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Abstract:

The study presents the derivation and application of a nonlinear modal-based structural model
for static aeroelastic applications. The model, intended for geometrically nonlinear structures,
of large deformations, analyzes the deformations of a beam structure by dividing it into a few
segment. Large deformations are treated as the sum of large, rigid-body displacements of the
segment, plus small, linear, elastic deformation within the segment. The novelty of the approach
is that the elastic deformations at each segment are computed using a modal approach, with fic-
titious masses to facilitate the coupling between segments. The use of the modal approach in a
large deformations case introduces difficulties in the application of compatibility equations be-
tween segments that are explained and addressed in the paper. The numerical examples include
several load cases that validate the implementation of the methodology and demonstrate its use
for static aeroelastic applications. The first test case is of a beam subject to a large follower tip
forces. Results are in good agreement with those computed by a commercial nonlinear finite
element solver, while introducing great improvement in the computational efficiency. The sec-
ond test case describes a beam subject to aerodynamic loads at various air speeds, and angles of
attack. In this case, the nonlinear structural model is coupled with a modified strip model, based
on CFD rigid simulations. Comparison with linear-aero linear-structural model shows excellent
agreement in the low air speeds, highlighting the shortcomings of the linear-structural-linear-
aerodynamic model in representing highly flexible structures under large aerodynamic loads.

1 INTRODUCTION

In highly elastic aircraft structures, structural nonlinearity usually refers to cases of large defor-
mations, in which the presence of large rotation angles prevents the use of the common lineariza-
tion of trigonometric functions. The current study also addresses cases of large displacements
and small (infinitesimal) strains, focusing on cantilever beams, which are commonly used to
describe wing structures in aeronautics.

A common method for describing nonlinear behavior of a structural beam is the co-rotational
method [1–7] that explicitly separates between the large rigid displacements, which are de-
scribed in a global coordinate system (CS), and the small-elastic deformation, which are ex-
pressed in a material-attached, local, co-rotated CS. This method yields good results in describ-
ing large deformations in beams, and is also used in commercial finite elements (FE) nonlinear
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softwares. Hodges [8–10] introduced the Exact Intrinsic Equations method that eliminates the
need for element orientation transformations, but limit the model to rotation-independent loads
and boundary conditions, and beam-like structures. Bernhammer et. al [11, 12] proposed a
novel approach that integrates the co-rotational beam method with a sub-structuring method.
This approach divides the structure into several sub-structures, each of them is solved using a
linear model, in a local, body attached, CS, under the assumption of small local deformations.
The sub structure is then rotated into its global position by applying rigid-body, large displace-
ments. The elastic deformations of each sub-structure are computed using a modal approach,
therefore significantly reducing the problem’s number of degrees of freedom (DOF). Modes
of each sub-structure are computed using the Fictitious Mass (FM) method that facilitates the
coupling between sub-structures [13–15]. The method was demonstrated in static and dynamic
loading cases, and in aeroelastic analysis of a wind turbine model. It was shown to be highly
efficient, while maintaining accuracy compared nonlinear FE solutions.

There are several studies of static and dynamic aeroelastic problems of highly elastic config-
urations that are based on structural nonlinear models. Shearer and Cesnik [16] computed
aeroelastic response of a free-aircraft to elevator control input, and showed that accurate sim-
ulation of asymmetric maneuvers of a highly flexible, heavy-weigh configuration requires the
use of a nonlinear model. Su and Cesnik [17] used a high order beam element (presented in
Refs. [18, 19]) to simulate the aeroelastic gust response of a HALE aircraft. The large number
of DOF in this model might lead to a less efficient solution. Patil et al. [20] used the exact
intrinsic equations method [10] with linear state-space aerodynamics [21] for flutter analysis
of a HALE aircraft. A statically deformed configuration was computed based on the nonlin-
ear structural model, and a linearized flutter analysis was carried out about that configuration.
Patil [22] used a similar approach for simulating dynamic gust response of a highly flexible air-
craft. Wang et al. [23] used the exact intrinsic equations coupled with several Unsteady Vortex
Lattice Method solvers for discrete gust response calculation of a HALE aircraft.

All the above-mentioned studies presented a combination of a nonlinear structural model with
a linear aerodynamic model. Jones and Cesnik [24] presented nonlinear aeroelastic analyses
of the X-56A demonstrator, in which the aircraft’s structural model was reduced to a beam,
modeled by a nonlinear strain-based model, and combined with nonlinear, CFD based, sectional
aerodynamics. Nonlinear aeroelastic analyses included trim and flutter.

The current study builds on the Bernhammer et. al [11, 12] nonlinear structural modeling, and
couples it with a nonlinear aerodynamic strip model, for static aeroelastic analysis of a highly
elastic beam subject to aerodynamic loading at various flow conditions, including high angles
of attack.

2 STRUCTURAL MODEL

The current approach to nonlinear structural modeling builds on a recent novel method by Bern-
hammer et. al [11,12]. Since the formulation and application is somewhat different than that of
Bernhammer et. al, it is presented here in details. The method is based on dividing the struc-
ture into several segments (sub-structures). Elastic deformations in each segment are computed
using a linear modal model, in a local, body attached, CS, under the assumption of small de-
formations. Modes of each sub-structure are computed using the Fictitious Mass (FM) method
that facilitates the coupling between sub-structures [13–15] as presented below. The segments
are then rotated into their global position by applying rigid-body, large displacements.
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Sub-structuring refers to an approach in which analysis of a whole structure is based on anal-
ysis of subs-tructures, thought of as independent from the rest of the structure, followed by a
synthesis to describe the whole structure’s behavior. It can be used for efficient study of a main
structure to which various sub-structures are attached. For example, an aircraft with different
stores. A comprehensive review on the topic of sub-structuring is given by Klerk et al. [25].
Sub-structuring can be a relevant tool for tackling geometrical nonlinearities. With an appropri-
ate domain decomposition, a substructure can be thought of, with a reasonable approximation,
as governed by linear equations, where the effects of nonlinearities are accounted for at the
interfaces with adjacent sub-structures.

2.1 Substructuring with Fictitious Masses (FM)

The FM method is usually used to analyze complex large structures by parts. Large FM
are added to the boundary DOF of each sub-structure, where it connects to neighboring sub-
structures. Modal analysis is carried out for each sub-structure, loaded with FM, independently.
The sub-structures’ modes are used for analysis of the original structure, without the FM. The
role of the FM is to generate local deformations at the mode shapes, at the interface between
sub-structures, thus facilitating the representation of the entire structure.

The FM method can be formulated as follows [14]: Consider the undamped equation of motion
(EOM) for a generic ith substructure (here and throughout this paper, the superscript i refers to
the index of the substructure):[
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where the displacements vector ui, the mass and stiffness matrices M i, Ki, and the vector
of applied forces f i are partitioned to interior and boundary DOF (referred to by the i and
b subscripts, respectively). The boundary force vector f ib accounts for the forces exerted on
substructure i by the adjacent substructures. Addition of FM to a substructure’s boundaries is
done by adding an Mf matrix to the Mbb term in equation 1. Modal analysis performed to the
substructure, loaded with the FM, yields the modes, φi, and associated natural frequencies ωin,
satisfying:
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The displacements of the ith sub-structure can be expressed as a linear combination of the
modes: {
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where ξi is a vector of modal displacements.

GM i and GKi are the generalized mass and stiffness matrices of the ith sub-structure, aug-
mented with FM, defined as:[
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Using equations 3 to 5, equation 1, which refers to the original system, i.e., to the ith substruc-
ture without FM, can be rewritten as:(

GM i − φib
T
Mf

i φib

)
︸ ︷︷ ︸

M̃ i

ξ̈i +GKiξi = φi
T
f i (6)

or:
M̃ iξ̈i + K̃iξi = φi

T
f i (7)

where M̃ i is the generalized mass matrix without the FM, and K̃i = GKi. Reference [15]
provides an example of modal analysis of a truss and attached bar by separate analyses of the
two substructures, each loaded with FM.

2.1.1 Joining the substructures- the linear case

The EOM for the whole system can be written as:

M̃ ξ̈ + K̃ ξ = φTf (8)

where vector ξ includes all the substructures’ ξi, and similarly do M̃ , K̃ and φTf . In this formu-
lation the substructures are not connected. In a static solution, two compatibility conditions are
required in order to ensure the whole structure connectivity. For beam-like structures, substruc-
tures can be defined straightforwardly as segments of the beam. For defining the compatibility
equations, a relative order of the segments needs to be defined, in which segment i connects to
segment i− 1. Moreover, the displacement of the structure needs to be known at some location.
For example, we can assume that segment 1 is clamped.

Considering the displacements of a segment as superposition of rigid body and elastic displace-
ments, the segment’s generalized displacement vector can be partitioned as:

ξi =

{
ξir
ξiel

}
(9)

and therefore:
ui = φirξ

i
r + φielξ

i
el (10)

When the segments are connected, the rigid body displacements of segment i can be written in
terms of the i − 1 segment’s tip displacements and the elastic displacement of segment i, and
thus, recursively, as a function of all the upstream segments’ elastic displacements:

ξ = T ξel (11)

where T is the transformation matrix, derived below from compatibility equations. By use of
equation 11 the number of independent generalized DOF is reduced to the number of elastic
generalized DOF.

Once the transformation matrix T has been determined, equation 8 can be rewritten, with the
aid of equation 11, as:

M̃
d2T ξel
dt2

+ K̃T ξel = φTf (12)

Since in the linear case the transformation matrix does not change in time, equation 12 be-
comes: (

T TM̃T
)
ξ̈el +

(
T T K̃T

)
ξel = T TφTf (13)

Equation 13 is solved for the linear dynamic (or static) response to load f .
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Compatibility Equations - Defining the transformation matrix T . Consider two generic
segments, i and i − 1, where segment i is connected at its upstream (root) end u, to the down-
stream (tip) end d, of segment i− 1, as shown in Figure 1. The compatibility equation expresses

i-1

i

u

d

u i-1
d

initial position

ii-1segment segment

R
i-1,G

i-1

i

G

u i
uR

i,G

current position

d
u

Figure 1: Segments i− 1 and i. Compatibility requirements for the displacements ui−1
d and uiu

the identity of global displacement of the connecting node on both segments. Namely:

Ri−1,G (φi−1r,d ξ
i−1
r + φi−1e,d ξ

i−1
el

)︸ ︷︷ ︸
ui−1
d

= Ri,G
(
φir,uξ

i
r + φie,uξ

i
el

)︸ ︷︷ ︸
uiu

(14)

where the rotation (transformation) matrix Ri,G transfers vectors from the local reference sys-
tem i to the global one, and the subscripts u and d indicate the upstream and downstream ends
of a segment. In the case of small deformations (a linear case) the rotations assumed to be
negligible and therefore Ri,G = [I]. From Eq. 14 the rigid displacements of element i can be
written as:

ξir = −
(
φir,u
)−1

φie,u︸ ︷︷ ︸
T̃ i

ξiel +
(
φir,u
)−1RG,i︸ ︷︷ ︸

(T̂ i
ru)

−1

Ri−1,Gφi−1r,d︸ ︷︷ ︸
T̂ i−1
rd

ξi−1r +Ri−1,Gφi−1e,d︸ ︷︷ ︸
T̂ i−1
ed

ξi−1el

 (15)

Thus, by a recursive procedure:

T i =



T̃ 1 0 0 0
I 0 · · · 0 0

T̂ 2 T̃ 2 0 0
0 I 0 0

... . . .
0 0 T̂ i−1 T̃ i
0 0 0 I


(16)

where:

T̃ i = −
(
φir,u
)−1

φie,u

T̂ i =
(
T̂ iru
)−1 [T̂ i−1rd

T̂ i−1ed

]
T i−1
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and: (
T̂ iru
)−1

=
(
φir,u
)−1RG,i

T̂ i−1rd = Ri−1,Gφi−1r,d

T̂ i−1ed = Ri−1,Gφi−1e,d

2.2 Geometric Structural Nonlinearities

In cases of large deformations, geometrical structural nonlinearities need to be considered. The
idea of sub-structuring is to adopt the linear paradigm within each segment, and to account
for the nonlinearities through the rotation matrices that are used in the compatibility equations.
Each segment’s equilibrium equation is formulated in the segment’s local CS. Thus, the struc-
tural stiffness matrix associated with a segment does not need to be updated.

2.2.1 Co-rotational approach at segment’s level

In the FE literature, a common way to tackle geometrically nonlinear problems is the co-
rotational approach [5, 7]. If the small (infinitesimal) strain hypothesis holds, then a large
deformation can be divided into a large rigid body displacement, and a small, linear elastic
deformation. This separation of components of the deformation can be carried out by defin-
ing a co-rotated system that rigidly follows the structure. Whereas the co-rotated system has
been traditionally defined at finite-element level, we can expand this rationale to segments. In
other words, we can define a local co-rotated system that follows the segment, in which the dis-
placements are assumed to be small-elastic ones. Within the assumption of small strains then,
we can find the internal forces by multiplying the stiffness matrix by the elastic displacements
(everything being expressed in the local reference system):

fint = K uel(u) (17)

where the elastic deformations are a nonlinear function of the whole displacement uel = f(u).
The modal approach, as derived in section 2.1, cannot be used to describe the internal forces
in terms of modal displacements (as K̃ξ). This is due to the fact that the rigid body modes
cannot describe a rigid finite rotation of a segment without introducing parasitic strains. This is
depicted in Figure 2 that shows a segment undergoing a finite displacement and rotation. It is
clear that the rigid modes with rotations introduce a stretch1 independent of whether the rigid
body modes are defined about the initial configuration (figure 2(a) ) or the final one (figure 2(b)).

As a consequence, the rigid part of a displacement ur, which should not contribute to the
strain/stress, cannot be described only by rigid body modes. Rather, a combination of rigid
and elastic modes is needed, i.e.:

ur = φrξr + φelξel (18)

with
ξel 6= 0 (19)

1However, it is noted that rigid modes can perfectly describe a finite translation and an infinitesimal local rigid
rotation.
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rigid modes

initial con�iguration

translated and rotated

con�iguration

displacement

vectors

rigid modes

initial con�iguration

translated and rotated

con�iguration

displacement

vectors

(a) (b)

Figure 2: Introduction of internal strains when describing a finite rigid rotation with modes. This applies regardless
of wether the modes are defined about the initial configuration (a) or the final one (b)

Since the modes are computed such that Kφrξr = 0 this leads to:

Kur = Kφelξel 6= 0 (20)

and therefore a parasitic strain/stress is associated with a rigid motion.

Several options are available to overcome this problem, although all of them have drawbacks.
One approach could be to still use the modal representation of the whole displacement (elastic
plus rigid), and clean from it the rigid part of the motion. The solution procedure for this
approach is outlined in Ref. [26], termed Approach A. This approach has two main drawbacks:

• It requires the full stiffness matrixK, rather than the compact generalized stiffness matrix
K̃
• The transformation matrix consists of a time-dependent rotation matrix (this issue will be

discussed later)

Since the problem is due to finite rotations, it seems that the decomposition u = φξ should not
be used to describe the large rotations. Instead, one can write:

u = uo + φξ (21)

where uo represents the large rigid rotational part of the displacement, and φξ describes (in
the co-rotated system) the elastic deformation. With such formulation, K̃ξ does yield the real
internal forces. As will be discussed later, this approach introduces other difficulties. The
solution procedure for this approach (termed Approach B in Ref. [26]) is outlined below.

2.2.2 Solution procedure: Modes describing the relative displacement

In this approach, the modes are used to describe the displacements about a co-rotated system,
i.e., only the relative displacements, which do not include finite displacements and rotations.
By definition, these are the elastic displacements, which are expressed in the local CS:

uel = φξ (22)

Equation 17 then can be written as:

φTKφξ = φTf (23)
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and, finally:
K̃ξ = φTf (24)

This holds for an isolated (disconnected) segment. The synthesis with other segments is carried
out through compatibility equations that, in the static case, concern displacements and forces.
With the current approach since the unknowns ξ refer to the displacements about a local co-
rotated system, equilibrium of forces exchanged by the segments also needs to be enforced.
This can be written as:

K̃ξ = φTf + φTfu + φTfd (25)

where fu and fd are the forces exerted by the upstream and downstream segments, expressed in
the segment’s local system.

For the rotational part of the displacement, elastic small rotations, expressed through the ro-
tational part of φξ, need to be added to the large ones through composition of rotation, R =
RrRel, where R is associated with the pseudo-vector ω, Rr is associated with the rigid-body

Xcor

O

Xcor
*

wr

wel
wel

wr

w

w

pseudo-vector

w => R

rotation matrixw   => R
el

w    => Rr

el

r

R = R R
r el

Rotational part

Figure 3: Rotational part of the displacement.

rotation ωr, andRel is associated with the elastic rotation ωel. The rigid-body rotations here are
considered to be large enough to invalidate the linear approach and therefore, in order to ma-
nipulate finite rotations, it is necessary to transform the pseudo-vectors into rotation matrices.
The relation between the rotational vector ω and the rotation matrix R is given by Rodrigues’
formula:

R = I +
sinθ

θ
ω̃ +

1− cosθ
θ2

ω̃ω̃ = exp(ω̃) (26)

where ω̃ is the skew matrix associated with the rotational vector ω, and θ is the scalar value of
the rotation angle (θ = (ωTω)1/2) about the rotation axis.

For compatibility, the segment’s local reference system is attached to the end node of the up-
stream segment, as suggested by Bernhammer [11]. The compatibility equation is formulated
at the root of each segment as:

φuξ = 0 (27)

where φu includes the modal displacements (translations and rotations) at the segment’s root.

The forces exchanged by the segments need to be explicitly accounted for, although only on the
downstream end of each segment (for the upstream end, the compatibility equation 27 already
constrains the displacement). If the overall system is statically determined, it is possible to
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evaluate the reaction forces passed through the segments. If not, then one needs to explicitly
impose the equilibrium of the reacting forces, which needs to be expressed in terms of the
unknown ξ. This also means that portions of the stiffness matrix K are needed, leading to the
same drawback that was outlined for Approach A.

Formulation. With the limitation of statically determined structures modeled by segments,
equation 25 with the constraint of equation 27 express the starting point of this approach. If rigid
modes are included, then a transformation matrix T , eliminating the dependent coordinates, is
needed (equation 11). However, with the current approach the matrix T is trivially obtained.
For each segment:

ξr = −φ−1r,uφe,uξel (28)

and
T̃ i = −

(
φir,u
)−1

φie,u (29)

T does not depend on the rotation matrices, and, thus, is constant. Therefore we can construct
the transformation matrix as follow:

T i =



T̃ 1 0 0 0
I 0 · · · 0 0

0 T̃ 2 0 0
0 I 0 0

... . . .
0 0 0 T̃ i
0 0 0 I


(30)

Equation 25 can be rearranged in a residual form as:

T T K̃T ξel − T TφT (f + fd) = 0 (31)

Nonlinearities are now all contained in the term fd, which, in order to be expressed in the local
system, requires the rotation matrices. fd of segment i is expressed as:

f id = Ri+1,if i+1
u (32)

where Ri+1,i is the rotation matrix from segment i + 1 to segment i local CS and f i+1
u is the

reaction force of segment i+ 1 expressed in its local CS.

The residual of equation 31 in iteration (r) is calculated by equation 33

R(r) = T T K̃T ξ(r) − T TφT
(
f (r) + fd

(r)
)

(33)

and driven to zero by an iterative approach. At each iteration, an increment dξ is computed by:(
∂R

∂ξ

)(r−1)

dξ(r) = −R(r−1) (34)

Global displacements are reconstructed, and the rotation matrices are updated accordingly. f
and fd are updated too, and the residual is reevaluated using eq.33. This process is repeated
until convergence is reached. figure 4 depicts the solution procedure of the presented scheme.
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Figure 4: Workflow of the complete solution procedure

3 AERODYNAMIC AND AEROELASTIC MODELS

Since the structural model considered in this work is that of a beam, the aerodynamic model
has to provide the load distribution along the beam. Two models are considered in this study:
A linear strip theory model, and a nonlinear, equivalent strip model. In the linear strip model, it
is assumed that the aerodynamic load at each strip acts on the strip’s quarter-chord, at distance
e from the elastic axis (the beam). The aerodynamic lift and moment about the elastic axis are
proportional to the strip’s angle of attack, αe, according to

L = qSClααe (35)
M = qSeClααe + qScCmααe

where q is the dynamic pressure, S is the strip’s area, and the strip’s angle of attack is the sum
of the rigid wing angle of attack, αr, and the strip’s elastic twist angle, θ. In the linear strip
theory, each strip is assumed to have a lift line slope of Clα = 2π and zero moment about the
aerodynamic center.

The equivalent strip model converts aerodynamic force distribution computed by a detailed CFD
analysis into strip aerodynamic force coefficients (Clα, Cmα). Strip forces are then computed
from Eq. 35, and applied directly to the nonlinear structural beam model. If nonlinear aerody-
namics is considered, for example, in high angles of attack, close to stall, CFD simulations are
performed for several angle of attack values. A look-up table is used to estimate the strip’s aero-
dynamic force coefficients by interpolation. The advantage of this approach is that it does not
require an aeroelastic CFD code, or complex interface between the structural and aerodynamic
modules.

In the current study CFD rigid simulations are performed using the EZNSS code. EZNSS is a
second-order accurate dual time-stepping, implicit finite-difference code, which is capable of
analyzing the static and dynamic flow fields over a maneuvering elastic vehicle. The governing
flow equations, turbulence models, and numerical methods are described in reference 27. How-
ever, they are not of importance to the current methodology, as the equivalent strip model can
be derived from any rigid CFD code, or from wind-tunnel data.

The strip’s twist angles are computed from the structures’ finite rotations. This is done by
transforming the rotations from the structural CS to the aerodynamic CS. The rotation matrix
(defined by eq. 26) only accounts for structural rotation about the flow direction (as depicted
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Figure 5: Aerodynamic local CSs

in figure 5), keeping the applied aerodynamic forces perpendicular to the wing surface. This
rotation matrix is associated with the pseudo-vector ωaero that is defined as follows:

{ωaero} =

0 0 0
0 0 0
0 0 1

 {ωstrc} (36)

The aerodynamic forces are transformed back to the segments’ structural CS, in which the
elastic deformations are calculated.

4 NUMERICL TEST CASE

A couple of loading cases were computed in order to validate the method, study the effect
of computational parameters, and apply it to static aeroelastic cases. The first test case is a
cantilevered beam, acted by a follower tip force. The beam has an I-shaped cross section, its
geometrical and structural properties are provided in table 1. The beam was modeled by FE,

Length 30 m
Web and flange thickness 2 cm
Web height 40 cm
Flange width 20 cm
Density 2600 Kg/m3

Elastic Modulus 70 GPa
Poisson ratio 0.3

Table 1: Structural model properties

with 225 beam elements. For the application of the current methodology it was divided into 15
segments. Modal analysis was performed for each segment, loaded by a fictitious inertia matrix.
The analysis of the beam was performed using 26 modes for each segment (six rigid-body, and
20 elastic modes).

The first load case computes the beam’s deformation due to a follower force of 5000 N acting
on its free end, as presented in figure 6. This load yields large deformations, as evident by the
tip displacement (Figure 7). Figure 7 shows comparison of the deformed shape of the beam as
computed by the current method and by the nonlinear FE commercial software LsDyna R©. The
beam deformation is in good agreement with the nonlinear FE results, with 2% overall error, as
computed by

δ =
|Aref −A|

Aref

(37)

where A is the area bounded underneath the deformed beam, as calculated by the current
method, and Aref is the area bounded underneath the deformed beam, as computed by the
reference FE solution.
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Figure 8 shows the effect of the number of segments on the deformation error. For the current
case, using 15 segments or more, the error is less than 2%. Figure 9 shows the effect of the
number of modes per segment on the deformation error. In this case 14 modes or more yield a
converged solution, with error lower than 2%. For the aeroelastic case, where twist modes have
to be used, a larger number of modes is required. All analyses are therefor performed with 26
modes.

F
segment 1 segment 2 segment ( -1)n

. segment n

x

y

Figure 6: Follower tip load case layout. The beam is divided into n segments.
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Figure 7: Beam deformation due to a 5 kN tip follower force as computed with the commercial FE software-
LsDyna R© and the current model
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Figure 8: Deformation error as a function of the number of segments
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Figure 9: Deformation error as a function of the number of modes

For the segments’ modal analysis, each segment is loaded with a fictitious inertia matrix at the
interface DOF. Discussion of the appropriate size of the FM can be found in reference [14].
In the current case, FM are 103 times the largest member of the diagonal of the segment’s
mass matrix. For the fictitious inertia (FI), the same approach is used but with a factor of 105.
Figure 10 shows the displacement error δ as a function of the FM and FI size, showing that the
error is practically independent of mass size for masses larger than a single element’s mass.
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Figure 10: Deformation error as a function of the fictitious mass (FM) factor (a), and fictitious inertia (FI) Factor
(b)

The current solution was obtained in 1.9 seconds on an Intel i5-3470 desktop, with 8GB RAM,
while the commercial FE solution required about 15 minutes to compute on a 12 node machine,
with 48GM RAM. The current method offers superior computational efficiency with a small
cost in solution accuracy. It does not require a nonlinear FE code, and can be easily coupled
with an aerodynamic model for aeroelastic analyses, as shown next.

The second test case computes clamped wing aeroelastic deformation under an aerodynamic
load corresponding to 5◦ angle of attack, at various air speeds. Two aerodynamic load models
are used: a linear strip theory model, in which the lift line slope at each strip equals 2π, and a
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nonlinear strip model, in which the lift line slope at each strip is computed from interpolated
CFD data. The wing’s properties, which apply to both the linear and nonlinear models, are
provided in table 2.

CFD viscous simulations were computed on the wing geometry shown in Figure 11. The flow
field was computed at angles of attack of 1, 5, 10, 12, and 15 degrees, for the rigid configuration,
from which spanwise force distributions were extracted. Figure 12 shows the spanwise normal
force coefficient, normalized by the angle of attack (CN/α), for various angles of attack. The
bump at 2/3 of the span is due to the kink in the wing geometry. The structural model for this
wing is that of a beam, along the elastic axis. The beam’s structural properties are similar to
those of the first test case (table 1). The beam is straight, without the dihedral at the outboard
section of the wing that is present in the aerodynamic model.

Wing span 36 m
Airfoil chord (c) 2.438 m
Aerodynamic center (a.c.) 0.25c
Elastic axis (e.a.) 0.4c

Table 2: Aerodynamic model properties

Figure 11: Wing geometry, and CFD section mesh
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Figure 12: Spanwise normal force distribution per angle of attack
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Figure 13 shows the deformed wing at 5◦ angle of attack, at six air speed values. Each plot
shows the wing deformation computed from a linear-aerodynamic linear-structural model (L-
aero L-strc), linear-aerodynamic nonlinear-structural model (L-aero NL-strc), and a nonlinear-
aerodynamic nonlinear-structural model (NL-aero NL-strc). At a low speed of 5m/s all models
result in similar wing deformation. At 10m/s, the deformation computed by the NL-aero NL-
strc are lower than that computed by the other two models. This is due to the load reduction
towards the wing tip predicted by the NL-aero model (while the L-aero model uses a lift-line
slope value that is fixed along the span). There is a small difference between the L-aero L-strc
and the L-aero NL-strc models as the former results in a little wing stretching. At all airspeeds
the deformation in the NL-aero NL-strc is lower than that of the L-aero NL-strc model. At
higher airspeeds the differences are significant. The plots at airspeeds of 25 m/s and 30 m/s
only serve to show that the NL-strc model can handle extremely large deformations. Figure 14
shows the twist angle along the span at the same flow conditions. In all cases the wing twist is
low, less than 1◦. Differences between the models are observed only at the high speeds.

In order to highlight the role of the NL-aero model the loads were applied to an additional wing
model, with 0.6 of the torsional stiffness of the baseline beam, and with the elastic axis at 0.5
chord. Loads were computed at 10◦ angle of attack and various airspeeds. Figure 15 shows
wing deformations and twist angles at 10 m/s and 15 m/s. For this case the twist angle is an
order of magnitude larger, but the trends are similar - introducing the nonlinear aerodynamic
load results in smaller twist angles, and, accordingly, lower wing deformations.

5 SUMMARY

The study presented the derivation and application of a nonlinear modal-based structural model
for static aeroelastic applications. The model, intended for geometrically nonlinear structures,
of large deformations, analyzes the deformations of a beam structure by dividing it into a few
segment. Large deformations are treated as the sum of large, rigid-body displacements of the
segment, plus small, linear, elastic deformation within the segment. The novelty of the approach
is that the elastic deformations at each segment are computed using a modal approach, with
fictitious masses to facilitate the coupling between segments. The use of the modal approach
in a large deformations case introduces difficulties in the application of compatibility equations
between segments that are explained and addressed in the paper.

The method is applied to a test case of a cantilevered beam, acted by a tip load, and a case
of a clamped wing under static aerodynamic loading. The cantilevered beam is analyzed in
15 segments, using 26 modes per segment (6 rigid body and 20 elastic modes). A parametric
study shows the sensitivity of the results to the number of segments, number of modes per
segment, and the size of the fictitious mass and inertia used in computing the segment’s modes.
Deformations of the cantilevered beam are shown to be in good agreement with those computed
by a commercial nonlinear finite-element software. The computational time is significantly
shorter than that of the finite-element solution.

The method is also applied to a test case of an elastic wing under static aerodynamic loading.
The sectional aerodynamic forces are provided by a modified strip model, derived from CFD
simulations. Rigid CFD analyses are used to compute aerodynamic force coefficients for vari-
ous angles of attack, thus creating a nonlinear database of coefficients. The aeroelastic analysis
uses table look-up to select the sectional force coefficient according to the section’s angle of
attack. Deformations computed at different airspeeds and angles of attack highlight the sig-
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Figure 13: Wing deformation at various airspeeds, , αr = 5◦, computed with the linear and nonlinear aerodynamic
and structural models
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Figure 14: Wing twist angle at various airspeeds, αr = 5◦, computed with the linear and nonlinear aerodynamic
and structural models
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(a) Wing deformation at 10m/s
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(b) Wing deformation at 15m/s
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(c) Wing twist at 10m/s
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Figure 15: Wing deformation and twist angles for a less stiff in twist model, αr = 10◦, computed with the linear
and nonlinear aerodynamic models with the nonlinear structural models
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nificance of the nonlinear structural model and nonlinear aerodynamic model in evaluating the
aeroelastic deformation of a very flexible wing.
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