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Abstract: The recently developed parametric flutter margin (PFM) method is combined with 
the increase-order modeling (IOM) approach to facilitate stability analysis of nonlinear 
aeroservoelastic systems with computational fluid dynamics (CFD)-based aerodynamics. The 
IOM-based Dynresp code is utilized to exchange data with the Fluent CFD code at various 
fidelity and coupling levels and some features are applied to flutter analysis of a twin-tail 
configuration under wing-generated buffet loads. Being based on dynamic response to 
external excitation while the aeroelastic equation of motion is augmented by a stabilizing 
parameter, the PFM method may significantly improve flutter analyses with nonlinear CFD-
based aerodynamic models. However, aeroelastic CFD simulations might induce buffet loads 
that excite the structure adding noise to the PFM calculations. The main purpose of the work 
described in this paper was to investigate the effects of the buffet-induced noise on the 
accuracy of CFD-based PFM predictions. The PFM method is presented in this context and 
applied to a numerical model of a wind-tunnel of the F/A-18 aircraft. The Dynresp-Fluent 
assembly is applied to dynamic response cases with and without buffet loads and flutter 
results are compared with common linear analyses. 
 
1 INTRODUCTION 
 
The increasing complexity of the aerodynamic, structural, control and mechanical 
components that compose modern aero-servo-elastic (ASE) systems may require high-fidelity 
simulation models that include important nonlinear effects. The most challenging models are 
those based on computational fluid dynamics (CFD). While computational fluid-structure-
interaction (FSI) techniques are advancing rapidly, they cannot be used as practical design 
and certification tools in industrial environment due to their prohibiting model preparation 
and computation time. Hence, common industrial ASE loads and stability analysis tools are 
mostly linear and applied with conservative margins or safety that might yield reduced 
performance or late identification of difficulties that require design changes. Numerous 
reduced order modeling (ROM) techniques that use high-fidelity codes to generate efficient 
aeroelastic models have been developed in recent years to alleviate the computational burden, 
but these are often hard to be robustly integrated in common industrial procedures. Another 
approach that seems to be more successful in industrial environments is the increased-order 
modeling (IOM) approach [1-3] that starts with linear solutions and then adds nonlinear 
effects as necessary.  
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The IOM-based Dynresp framework code solves a linear problem in the frequency domain 
(FD), adds nonlinear effects and event scenarios in the time domain (TD) and returns to FD 
in the final step, as detailed in the next section. It was originally developed to facilitate 
efficient addition of selected nonlinear effects to industrial dynamic loads codes. It has been 
used in the last 5 years as the main dynamic loads code at Airbus Defence and Space [4], 
mainly in the A400M project and was recently expanded to perform stability analysis and 
deal with wake encounter. Being based on the parametric flutter margin (PFM) method [5], 
the Dynresp stability analysis is based on ASE response to sinusoidal excitation, which 
facilitates convenient and efficient expansion of the linear flutter and control-margin 
solutions to nonlinear stability boundaries and limit-cycle oscillation (LCO) characteristics. It 
can also be very effective for stability predictions in nonlinear regimes, such as in buffeting 
flow environments, due to strong turbulence interactions often resulting from separating 
shear layers, unsteady boundary layer interactions, or turbulence vorticity.  
 
The purpose of the work led to this paper was to facilitate various levels of interaction of 
IOM-based codes with CFD codes. The only requirement from the CFD code is that it can 
move its aerodynamic grid according to structural surface motion dictated by the progressing 
structural motion in modal coordinates, and respond with generalized forces applied to these 
modes in every time step. The Dynresp code is used for this purpose in coupling with the 
general purpose finite volume code ANSYS Fluent [6] via a sequential pressure-based solver 
with SIMPLE pressure–velocity coupling, second–order upwind spatial discretization and 
second–order backward Euler temporal discretization. The SRS model known as Delayed 
Detached Eddy Simulation (DDES) is used to resolve the turbulent vorticial flow patterns 
where the SST k-ω turbulence model is used for near wall treatment, similar to the initial 
study presented in Ref. [7].  
 
This paper discusses the application of the combined Dynresp-Fluent software to PFM flutter 
analysis of a twin-tail configuration under wing-generated buffet loads. Preliminary dynamic 
response of a computational model that represents a wind-tunnel experiment was presented in 
Ref. [8]. Some results are revisited here in the context of response usage in stability analysis, 
and the PFM method is applied with dynamic responses obtained in various FSI algorithms.  
  
The paper is organized as follows. Section 2 will overview the IOM procedure with emphasis 
on the various coupling manners with the CFD code. Section 3 will discuss the test cases 
selected for this study. Section 4 will discuss the PFM procedure and its application in linear 
flutter analysis with no buffet noise. Section 5 will add the buffet calculated with rigid 
structure as noise that introduces inaccuracies to the flutter predictions. Section 6 will discuss 
the extraction of buffet with FSI effects obtained by the tight and loose coupling procedures, 
and the continuation steps to be performed for fully nonlinear stability analysis with buffet 
loads.  
 
2 INCREASED-ORDER MODELING IN DYNRESP 
 
The IOM framework [1] used in this work presents systematic methodology and 
computational tools that exploits the numerical advantages in dealing with linear systems 
while keeping the complexity of the added nonlinear elements as low as required for obtaining 
adequate accuracy in aeroelastic analysis. The model, schematically depicted in Fig. 1, is 
based on a main linear block that is stable when disconnected from the nonlinear elements, 
and a nonlinear block that expresses all the nonlinearities as feedback loops. The response 
calculations are performed in 3 stages: (a) response of the linear block with the nonlinear 
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block disconnected; (b) addition of nonlinear effects using nonlinear elements and 
convolution integrals; and (c) complementary response of the linear block to inputs from the 
nonlinear block to generate the final output. The CFD box on the left side of Fig. 1 is 
connected to the diagramed blocks in the three ways discussed in Section V. 

 

 
Figure 1: IOM block diagram with CFD-based data. 

 
The first stage is performed in the linear block in Fig. 1, based on FD response to external 
excitation 

{ } [ ] [ ] ( ){ }1( ) ( ) ( )L ext extx i A i B i u iw w w w-=                      (1) 

where {xL(iw)} is the FD vector of modal displacements {x}, actuator outputs {d} and control 
states {xc}, {uext(iw)} is the vector of external inputs, [A(iw)] is the closed-loop linear 
dynamic matrix, and [Bext(iw)] is the input distribution matrix. {uext(iw)} is obtained via Fast 
Fourier Transform (FFT) of the input signal {uext(t)}. The {yL(iw)} outputs of the linear block 
in Fig. 1, which are inputs to the nonlinear block, can be generally expressed as  

 { } [ ]{ } [ ] ( ){ }( ) ( ) ( ) ( )L L exty i C i x i D i u iw w w w w= +               (2) 

where the coefficient matrices are related to modal displacements and direct-force effects (in 
the case of acceleration outputs). Other FD response functions are calculated in the linear 
block in preparation for the subsequent interaction with the nonlinear block. Frequency 
response of the state vectors {xL(iw)} to unit inputs {uNL(iw)} from the nonlinear block are 
arranged in the [xLU(iw)] matrix and calculated by 
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     [ ] [ ] [ ]1( ) ( ) ( )LU NLx i A i B iw w w-=             (3) 

from which frequency-response functions [yLU(iw)] of the linear output vector to unit inputs 
from the nonlinear block are calculated by 

 [ ] [ ][ ] [ ]( ) ( ) ( ) ( )LU LU LU LUy i C i x i D iw w w w= +             (4) 

To complete the first stage and generate the interim outputs of the linear block in Fig. 1, the 
linear FD responses of Eqs. (2) and (4) are transformed to TD by  

{ } { }( ) ( )L Ly t IFFT y iw=                           (5) 

and  

[ ] [ ]( ) ( )LU LUy t IFFT y iw=                        (6) 

where the zero-frequency singularity of the ASE matrix, [A(0)], associated with rigid-body 
motion, is resolved by transforming the variables to flight mechanic ones. The second stage is 
performed in the nonlinear block of Fig. 1. The time t is set back to zero and a time-marching 
nonlinear computation of the outputs {uNL(t)} of the nonlinear block is performed in 
consecutives time steps. The outputs {yL(t)} of the linear block are amended in each time step 
by the convolution integral  

{ } { } [ ]{ }
0

( ) ( ) ( ) ( )
t

NL L LU NLy t y t y t u dt t t= + -ò
                    

(7)
 

and serve as inputs to the nonlinear functions (NLF) in the following time step 

      { } { }( ) ( )NL NLu t NLF y t=                (8) 

which may require some sub iterations when {uNL(t)} includes direct forces and {yNL(t)} 
includes accelerations. In the cases demonstrated in this paper, all the inputs in {uNL(t)} are 
direct forces but none of the outputs in {yNL(t)} are acceleration related, hence no sub 
iterations are needed.  
 
The computation process returns in the third stage to the linear block of Fig. 1. The second-
stage output {uNL(t)} of Eq. (8) is converted to FD by FFT and the final response is calculated 
by 

{ } { } [ ] [ ]{ }1( ) ( ) ( ) ( ) ( )NL L NL NLx i x i A i B i u iw w w w w-= +            (9) 

followed by  

    { } { }( ) ( )NL NLx t IFFT x iw=             (10) 

This final TD state response may be used for calculating any desired output that is a function 
of {xNL(t)}. 
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3 TEST CASES 

A. General  

Unlike previous PFM studies that demonstrated flutter and LCO cases where the linear 
unsteady aerodynamic forces are due to structural vibrations only [5] or with low-level noise 
in wind-tunnel tests [9], the current study attempts to apply the PFM method with large buffet 
loads that are affected by the structural vibrations. The purpose was to study the method 
limits and pointing out some challenges involving the inevitably low signal-to-noise ratio. 
The F/A-18 twin-tail configuration is used as a test case in this study because of the large 
buffet loads induced at high angles-of-attack (AOA) maneuvers on the tails due to wing-
vortex burst. Even though such dynamic loads do not appear at other flight maneuvers, 
particularly not at high-speed-low-AOA cases where flutter is more likely, the high buffet 
loads are applied in most cases of this study to reflect worst-case scenarios. 
 
A wind-tunnel test performed to investigate the twin-tail buffet loads, and some numerical 
CFD solutions used for complementing that research, are described in Ref. [8]. The CFD and 
aeroelastic models used in [8] are also used here. The vertical tail of the model is flexible, 
with the rest of the structure assumed to be rigid. Fig. 2 shows the aerodynamic shape used in 
constructing the CFD model. 

 
Figure 2: General view of the wind-tunnel configuration. 

 

B. CFD model and flow conditions 
 

The flow conditions were selected such that leading-edge vortices develop and burst, 
interacting strongly with the vertical tails. Table 1 presents the freestream conditions used in 
the CFD study.  
 

 
 
 
 
 
 

 
 
 

Table 1: Flow conditions of the full-scale and wind-tunnel models. 
 

The use of the SRS (i.e. DDES) strategy is to ensure the system does not exhibit tonal 
behavior under breakdown, a result of the ensemble averaging process when solving the 

Parameter Value 
Freestream velocity 40 [m/s] 
Freestream air density 1.225 [kg/m3] 
Dynamic viscosity 1.8×10-5 [Pa s] 
Characteristic length 0.22 [m] 
Reynolds number 6×105  
Angle of attack 30 [deg] 
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Reynolds-Averaged Navier-Stokes (RANS) equations. This solution strategy would result in 
a periodic single-harmonic loading, where the characteristic frequency of breakdown is 
dictated by the change in mean flow conditions, as opposed to the presence of disparate 
turbulence scales. By contrast, the DDES model results in a broadband excitation of the 
vertical tail, with a distinct peak referencing the dominant frequency of breakdown.  
 
The flow pathlines of the leading edge vortex as it propagates downstream towards the tail 
are show in Fig. 3 for the wind-tunnel model. Initially, just downstream of the tip, the flow is 
characterized by a well defined vortex with high gradients. Just upstream of the tail the vortex 
can be seen to burst, this is indicated by a sudden increase in the size of the swirling region 
and low velocity gradients.  
 

 
Figure 3: Flow pathlines indicating position of vortex burst forward of vertical-tails. 

 

C. Aeroelastic model 
 

The structural model was based on a clamped flexible tail with the rest of the model kept 
rigid. Since the excitation is assumed to be symmetric in this study, the two tails move 
symmetrically. The undamped structural models were generated using the ANSYS 
Mechanical R18 using shell elements. The model is designed to achieve the first two natural 
frequencies (i.e. bending and torsion) to coincide with those observed from ground vibration 
experiments. A total of four modes are selected to describe the dynamics of the vertical tail. 
The mode shapes are projected from the dynamic (i.e. shell) grid to the aerodynamic grid via 
MPC184 connections. These connections consist of connecting each dynamic (master) node 
to local aerodynamic slave nodes to ensure smooth projection of the mode shapes. The first 4 
natural frequencies are listed in Table 2. The projected mode shapes for first bending and first 
torsion are shown in Fig. 4. 
 

Mode Frequency [Hz] 
First bending 20.5 
First torsion 70.7 
Second bending 113.5 
Second torsion 176.5 

 
 Table 2: Natural frequencies and mode descriptions. 
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Figure 4: First bending and first torsion modes projected on to the aerodynamic OML. 
 

Two views of the panel model for linear response analysis, generated using ZAERO, are 
shown in Fig. 7. The generalized aerodynamic force coefficients calculated with this linear 
model were practically the same to those calculated from the CFD from indicial responses 
[8]. The red point mark the location of an added mass term introduced for the PFM solution 
discussed in Section 4.  
 

	
	

Figure 5: Linear panel model with added mass. 
 

4 LINEAR PARAMETRIC FLUTTER MARGINS WITH NO BUFFET 
 

A detailed development of the PFM method for flutter and LCO analyses is given in Refs. [5, 
10]. It is based on adding a stabilizing parameter, Pf, and a control feedback loop that cancels 
its effects. Response analysis with the loop open is then performed to find the parametric 
flutter margins at various velocities. Flutter or limit-cycle oscillations (LCO) occur when 
PFM=0. Being based on dynamic response rather than on the system-matrix singularity 
characteristics, PFM facilitates a direct coupling process with CFD. The main PFM equation 
of motion is  

[A(iw)+Pf {Bf}⌊Cf (iw)⌋]{x (iw)} = {Bf}uf (iw)        (11a) 
yf (iw) = ⌊Cf (iw)⌋{x (iw)}              (11b) 

 
where the system matrix [A(iw)] contains the generalized mass, damping, stiffness and 
frequency-depended aerodynamic matrices, {x(iw)} is the vector of modal displacements, uf 

and yf are scalars, input and output of the modified system, and {Bf} and ⌊Cf (iw)⌋ are the 
respective distribution vectors. The complex ratio Pf yf (iw)/uf(iw) defines the gain and phase 
associated with the Pf. The velocity at which the there is a cross-over frequency where the 
phase is F(wco) = 0 and the phase of G(wco) = 0dB is the flutter point of the system before 
being stabilized by the added Pf. The frequency at this point, wco, is the flutter frequency and 
the solution {x(iwco)} is the flutter mode.  
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PFM analysis was first applied to the wind-tunnel model of Fig. 2 with a mass term of 10g 
added in the z direction at the leading edge of the tip section. A unit impulse uf(t) applied at 
the same point, also in the z direction, excite the main linear block of Fig. 1. The FFT uf(t) 
and that of the co-located acceleration response, yf(t), was used to produce the flutter gains 
and phases at various velocities. The effect of the CFD box in Fig. 1 on the PFM calculation 
were limited at this stage to importing linearized generalized aerodynamic matrices, 
[Qhh(iw)]. 
 
The displacement and acceleration response of the added-mass point to unit impulse at t=0.5s 
at 110m/s are shown in Fig. 6 in TD and FD magnitude. Bode plots of the acceleration 
response, multiplied by the added mass, are shown in Fig. 7 for various air velocities. The 
associated flutter gain margins at the cross-over frequencies are plotted in the right side of 
Fig. 6, indicating the flutter velocity Vf=121.0m/s, where Gain=0dB, and wf=51.2Hz. Flutter 
analysis performed with ZAERO, also with [Qhh(iw)] matrices imported from Fluent, 
indicated practically identical flutter velocity, frequency and mode, as shown in the 
following sections. The smooth behavior of the gain plot across the nominal flutter velocity 
indicates that, unlike with the original system, the modified response does not diverge 
around Vf, which is very important numerically in response calculations using CFD.  
 
5 LINEAR PARAMETRIC FLUTTER MARGINS WITH BUFFET NOISE 

 
We relate in this section to the CFD-buffet loads calculated with rigid structure as “noise” 
that introduces inaccuracies in the desired response to PFM excitation. The possible effects of 
the structural response will be discussed in Sec. 6. The linear response to buffet noise is 
calculated simply by adding the Fourier Transform {FbR(iw)} of the generalized rigid buffet 
forces {FbR(t)} to the right side of Eq. (11a). 
 

 
Figure 6: Tip displacement and acceleration at V=110m/s in response to unit impulse at t=0.5s. 
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Figure 7: Flutter gain and phase at various velocities and the associated frequency-cross-over and flutter 
margins. 

 
The TD rigid generalized buffet forces on the first two modes, and the first singular value of 
their power-spectral-density (PSD) matrix, calculated in Ref. [8], are shown in Fig. 8. It can 
be observed that there is large excitation between the linear-flutter frequency, 51.2 Hz. and 
the 1st torsion frequency, 71 Hz. Hence, it is expected that large PFM excitations will be 
required to overcome the response noise.  
 

 
(a)                                                                              (b) 

Figure 8: Generalized aerodynamic forces of the first two modes under rigid constraints: a) time-history; b) 
first singular value of the power-spectral density matrix. 

 
The acceleration response to unit-impulse PFM excitation was repeated with the buffet noise. 
The resulting FD acceleration responses shown in Fig. 9 indicate that the PFM excitation 
force should be increased. To avoid large deformations in subsequent FSI-CFD runs, the 
impulse-based white-noise excitation was also limited to the 45-55Hz. range. After checking 
that without noise the PFM results of Fig. 7 are repeated exactly, the calculations were 
performed with the noise added.  

w
f
=51.2[Hz] 

V
f
=121[m/s] 
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Figure 9: Tip acceleration at V=110m/s in response to unit impulse at t=0.5s and rigid buffet noise. 
 
The resulting Bode plots in the range of 45-55 Hz. are shown in Fig. 10. Even though they 
are very noisy, they can still be used to extract approximate cross-over frequencies and flutter 
gains. The resulting parametric flutter margins and the related frequencies vs. velocity are 
plotted in Fig. 11 in comparison with those of Fig. 7. Even though the plots were based on the 
plots of Fig. 10 with no smoothing, it can be observed that the resulting PFM and frequency 
plots are fairly smooth. The marked PFM=0dB points with and without noise indicate the 
respective flutter velocities, which lead to the flutter frequency and modes as discussed 
above. These flutter characteristics are compared to the ZAERO ones in Table 3. It can be 
observed that the no-noise Dynresp PFM results are practically identical to those of ZAERO, 
and that the results under rigid buffet are not very far off considering the level of the resulting 
buffet vibrations.  

 
 

Figure 10: Flutter gain and phase at various velocities with rigid buffet noise.  
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Figure 11: Parametric flutter margins and cross-over frequencies with and without noise. 

 

 
ZAERO PFM PFM with noise 

Vf [m/s] 120.60 120.95 117.10 

Diff [%] -- -0.29 2.90 

wf[Hz] 51.37 51.22 52.60 

Diff [%] -- 0.30 -2.39 
 

 
ZAERO PFM PFM with noise 

Mode # Real Imag Real Imag Real Imag 

1 0.9009 0.3575 0.9137 0.3604 0.8208 0.3252 

2 1 0 1 0 1 0 

3 0.0394 0.0313 0.0395 0.0312 0.0369 0.0328 

4 -0.0064 0.0118 -0.0065 0.0117 -0.0047 0.0104 

5 0.0028 -0.0032 0.0029 -0.0032 0.0024 -0.0032 

6 0.0012 -0.0017 0.0012 -0.0017 0.0007 -0.0016 

7 -0.0026 0.0024 -0.0027 0.0024 -0.0024 0.0024 
 

Table 3: Flutter velocity, frequency and mode calculated using ZAERO and Dynresp-PFM with and without 
rigid buffet noise. 

 
6 BUFFET WITH FLUID-STRUCTURE INTERACTION 

 
A more accurate investigation of the aeroelastic stability under buffet loads should take into 
account the nonlinear effects of the structural vibrations on the unsteady aerodynamic loads. 
The IOM procedure described in Sec. 3 has been expanded for this purpose by interfacing the 
CFD box in Fig. 1 with the nonlinear-IOM block for a tightly coupled solution, or by 
extracting excitation data from CFD for a loosely coupled solution. The process that tightly 
couples Dynresp and Fluent is sketched in Fig. 12. ANSYS Mechanical is used for 
calculating normal modes and an “RBE3” post processor project the modes on the CFD 
surface grid. A Python interface transforms modal displacements from Dynresp into surface 
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displacements in Fluent, and local pressures from ANSYS into generalized forces in Dynresp 
at every time step.  

 

 
 

Figure 12: Tight coupling block diagram.  
 
The imported generalized aerodynamic forces from Fluent are introduced to the response 
analysis in Dynresp as a sequence of correcting impulses and convolution integrals as in Eq. 
(7). The resulting FD equation of motion in each step is actually  

(-w2[Mhh] + iw[Chh] + [Khh] + q[Qhh(ik)]){xn(iw)} = {Fh,n(iw)} + q[Qhh(ik)] {xn-1(iw)} (12) 
 
where [Mhh], [Chh] and [Khh] are the generalized mass, damping and stiffness matrices. 
[Qhh(ik)] is the linear unsteady aerodynamic force coefficient interpolated from tabulated 
matrices at selected reduced frequencies kt=wtb/V. These matrices are can be either extracted 
from Fluent [8], as indicated in Fig. 1, or imported from external codes. 
 
Since tight-coupling simulations of Fig. 12 have not been available by the time this paper was 
submitted, we present here the FSI simulations performed in Ref. [8] with the same nominal 
test case. The difference is that the FSI simulations there were performed in TD using an 
equivalent Runge-Kutta solution. The resulting generalized displacements and forces, see 
below, are expected to be practically identical to those of the Dynresp-Fluent process.  
 
The loosely coupled iterative process starts with the rigid buffet forces {Fh,1}, shown in Fig. 
8 for the first 2 modes, applied to the linear model as dictated generalized forces for the entire 
simulation. Eq. (12) is solved in this step with n=1 and {x0}={0}. The resulting {x1(t)} is 
transferred to the CFD code that is run with pre-dictated deformations to produce {Fh,2} for 
the 2nd iterations, and so on. This was performed with the Dynresp-Fluent process in Fig. 12, 
but with the data transferred every iteration instead of every time step. The results of the first 
2 iterations (blue) are compared in Fig. 13 to those of the tight FSI. It can be observed that 
there is a significant difference between the response in the 1st and 2nd loose-coupling 
iterations. While the bending displacements reduce, the torsional displacements increase, 
with both getting closer to the tight FSI results. Reference [8] showed that the increasing 
torsional vibrations are mainly with frequency close to the 1st-torsion frequency (71 Hz.) due 
to lock-in phenomena.  
 
The tight FSI process is more efficient that the sequence of loosely-coupled solutions. 
However the loose coupling process may provide better insight, and can be performed with 



IFASD-2017-106 

13 

CFD and aeroelastic response calculations performed totally separately on different 
machines. 
 
The responses of this section should be repeated for various velocities with PFM excitation, 
such as that of Sec. 5, to produce the necessary response data for PFM analysis. Being 
nonlinear in nature, the results will depend on the excitation level, which may produce 
nonlinear flutter. These are subjects for future research to be performed with the tightly 
coupled FSI process of Fig. 12. 
 

 

 
Figure 13: Modal displacements in the loosely coupled process. 
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