the polynomials normalized to the variance, the
following relationships hold:

E(Y (X)) ≈ b0 (14)

V (Y (X)) ≈
p∑

m=1

b2
m (15)

With reference to the bivariate polynomial of second order considered in paragraph 2.1, ta-
ble 2 shows as the univariate are combined by the use of a multi-index αk and the regression
coefficients.

It is straightforward to see a close similarity between the PCE and the High Dimensional Model
Reduction (HDMR) proposed by Sobol. In fact, the output functions can be seen as the sum
of higher dimensional terms defined according the multi-index αk. In addition the Sobol’s
condition for the uniqueness of the decomposition requires expressing the output function as the
summation of a constant term plus higher dimensional zero-mean function. Condition satisfied
thanks to the polynomials orthogonality. In case of two input variables, the Sobol’s HDMR, is:

Y (X) = f(X1, X2) = f0 + f1(X1) + f2(X2) + f12(X1, X2) (16)

8
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Polynomial Chaos Expansion 2nd order

Multivariate PCE Multi-Index Coefficients
Ψ0(u) α0 0 0 b0

Ψ1(u) α1 1 0 b1

Ψ2(u) α2 0 1 b2

Ψ3(u) α3 2 0 b3

Ψ4(u) α4 0 2 b4

Ψ5(u) α5 1 1 b5

Table 2: Bivariate PCE of 2nd order - coefficients.

Ŷ (X) = b0 + b1ψ1(u1) + b2ψ1(u2) + b3ψ2(u1) + b4ψ2(u2) + b5ψ1(u1)ψ1(u2) (17)

In the example b0 defines the constant term, the sum of polynomials Ψ1 and Ψ3, defined by α1

and α3 give the f1(u1) = b1ψ1(u1) + β3ψ2(u1), as well f12(u1, u2) = b5ψ1(u1)ψ1(u2) . Hence
the total variance, defined by equation 15 can be decomposed as:

V (Y ) = V (f0) + V (f1) + V (f2) + V (f12) (18)

where the explicit dependence of each function from its variables has been omitted for a matter
of compactness and readability.
Again referencing to table 2, the f0 is a constant term and has a variance zero, the contribution
to the total variance due to the function f1(X1) is V (f1) = b2

1 + b2
3, as well V (f12) = b2

5, and
so on. The Sobol’s indices can be gotten by the ratio between the partial variances and the total
one. For example the first and total effects within the first input variable X1 are:

SI1 =
V (f1)

V (Y )
≈ b2

1 + b2
3∑p

m=1 b
2
m

(19)

ST1 =
V (f1) + V (f12)

V (Y )
≈ b2

1 + b2
3 + b2

5∑p
m=1 b

2
m

(20)

Hence the calculation of the PCE coefficients provides a straightforward and computational
cheap way to estimate the mean, the variance and the variance based indices. The reliability
of this estimation is as good as the assumption made for constructing the meta-model, particu-
larly in terms of degree of univariate polynomials and degree chosen for the truncation of the
multivariate expansion.

5 APPLICATION EXAMPLES

5.1 Double pinned beam

The first example is a structural scheme formed by two built-in cantilever beams of 1000 mm
which are connected by two sets of springs in x,y and xy directions at points node1, node2.
The material is aluminum with a Young’s module of Eal = 70000[MPa] and a density of
ρal = 2.7e−9[t/mm2]. Details are in table 3. The modal damping of the structure is assumed to
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be 0.02 for all the modes. The load is defined as an harmonic sinus load p = 1 · sin(ωt) applied
in vertical direction at the dynamic point defined by DP1. The response of the structure is
evaluated at the response point : RP1. A detailed scheme of the two-bar two-strings structure
is presented in Figure 2.

Length [mm] Young Module [MPa] Density [t/mm3] Area[mm2] Inertia [mm4]

1000 70000 2.7e−9 1600 0.7e4

Table 3: Beams’ properties.

The random variables are the springs’ stiffnesses K1x, K1y,K1xy and K2x, K2y,K2xy, respec-
tively for the first and second connection. We want the study the variability of the first peak of
vibration when on the springs’ stiffnesses a uniform distribution, with a possible variation of a
30% with respect to the nominal values, is prescribed. The nominal value is assumed to be the
same for all the springs: Knom = 100[N/mm]. Two QoIs are considered: the magnitude of the
peak and the frequency at which the peak happens.

Figure 2: Two-bar structure

Random Variable x Distribution nominal lower bound upper bound

K1x [N/mm] Uniform 100 70 130
K1y [N/mm] Uniform 100 70 130
K1xy [N/mm] Uniform 100 70 130
K2x [N/mm] Uniform 100 70 130
K2y [N/mm] Uniform 100 70 130
K2xy [N/mm] Uniform 100 70 130

Table 4: Statistical moments of the random variables.

A multivariate 2nd order PCE is used to build the meta-model up. According the table 1 univari-
ate Legendre polynomials are employed for the uniform distributed variables. Table 5 shows the
multivariate Legendre PCE of 2nd order. The number of the regression coefficients is Nc = 28
and consequently the number of samples should be aboutNs = 60. A convenient form to imple-
ment the polynomials in a code is the use of the so called three-terms-relationship. The interest
reader can find more detail for example in [17]. A convenient way of using these polynomials
requires their normalization with respect the variance. This is obtained dividing the each basis
function for the square root of its variance.

For testing purpose 400 simulations are run, 60 of them are used as training set in order to obtain
the coefficients of the expansion, the remaining part is later used as evaluation set in order to
estimate the error, which is defined as:

10
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Multi-Index αk Multivariate Basis Function Ψk Mean E(Ψk) Variance V (Ψk)

α0 = [0 0] Ψ0 = 1 1 V (Ψ0) = 1
α1 = [1 0] Ψ1 = u1 0 V (Ψ1) = 1/3
α2 = [0 1] Ψ2 = u2 0 V (Ψ2) = 1/3
α3 = [2 0] Ψ3 = (3u2

1 − 1)/2 0 V (Ψ3) = 1/5
α4 = [0 2] Ψ4 = (3u2

2 − 1)/2 0 V (Ψ4) = 1/5
α5 = [1 1] Ψ5 = u1 · u2 0 V (Ψ5) = 1/9

Table 5: Multivariate Legendre Polynomials

Err =
‖Yev −Ψev · b‖
Ns,ev‖Ψev · b‖

(21)

Figure 3 shows the variability of the first frequency response of the beam over the variability of
the spring stiffnesses, and details the cloud of peak points, where the red points represent the
results from the hard runs while the green ones, those coming from the PCE. The PCE meta-
model, extremely cheap, constructed with a limited set of 60 output points, get a good fit over
the remaining 340. The error obtained for the peak of the response is 1.572e−7, and for the
frequency is 8.975e−8. The sample-based density distributions of the QoIs can be obtained with
a wider sample by mean of the meta-model. They are showed in figure 4.

(a) FRF Frequency Response variability (b) Hard runs vs. PCE results

Figure 3: Stochastic output response.

Finally we consider the calculation of the Sobol’s Indices according the procedure described in
paragraph 4. First, the regression coefficients of the PCE are obtained (see Table 6). Then the
results of Sobol’s Indices are presented in table 7: mean, variance, first and total orders. They
are fully coherent with the physics of the problem. In fact the only springs’ stiffness values
affecting the response are K1y and K2y, moreover, the values of the sensitivity indices S2 and
S5, regarding these parameters, are the same because the problem is completely symmetric.
Also, the first and total order are the same, which again is coherent with the expectation of not
having any interactions among the parameters.
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Multi-Index

PCE Coefficient Frequency[Hz] Peak[mm] ψi(u1) ψi(u2) ψi(u3) ψi(u4) ψi(u5) ψi(u6)
b0 2.34E+01 4.27E+00 0 0 0 0 0 0
b1 2.78E-04 4.90E-04 1 0 0 0 0 0
b2 -5.42E-04 -2.02E-04 2 0 0 0 0 0
b3 2.53E-01 -1.23E-01 0 1 0 0 0 0
b4 -2.76E-02 -7.05E-04 0 2 0 0 0 0
b5 -4.39E-04 1.51E-02 0 0 1 0 0 0
b6 2.50E-04 8.44E-05 0 0 2 0 0 0
b7 3.21E-04 -3.64E-04 0 0 0 1 0 0
b8 8.61E-04 -3.35E-04 0 0 0 2 0 0
b9 2.54E-01 -6.05E-04 0 0 0 0 1 0
b10 -2.77E-02 4.06E-04 0 0 0 0 2 0
b11 -8.61E-04 -1.85E-04 0 0 0 0 0 1
b12 2.63E-04 -4.78E-07 0 0 0 0 0 2
b13 -7.38E-04 4.43E-04 1 1 0 0 0 0
b14 3.03E-05 -4.85E-04 1 0 1 0 0 0
b15 -4.59E-04 -1.23E-01 1 0 0 1 0 0
b16 4.31E-04 -5.77E-05 1 0 0 0 1 0
b17 7.99E-04 -9.69E-03 1 0 0 0 0 1
b18 6.67E-04 -4.91E-05 0 1 1 0 0 0
b19 -1.09E-03 -4.25E-04 0 1 0 1 0 0
b20 2.76E-02 1.51E-02 0 1 0 0 1 0
b21 -8.18E-05 1.04E-04 0 1 0 0 0 1
b22 1.06E-03 -1.59E-06 0 0 1 1 0 0
b23 -1.18E-03 2.55E-04 0 0 1 0 1 0
b24 -1.08E-03 -2.92E-04 0 0 1 0 0 1
b25 1.88E-04 -2.75E-05 0 0 0 1 1 0
b26 8.93E-04 -3.42E-04 0 0 0 1 0 1
b27 6.63E-04 -2.35E-04 0 0 0 0 1 1

Table 6: Regression Coefficients and Multi-Index
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(a) Histogram of the frequency (b) Histogram of the peak magnitude

Figure 4: Histogram of the frequency and peak magnitude.

Parameter Results Frequency Peak

Mean(Y) 23.42 4.27
V(Y) 0.13 0.03

K1x S1 0.00 0.00
K1y S2 0.50 0.50
K1xy S3 0.00 0.00
K2x S4 0.00 0.00
K2y S5 0.50 0.50
K2xy S6 0.00 0.00

K1x ST1 0.00 0.00
K1y ST2 0.50 0.50
K1xy ST3 0.00 0.00
K2x ST4 0.00 0.00
K2y ST5 0.50 0.50
K2xy ST6 0.00 0.00

Table 7: Double pinned beam - statistical moments and Sobol’s Indices.
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5.2 A380 RAM Air Inlet free-play nonlinear vibrations

In this section the UQ is considered in the frame of a much more complex case: A380 RAM Air
Inlet nonlinear vibrations. First we define the Air Generation Unit (AGU), which is the system
to supply and maintain the air in the pressurized fuselage compartments at the correct pressure,
temperature and freshness for passenger comfort and equipment cooling where required. The
System also provides air for ventilation functions in the un-pressurized fuselage bays. The AGU
is connected to the ambient air by the RAM Air Inlet. The RAM is a moving part in a machine
which puts pressure or force on something. The RAM Air Inlet(RAI) - RAM Air Outlet(RAO)
openings modulating provides a forced ventilation system to control air temperature around the
AGU.
With reference to figure 5(a), we can see the left hand A380 air intake of the RAI and two
outtakes of the RAO. Figure 5(b) shows the RAI system. The air flow, coming from the RAI
intake, wets the forward and progressively the reward flaps, passes towards the heat exchange
and finally, goes out through the RAO outtakes. The RAI forward(FWD) and rearward(RWD)
flaps are two moving panels whose relative position defines the variable RAI section height,
hence the amount of air needed for the heat exchange. In the figure two extreme positions are
showed: the maximum opening (RAI 100%) and the minimum one (RAI 0%). An actuator,
through a kinematic chain, adjusts the flaps position. Figure 6 shows the mechanism. During
flights, for a fixed actuator position, due to the flow acting on the flaps, particular attention is
required in order to evaluate the forces explicated on the two rods, which connect, the RWD
flap to the shaft.

Large flight test campaign has facilitate the individuation of the worst case in term of flaps po-
sitions and pressure loads distributions, but the evaluation of these forces is further complicated
by :

• the free-plays between the arms and the rods at their interfaces, which make the response
of the system strongly nonlinear;
• the uncertainties about the gaps sizes and the rods stiffnesses;
• the uncertainties about the magnitude of the resultant forces on the flaps and their domi-

nant frequency.

(a) A380 RAI intake and RAO outtakes (b) A380 RAI System flaps

Figure 5: A380 - RAM Air Inlet.
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Figure 6: RAM Air Inlet - kinematic of flaps control.

This UQ process is used to estimate the density distributions of two QoIs: the root mean square
of the nonlinear reaction forces acting on the two rods (i.e F1rms and F2rms). The RMS is esti-
mated for each run over a time period of 10 [sec]. The deterministic model is sampled according
a Sobol’s LDD of sizeNrun = 400, which could be already a very expensive computational cost
considering the time required by the model due to the nonlinearities. This initial cost has been
considerably reduced by the use of ANFRA (Advanced Nonlinear Frequency Response Analy-
sis), which is a tool developed at Component Loads and Component Dynamics Department of
Airbus Spain in conjunction with the Structural Mechanics Group of Universidade da Coruña.
The ANFRA is based on a high efficient and improved version of the Structural Dynamic Mod-
ification Method (SDMM) but extended to nonlinear modifications. The methodology allows
to obtain the nonlinear response updating the baseline modal base according the prescribed set
of modifications, hence the eigenvalue problem has to be solved just once. The interest reader
can refer to the works in [18–20], as well to the paper presented in this IFASD-2017-93 [21].
The baseline spectral matrix is obtained in NASTRAN from the FE Model showed in figure
7, with the rods disconnected from their arms. The reliability and robustness of the ANFRA
approach can be seen in figure 8, where the response obtained updating the disconnected modal
base (red line) fits perfectly the NASTRAN response of the connected structure.

The nonlinear modifications consider an uncertain free-play stiffness as shown in figure 9(a). On
each rod the size of the gap and the stiffness are considered as random variable with prescribed
normal distribution. Additionally, as shown in table 8 uniform distributions are considered on
the force exciting the RWD Flap and its dominant frequency. Figure 9(b) shows the comparison
between the linear force and the nonlinear one on the right rod, when the model is at its nominal
conditions.

Random Variable x Distribution nominal lower bound upper bound

Force [N] Uniform 500 350 650
Frequency [Hz] Uniform 35 29.5 40.5

Random Variable x Distribution mean value standard deviation

K1 [N/mm] Normal 1.5e4 1.5e3

K2 [N/mm] Normal 1.5e4 1.5e3

Gap1 [mm] Normal 1.5 0.3
Gap2 [mm] Normal 1.5 0.3

Table 8: Statistical distributions of the random variables.
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Figure 7: RAI FE Model

(a) Frequency Domain Response. (b) Time Domain Response.

Figure 8: ANFRA updating method vs. NASTRAN.

The results are obtained through a 3rd order PCE using a sample of Ns = 250, the remaining
Neval = Nrun − Ns = 150 is used as evaluation set for estimating the error. The multivariate
PCE takes into account univariate Legendre polynomials for the uniform distributions, as well
Hermite polynomials for the normal ones. The independence of the random variable preserves
the orthogonality of the multivariate PCE when different types of polynomials are used. The
obtained error is of the order 10−3. Which is several order of magnitude higher than in the
previous example. Usually, PCE shows lower performance in case of strong nonlinearities, and
increasing de degree of the multivariate polynomial helps until a certain point because due to
the well-known Gibbs phenomenon over-fitting issues arise. On the other side, the higher the
degree, the higher the number of the regression coefficients and the sample needed for the fitting
are. In this open field of research other types of meta-models could better perform in case of
strong nonlinear problems.
Table 9 shows the first two statistical moments, the error on the evaluation set and the variance
based sensitivity indices. The frequency in accordance with the select range of variability has
the stronger contribution, in fact, looking at figure 8, both the intact and disconnect structures
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(a) Uncertain free-play stiffness. (b) Linear vs. Nonlinear rod reaction force.

Figure 9: Nonlinear interfaces behavior.

present amplification peaks. The stiffnesses have the lowest contributions, which is expected
as well having the nonlinearity due the free-play a much stronger effect on the reaction loads.
Looking at the table, differences can be seen between the first and total order effects, which
means that the interaction among parameters is significant. It is particularly true for the total
indices regarding the gap parameters. It makes sense because interactions are expected at least
between the applied force and the gap, hence for example the ST5 = S5 + S15 + S25 + S35 +
S45 + +S65 is physically expected to have at least the term S15 different from zero. In figure
10 the split of the F1rms output variance among the input uncertain parameter is presented by
pie plots. It is worth to note that when the interaction factors are significant the sum of the first
order indices is less than one, hence the pie plot does not cover the 100% of the total variance.
On the contrary the sum of the total effects can be greater than one, because for example the
factor S15 contributes to both ST5 and ST1, hence the percentages in the total effects pie plot
are redistributed according the value of their sum.

Figure 10: Reaction force F1rms - Total Variance Pie according the first and total indices.
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Parameter Results F1rms F2rms

Mean(Y) 140.10 207.49
V(Y) 3286.55 8145.43

error on Neval 0.0015 0.0024

Force S1 0.14 0.17
Frequency S2 0.43 0.30

K1 S3 0.00 0.01
K2 S4 0.00 0.01
Gap1 S5 0.12 0.17
Gap2 S6 0.15 0.06

Force ST1 0.21 0.28
Frequency ST2 0.48 0.38

K1 ST3 0.06 0.10
K2 ST4 0.06 0.09
Gap1 ST5 0.20 0.27
Gap2 ST6 0.22 0.21

Table 9: RAI vibrations - statistical moments and Sobol’s Indices.

6 CONCLUSIONS

This research presents the UQ process as a systematic approach to estimate the probabilistic
dynamic response of structures. Particular focus is put on the generation of PCE meta-models,
which allows to describe the probability density function of the QoIs, as well facilitates the
estimation of the Sobol’s Sensitivity Indices. GSA are shown to be a fundamental and reliable
tool for understanding which the relevant parameters are and how their variance contribute to
the total variance of the outputs. The paper presents the key points of the theory behind the work
but tries to make them fluent and easy to follow for the reader. Then the work is contextualized
in the frame of assembled structure, whose interfaces, often having a nonlinear behavior, are
a well-known source of uncertainties. Two example with different degree of complexity are
presented. The first, a double pinned beam, is used as step-by-step guidance for the interested
reader, who can reproduce easily the results by himself. The second, the nonlinear free play
vibrations of the RAI system, is much more complex as well, much more interesting. The
results, particularly regarding the first and total order effects, are discussed looking at their
physical coherence and some perspective on the use of PCE in case of nonlinear problems is
given.
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