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Abstract: The paper presents an experimental study, conducted at the Israeli Air Force, aimed
at the assessment of several advanced flutter flight test techniques that are designed to improve
the efficiency and accuracy of flutter tests. These include the auto-regresive moving-avarage
(ARMA) and operational modal analysis (OMA) system identification methods, the use of var-
ious system stability parameters, and the use of atmospheric turbulence versus prescribed flap-
eron motion as the source of structural response excitation. The methods were evaluated based
on data from a dedicated transonic flight test of the F-16 platform. All of the tested methods
were able to accurately predict the instability onset. The OMA method has the advantage that
it does not require a priori knowledge of the instability mechanism (participating modes and
approximate flutter frequency). However, it requires delicate identification of the participating
modes, thus making it less suitable for real time processing. The ARMA method, on the other
hand, is easier to implement, and straight forward to use in real time. Both methods require
relatively large data records, of about 60 seconds at each test point. Excitation by atmospheric
turbulence was found to be adequate in the current test case, in which the modes are lightly
damped, and highly suitable for system identification methods that rely on stochastic inputs.
While further assessment is required for cases of highly damped modes and of flight in low
turbulence levels, the use of ARMA and OMA methods based on responses to atmospheric
turbulence appears to offer an accurate and cost effective flutter testing methodology.

1 INTRODUCTION

Aeroelastic flutter is a destructive instability phenomenon for which dedicated flight test cam-
paigns are considered compulsory by the airworthiness regulations. In these tests, the dynamic
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characteristics of the aeroelastic system are interpreted from measurements of aircraft struc-
tural responses to external excitations. Over the years, several Advanced Flutter Flight Test
Techniques (AFFTTs) were developed in order to improve the efficiency and accuracy of flutter
flight tests, by using various excitation techniques, system identification and estimation meth-
ods, system stability parameters and flutter boundary prediction methods [1–9].

From the point of view of excitation techniques, most methods may be adjusted to a single fre-
quency harmonic external excitation of each suspected aeroelastic mode, broadband frequency
sweep, or random excitation of the full spectra of interest. These types of excitation may be
applied to the structure using the aircraft’s control surfaces or by means of dedicated actuation
equipment. While for the single frequency excitation case the system dynamic characteris-
tics may be extracted manually using the log-dec formula [10], broadband excitations require
specific signal processing and curve-fitting procedures [2] or the use of system identification
techniques [3–5, 7] to identify the stability parameters. Some of the latter methods may also be
used in case of natural structural excitation by air turbulence, assuming the probabilistic nature
of the excitation.

The most basic method for flutter flight tests is the Modal Damping Extrapolation (MDE)
method [10]. According to this method, modal dampings are used directly as the system stabil-
ity parameters. The major drawback of this approach is that the variation of modal dampings
with flow conditions is generally a priori unknown. In practice, considerable decrease in flutter-
suspected modal dampings may sometimes be observable only near the flutter onset. This re-
duces the efficiency of the MDE method, making it practically unsuitable for reliable flutter
boundary prediction based on subcritical test points data. As an alternative, the Flutter Margin
(FM) method [1] employs the Routh-Hurwitz stability criterion [11] to identify a more robust
stability parameter. According to this method, the aeroelastic system characteristic equation
values are evaluated at each test point based on the modal parameters of the coupled modes.
These values are identified as the FM stability parameter. As the system approaches instability,
the FM stability parameter approaches zero as a quadratic function of the dynamic pressure,
thus the flutter envelope may be predicted. If the modal parameters extraction is performed
in the z complex frequency domain, the Jury stability criterion [12] may be used instead of
the Routh-Hurwitz criterion. Using this criterion, a favorable feature of linear variation of the
stability parameter with the dynamic pressure may be achieved [13].

The Autoregressive Moving-Average (ARMA) method, originally suggested by Matsuzaki and
Ando [3], offers a favorable stability parameter that is extracted using advanced system identifi-
cation methods from structural responses to atmospheric turbulent excitations, without resorting
to external excitation. This discrete-time method assumes the probabilistic distribution and fre-
quency content of the excitation to be normally-distributed random white-noise, thus arguably
suitable to describe natural air turbulence excitation. Once the aeroelastic system is identified
using system identification techniques, the stability parameter is identified according to the Jury
criterion. The ARMA method was originally developed for stationary measurements of a two-
mode aeroelastic system. Later publications suggested extended versions of the method for
nonstationary measurements [14] and multiple-mode systems [15], featuring advanced versions
of the flutter stability parameter [13].

Another novel family of system identification methods for flutter testing are the Operational
Modal Analysis (OMA) tools [5, 16–19]. Originally developed from ground vibration test
estimation techniques, OMA methods also assume random white-noise external excitation of

2



IFASD-2017-097

the structure, and estimate the non-parametric cross-spectra functions between structural re-
sponses at different measurement locations. These spectra functions are then used to identify a
parametric Multiple-Input-Multiple-Output (MIMO) model using frequency domain estimation
techniques such as Maximum Likelihood (ML) [20], least square (LS) [19], or combined ML–
LS [21] approaches. These methods may be used as the basis for the FM stability parameter
identification [22].

Evaluation of the AFFTTs mentioned above was carried out by Dimitriadis and Cooper [23,24],
as well as by Lind [25] and by Zeng and Kukreja [22]. In the first study, the authors used two test
cases, namely a three-degrees-of-freedom, rectangular wing with control surfaces model, and a
civil transport aircraft model. The structural responses of these models to external excitations
were simulated numerically. These responses were then contaminated with white noise and an-
alyzed according to the different methods. In [25] and [22], a test wing model was assembled to
the F-15 fighter aircraft centerline station and flight-tested in the F-15 subsonic flight envelope.
The test wing was integrated with measurement sensors and excitation actuators, and tested
at 21 points across the envelope before experiencing a destructive flutter incident. The results
of these studies emphasize different characteristics and disadvantages of the tested methods.
However, applicability to realistic flutter flight testing of complex structures at various flight
flow regimes, still requires further evaluation.

The current paper presents assessment and validation of several AFFTT elements, namely the
autoregressive moving-average and the operational modal analysis system identification meth-
ods, the free air turbulence and forced random excitation techniques, and finally the Jury crite-
rion based and Flutter Margin stability parameters. The methods are evaluated based on dedi-
cated transonic flutter flight tests of the F-16 platform conducted at the Israel Air Force (IAF)
Flight Test Center (FTC).

2 THEORETICAL MODEL

Considering a viscously damped, linear, dynamic system of N degrees of freedom (DOF), the
system oscillatory motion in the continuous time-domain is given by:

Y (t) =
N∑
n=1

[Âne
snt + B̂ne

snt] (1)

sn = (−ζn + i
√

1− ζ2
n)ωn (2)

where s is the complex laplace parameter, s is the complex conjugate of s, Ân, B̂n are constants
and ζn, ωn are the system n-th modal damping ratio and frequency parameters, respectively. For
ζ2
n � 1, the system modal parameters can be extracted directly from sn by:

sn ∼= (−ζn + i)ωn (3)

ωn = Im(sn); ζn = −Re(sn)

Im(sn)
(4)

Assuming that the system response Y (t) is sampled at a constant interval ∆t, yi = Y (i∆t) is
the response time series value at sample i with i = 1..K. The z complex frequency domain
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is commonly known as the discrete equivalent of the laplace domain. The z-transform [12] is
defined by:

Ỹ (z) =
∞∑
n=0

ynz
−n z = es∆t (5)

Substituting equation 3 into 5, we obtain the z-plane roots as functions of the modal parameters:

zn = esn∆t = e−ωnζn∆t[cos(ωn∆t) + i sin(ωn∆t)] (6)

|zn| = e−ωnζn∆t ∠zn = ωn∆t

Consequently, the modal parameters may be expressed as a function of the z-plane roots by:

ωn =
| ln zn|

∆t
ζn = − ln |zn|

| ln zn|
(7)

2.1 ARMA Model

Assuming any random external excitation to the structure, the ARMA(p,q) model of the aeroe-
lastic system is given by:

yi + φ1yi−1 + φ2yi−2 + . . .+ φpyi−p = εi + θ1εi−1 + θ2εi−2 + . . .+ θqεi−q (8)

where p,q and φi, θi are the Autoregressive (AR) and Moving-average (MA) model orders and
constants, respectively. εi is a time series that represents the normally distributed, white-noise,
random sequence with zero mean and an unknown variance of σ2. In summation notation,
equation 8 may be rewritten as:

p∑
n=0

φnyi−n =

q∑
m=0

θmεi−m (9)

θ0 = φ0 = 1

The AR model order p is directly associated with the system order in the laplace domain, thus
for a system with N DOF, the AR order is taken as p = 2N . The MA order q is typically
taken as q = p− 1, however a more general approach to optimize q for best model fitting is by
minimization of the Akaike’s Information Criterion (AIC) parameter, as described in [3, 26].

Applying the z-transform to equation 9, we obtain:

p∑
n=0

φnz
−n

∞∑
n=0

ynz
−n =

q∑
m=0

θmz
−m

∞∑
m=0

εmz
−m (10)

using equations 10 and 5, the system transfer function may be identified in the z-plane as:

H̃(z) =
Ỹ (z)

Υ̃(z)
=

∑q
m=0 θmz

−m∑p
n=0 φnz

−n (11)

from which the system characteristic equation may be identified as:

G(z) = zp
p∑

n=0

φnz
−n = zp + φ1z

p−1 + φ2z
p−2 + . . .+ φp (12)
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G(z) = Apz
p + Ap−1z

p−1 + Ap−2z
p−2 + . . .+ A0 (13)

Aj = φp−j

According to Jury’s stability criterion [12], the system is stable if and only if all roots of equa-
tion 13 are inside the unit circle, or, alternatively, if the following conditions are satisfied:

G(1) = Ap + Ap−1 + . . .+ A1 + A0 > 0 (14)
G(−1) = Ap − Ap−1 + . . .− A1 + A0 > 0 (15)

F+(k) = det(X̂k + Ŷk) > 0 (k = 1, 3, ..., p− 1) (16)

F−(k) = det(X̂k − Ŷk) > 0 (k = 1, 3, ..., p− 1) (17)

X̂k =

Ap . . . Ap−k+1

0
. . . ...

0 0 Ap

 Ŷk =

Ak−1 . . . A0
... . . . 0
A0 0 0

 (18)

Among these criteria, the F−(p−1) parameter is found to be the most critical, since it becomes
negative as any of the system’s roots crosses the unit circle, as shown in [27]:

F−(p− 1) = Ap−1
p

∏
i<j

(1− zizj) (19)

Torii and Matsuzaki [13] have suggested the following stability parameter formulation for a
2-DOF aeroelastic systems (binary flutter mechanism):

FZ =
F−(p− 1)

F−(1)2
(20)

This parameter was shown to vary as a linear function of the dynamic pressure.

2.1.1 ARX/ARMAX Models

Similarly to the ARMA model development, a more general model that depends on an exoge-
nous, known, signal source, additionally to the unknown random source, may be identified as
the following ARMAX(p, q,m) model:

yi + φ1yi−1 + . . .+ φpyi−p = εi + θ1εi−1 + . . .+ θqεi−q + η1ui + η2ui−1 + . . .+ ηm+1ui−m
(21)

where ui is the exogenous signal and ηi are its corresponding coefficients. Removing the MA
part from ARMAX results in the following ARX(p,m) model:

yi + φ1yi−1 + . . .+ φpyi−p = εi + η1ui + η2ui−1 + . . .+ ηm+1ui−m (22)

for both ARMAX and ARX models, eq. 13 to 20 still hold, as the characteristic equation de-
pends solely on the AR coefficients.

2.1.2 Parameter Estimation

In the current study, the ARMA/ARX/ARMAX model coefficients φi, θi, ηi and the noise vari-
ance σ2 are computed using the MATLAB System Identification Toolbox armax.m function.
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2.1.3 Roots Classification

From equation 6, it is observed that since ∆t� 1, the characteristic roots are typically located
close the unit circle on the first and fourth quarters of the complex plane. Figure 1(a) presents an
illustration of the typical dispersion of an ARMA model characteristic roots for a binary flutter
mechanism case (p=4).

Considering a single flutter test point at constant flow conditions, estimating multiple structural
response samples of the investigated system should, theoretically, result in identical root loca-
tions in the z-plane. Multiple samples may be obtained by using different accelerometers and/or
signal segmentation. In reality, some samples result in poor estimations than others, as demon-
strated in figure 1(b) for a case of multiple sample estimations at constant flow conditions at
which the aeroelastic system is stable. A group of ”proper” root estimations is identified inside
the unit circle, while a few poor estimations are located outside the unit circle or away from
the group centroid. Poor estimations may result from any temporary deviation from the estima-
tion model assumptions, such as non-random excitation, colored (not white noise) excitation,
insufficient structural response or local flow phenomena. To address these cases, the following
classification procedure is suggested in order to identify the ”proper” set of estimations from a
given set of root estimations in the z-plane and a tolerance parameter tol:

1. Root estimations outside the unit circle are identified and eliminated
2. A centroid zµ is evaluated by the remaining root locations
3. The variance zσ is identified for each root location by its distance from zµ
4. If max(zσ) > tol, the most distant root estimation is eliminated
5. The process is repeated until max(zσ) ≤ tol

According to this procedure, the proper set of roots is circumscribed by a circle of tol radius, as
illustrated in Figure 1(b). This post-processing procedure was previously suggested and studied
by the authors in [28]. A parametric investigation which was conducted in this study has shown
little dependency of the procedure performances on the classification tolerance values. This
procedure is used in the current study for all ARX/ARMA/ARMAX estimations to generalize
the ARMA estimations from multiple accelerometers measurements into a global system model.
The procedure also enables statistical evaluation of the estimation variance bounds, as presented
in the current study.

2.2 Operational Modal Analysis Model

For a Nm-DOF system with multiple Ni inputs and No outputs, the system frequency response
function (FRF) is given by:

H(ω) = SY F (ω)S−1
FF (ω) ∈ CNo×Ni (23)

where SY F ∈ CNo×Ni and SFF ∈ CNi×Ni are the cross and auto spectra of the input and output
signals F and Y , respectively. The FRF may be decomposed into the following Laplace-domain
pole-residue modal model [29]:

H(ω) =
Nm∑
r=1

ΦrL
T
r

iω − sr
+

Φ∗rL
H
r

iω − s∗r
(24)

where sr, Φr andLr are the modal Laplace parameter, mode shape and participation factor of the
r-th mode, respectively, ∗ denotes complex conjugate, (·)H is the transpose complex conjugate
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𝑅𝑅𝑅𝑅(𝑧𝑧)

Im(𝑧𝑧)

(a) Single sample estimation (all roots)

𝑅𝑅𝑅𝑅(𝑧𝑧)

Im(𝑧𝑧)

(b) Multiple sample estimation (single root)

Figure 1: Typical dispersion of characteristic equation roots in the complex z plane

(Hermitian) operator and (·)T is the transpose operator. As shown in [30], if the excitation
forces may be considered stationary stochastic processes, the following relation between the
input and output power spectra functions SY Y (ω) and SFF (ω) holds:

SY Y (ω) = H(ω)SFF (ω)H(ω)H (25)

Further assuming that the excitation signals are normally distributed white noise signals, SFF (ω)
may be considered a constant matrix with respect to the frequency, thus substituting 24 into 25
we obtain:

SY Y (ω) =
Nm∑
r=1

ΦrQ
T
r

iω − sr
+

Φ∗rQ
H
r

iω − s∗r
+

ΦrQ
T
r

−iω − sr
+

Φ∗rQ
H
r

−iω − s∗r
(26)

whereQr is the modal reference vector for the r-th mode. The similarity between the FRF (24)
and SY Y (26) modal models suggests that parametric models that are used for the estimation of
the FRF matrix may also be used for the estimation of SY Y , with the only difference of model
order required to obtain the Nm system modal parameters. The output power spectra function
may be calculated directly from the structural response signals Fourier transform Ŷ (ω) ∈ C1×No

using the Welch periodogram method [31]:

SY Y (ω) =
1

Nb

Nb∑
j=1

Ŷ ref
j Ŷ H

j ∈ CNo×Nref (27)

where Ŷ ref is the Fourier transform of a set of Nref output signals that are used as reference
signals. The signals spectra are averaged over Nb segments. The power spectra covariances
may be similarly evaluated by:

cov(SY Y ) =
1

Nb − 1

Nb∑
j=1

|Ŷ ref
j Ŷ H

j − SY Y |2 ∈ CNref×No (28)
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The following sections describe MIMO parametric estimation models used for modal parame-
ters extraction based on the output power spectra functions within the OMA method. Once the
estimation models are outlined, the FM stability parameter is identified.

2.2.1 Poly-reference least square complex frequency model (pLSCF)

According to this model, the SY Y matrix is modeled by:

Ŝo(ω) = No(ω)D(ω)−1, o = 1..No (29)

No(ω) =
n∑
j=0

e−iω∆tjBoj (30)

D(ω) =
n∑
j=0

e−iω∆tjAj (31)

where Boj ∈ R1×Nref and Aj ∈ RNref×Nref are the real-valued coefficients to be estimated.
Each element in the Ŝo(ω) ∈ CNo×Nref matrix represents a different combination of refer-
ence/output spectra. This poly-reference implementation models the relation between each out-
put to all reference signals as a matrix fraction, while global modal parameters may be obtained
for all spectra using eigenvalue decomposition of the so-called companion matrix, which is
based on A, as presented in [17]. For this model, the following linearized quadratic cost func-
tion is identified:

lpLSCF =
No∑
o=1

Nf∑
f=1

trace(EH
o (ωf )Eo(ωf )) = Eo(ωf )E

H
o (ωf ) (32)

Eo(ω) = Wo(ω)(No(ω)− Ŝo(ω)D(ω)) (33)

The estimation process may be obtained using a linearized, weighted, LS technique for which
the following cost function formulation and Jacobian matrix are identified:

lk =


εk(ω1)

...
εk(ωNf

)

 = [J ]{θ} =
[
Γk Φk

]{vec(Bk)
vec(A)

}
(34)

Γo =

 Wo(ω1)[e−iω1∆t0 . . . e−iω1∆t0]⊗ INi

...
Wo(ωNf

)[e−iωNf
∆tn . . . e−iωNf

∆tn]⊗ INi

 (35)

Φo =

 −Wo(ω1)[e−iω1∆t0 . . . e−iω1∆t0]⊗ Ŝo(ω1)
...

−Wo(ωNf
)[e−iωNf

∆tn . . . e−iωNf
∆tn]⊗ Ŝo(ωNf

)

 (36)

The pLSCF estimator supports the capability to obtain stabilization diagrams directly from a
single model estimation iteration, as demonstrated in the results section. In these charts, the
model order may be varied as part of a single model estimation iteration, enabling for physical
pole estimates to be distinguished from numerical artifacts.
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2.2.2 Maximum likelihood estimator (pMLE)

The presented pLSCF model is considered purely deterministic as long as the weighting func-
tion W (ω) is not related to any probabilistic characteristic of the measurements. To improve
the estimation performances with regard to noise effects, the following ML stochastic model
was suggested [17]. Following the pLSCF formulation (eq. 29), the non-linear cost function is
identified as:

lpMLE =
No∑
o=1

Nf∑
f=1

EpML
o

∗
(ωf )C

−1
o (ωf )E

pML
o

T
(ωf ) (37)

EpML
o (ωf ) = Ŝo(ωf )−No(ωf )D

−1(ωf ) (38)

where (·)∗ is the complex conjugate and Co ∈ RNi×Ni is the covariance matrix of the out-
put related power spectra, obtained as a diagonal matrix based on the relevant elements from
cov(SY Y )(eq. 28). Gauss–Newton optimization iterations may be applied to this model as well,
as suggested by Cauberghe [17]. The computational effort required in a single pMLE iteration
equals to approximately N3

ref times the effort required for a full pLSCF estimation process.

2.2.3 Iterative quadratic maximum likelihood parametric estimator (pIQML)

While the pMLE estimator offers enhanced capabilities for low signal-to-noise ratio measure-
ments compared with pLSCF, the need in multiple iterations to obtain a single model estimation
may lead to impractical computational time or memory demands, especially if near real-time
estimation is required or large number of sensors are being used. Furthermore, pMLE does not
support the capability to obtain stabilization diagrams directly from a single model estimation
iteration, which is an important practical disadvantage. IQML estimators suggest a compromise
between pLSCF efficiency and pMLE precision characteristics by using a stochastic paramet-
ric weighting function W = f(cov(Ŝ), A,B, ω) within the pLSCF formulation, which enables
near-pMLE precision characteristics while maintaining the overall advantages of the pLSCF
estimator.

For the poly-reference implementation (pIQML), an adequate weighting function takes the fol-
lowing form:

W 2
o (A, ω) =

1

trace(DH(A, ω)Co(ω)D(A, ω))
(39)

which corresponds to the following cost function:

lpIQML =
No∑
o=1

Nf∑
f=1

Eo(ωf )E
H
o (ωf )

trace(DH(A, ωf )Co(ωf )D(A, ωf ))
(40)

In [17, 19] it is shown that by using this formulation of the weighting function, the cost func-
tion converges into the pMLE cost function identified in equation 37. A converged weighting
function may typically be obtained within a few iterations of the LS solution.

2.2.4 Parameter Estimation

A combination of these OMA estimation models was suggested by El-Kafafy et al. [32] as the
PolyMax-Plus estimator, which is available within the LMS International experimental struc-
tural dynamics commercial tool. In the current study, the pIQML estimator was implemented
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into an in-house MATLAB code and used for modal parameters estimation. Since this imple-
mentation enables a SIMO estimation of the modal parameters, no post-processing procedures
are required to obtain a global model from the multiple accelerometers data.

2.2.5 Flutter margin stability parameter (FM)

For a 2-DOF dynamic system, the characteristic equation in the laplace domain is a quartic
equation of the form:

λ4 + A3λ
3 + A2λ

2 + A1λ+ A0 = 0 (41)

The system remains stable according to the Routh-Hurwitz criterion if

[(A2/2)2 − A0]− [A2/2− A1/A3] > 0 (42)

Equation 41 roots are the two laplace variables identified in equation 3 and their complex con-
jugates:

λ1,3 = ζ1ω1 ± iω1 (43)
λ2,4 = ζ2ω2 ± iω2 (44)

By identifying eq. 41 coefficients from the system roots we obtain:

A3 = −2(ζ1ω1 + ζ2ω2) (45)
A2 = ζ2

1ω
2
1 + ζ2

2ω
2
2 + ω2

1 + ω2
2 + 4ζ1ω1ζ2ω2 (46)

A1 = −2
[
ζ1ω1(ζ2

2ω
2
2 + ω2

2) + ζ2ω2(ζ2
1ω

2
1 + ω2

1)
]

(47)
A0 = ζ2

2ω
2
2 + ω2

2 + ζ2
1ω

2
1 + ω2

1 (48)

Substituting 45 into 42 results in a parameter identified by Zimmerman and Weissenburger [1]
as the flutter margin stability parameter:

FM =
1

4

[
ω2

2 − ω2
1 + ζ2

2ω
2
2 − ζ2

1ω
2
1

]2
+ 2ζ1ω1ζ2ω2

[
ω2

1 + ω2
2 + (ζ1ω1 + ζ2ω2)2

]
(49)

−1

4

[
ζ2ω2 − ζ1ω1

ζ1ω1 + ζ2ω2

(ω2
2 − ω2

1) + (ζ1ω1 + ζ2ω2)2

]2

(50)

Once the modal parameters are estimated using the pIQML estimator, the FM stability parame-
ter may be evaluated and extrapolated as a quadratic function of the dynamic pressure to predict
the instbaility onset conditions. Price and Lee [9] have developed an extended version of the
FM parameter for trinary flutter mechanisms.

3 PREVIOUS INVESTIGATION

In a previous study by the authors [28], the ARMA method was used to process structural re-
sponses to natural air turbulence excitation measurements obtained in Israel Air Force (IAF)
flutter flight test campaigns of a subsonic UAV platform, as well as the F-15 and F-16 platforms
at transonic flow conditions. These tests were conducted using traditional flutter methods and
not specifically designed for the purpose of AFFTTs assessment, therefore test procedures were
not optimized in terms of recording time, amount of test points at constant aeroelastic char-
acteristic conditions, and the lack of a reliable instability boundary reference identifications.
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Nevertheless, the ARMA model predictions obtained in this study were able to support the
feasibility of applying this method for various real-life flutter test cases. The presented roots
classification method was applied to obtain proper assessment of the stability parameter based
on multiple data samples from several sensors and/or measurements at nearby dynamic pressure
conditions. This procedure, as well as signal processing techniques such as re-sampling and fil-
tering, were investigated and optimized in this study. In the current study, similar procedures
are applied during the ARMA/ARMAX/ARX model evaluations. Figure 2 presents estimated
FZ stability parameter and modal frequency variations with normalized dynamic pressure at
M = 0.7 and M = 0.75 for the F-16 platform test case presented in [28]. Variance bounds
are evaluated based on the roots classification procedure standard deviations. These results in-
dicate that linear trends of the estimated stability parameter with dynamic pressure may in-fact
be achieved. This test case configuration and flutter mechanism characteristics are generally
similar to the current study test case, therefor these results are used as a baseline for the current
study.
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(b) Stability Parameter, M=0.7

0.5 0.6 0.7 0.8 0.9 1

Normalized Dynamic Pressure

3

4

5

6

7

F
re

qu
en

cy
 [H

z]

Mode 1 (stable)
Mode 2 (unstable)
Flutter Boundary (LCO Onset)

(c) Frequency, M=0.75
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(d) Stability Parameter, M=0.75

Figure 2: ARMA model evaluation for the F-16 platform, reproduced from [28]
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4 FLUTTER FLIGHT TEST CASE

Figure 3 shows the F-16 flutter flight test configuration used in the current study. It consists of
three fuel tanks at inboard stations, two 2000 lb stores and two outboard air-to-air missiles. The
configuration is fully symmetric. During the flutter test procedures, both underwing fuel tanks
were maintained full. This configuration was chosen due to previous flight test indication of low
modal dampings and moderate Limit Cycle Oscillation (LCO) responses observed at transonic
flow conditions. As the F-16 LCO phenomenon is generally considered a nonlinear evolution
of flutter instability [33, 34] and typically occurs at flow conditions close to flutter onset, the
appearance of LCO is a favorable characteristic of this configuration for the purposes of the
current study. It enables possible penetration of the flutter/LCO onset boundary during the test
into the dynamically unstable region, as long as LCO response levels remain within acceptable
limits. In the current study, this capability is exploited to obtain a reliable experimental eval-
uation of the instability boundary, which is then used as reference for the AFFTTs evaluation.
According to the available data on the test configuration, from both flight tests and linear anal-

Figure 3: F-16 flutter flight test configuration

ysis, its critical flutter mode may be characterized as an anti-symmetric mechanism in which
an outboard wing fore-torsion mode of 5.8Hz frequency couples with a wing bending mode of
5.0Hz frequency. The flutter frequency is 5.4Hz, as the torsion mode becomes unstable.

Figure 4 presents linear flutter analysis results obtained for the test configuration by means of
traditional ω − V − g charts, in which negative modal dampings correspond to stable dynamic
characteristics. This analysis was performed using an in-house matched-point flutter G solver at
M = 0.8 using linear panel aerodynamic model. Since a structural modal damping model was
unavailable for this configuration, the analysis assumes constant g = 2% damping ratios for all
mode shapes. Consequently, the dynamic pressure in fig. 4 is normalized by the analytic flutter
onset dynamic pressure, thus enabling a more straight-forward comparison with the flight test
data. In this analysis, modes 2 and 4 correspond to the stable and unstable flutter mechanism
modes, respectively.

5 FLIGHT TEST PROCEDURE

Flight test data was collected in a single sortie during which all test points were conducted at
constant Mach number conditions of M = 0.8 and varying altitudes. For each test point, after
stabilizing at 1-g level flight at the required altitude, structural acceleration data was recorded
during excitation by the following techniques:

1. Natural air turbulence excitation (termed ”turbulent excitation”)
2. White-noise random excitation applied by the pilot using the aircraft’s flaperon surfaces

forced excitation system (termed ”forced excitation”)
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Figure 4: ω − V − g charts from linear flutter analysis of the test configuration, M = 0.8

Both excitation techniques were applied for 30− 60 second periods, while structural responses
were monitored using four accelerometers located at the wingtip launchers. The acceleration
data was recorded at 500Hz sampling frequency. As the flight altitude was decreased (dy-
namic pressure increased), the instability boundary was approached, until at some conditions,
the structural responses after the forced excitation was stoped did not decay, and LCO responses
were identified. These conditions were then further investigated to better identify the LCO onset
conditions.

Figures 5 to 9 present a comparison between the different test points (TPs) in terms of flow
conditions variation (fig. 5), wingtip accelerations and flaperon deflections (fig. 6), structural
responses spectrograms (fig. 7) and periodograms (fig. 8), as well as the coherence function
between the wingtip accelerations and flaperon positions (fig. 9). In all cases, the solid and
dashed lines correspond to turbulent and forced excitation test points, respectively. Figure 5
shows the four TPs of various data recording length obtained using each excitation technique,
with most data falling in the tolerances of M = 0.8 ± 0.01 and q/qref = [0.8, 0.9, 0.95, 1] ±
0.03. To eliminate the effects of non-negligible variations in dynamic pressure on the stability
parameter characteristics, the signals were divided into several segments. Although improving
the flow conditions tolerances, this segmentation also unfavorably affects the model estimation
procedures, as short data samples estimations tend to be more noise sensitive and therefor result
in inferior results compared to long samples estimations. This trade-off in signal segmentation
was optimized for each AFFTT method and excitation method, resulting in segments length
raging between 15 to 25 seconds for all signals using the ARMAX estimation models, and full
sample length for the OMA model, as further discussed below.
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Figure 5: Flight conditions variation during the flight test; solid line - turbulent excitation, dashed line - forced
excitation

Figure 6 presents wingtip accelerations and flaperons deflection angles variations for both exci-
tation methods. The presented data was filtered in the [1 − 10]Hz band. Results indicate that
flaperon deflections are approximately 2 − 5 times higher for forced excitation compared with
turbulent excitation, while wingtip accelerations are only approximately 1−3 times higher. This
suggests that turbulent excitation may be used as an effective means of perturbing the structure,
comparable to the forced excitation. This also implies that air turbulence excitation can not be
neglected in analyzing the response to forced excitation. Spectrograms and periodograms of
the unfiltered acceleration signals, which are presented in figs. 7 and 8, further support these
identifications, as the forced excitation frequency content strengthening is mainly visible at the
low frequency band of [2− 20]Hz, while for higher frequencies the power spectra levels seem
comparable for both excitation methods. The coherence function between the left wing flap-
eron deflection angle and the corresponding wingtip accelerometer is presented in fig. 9 for the
second test point. In this comparison, low coherence levels are obtained for the turbulent exci-
tation method across the presented spectrum. This is expected, since in this case the structural
response is mainly due to air turbulence rather than flaperon deflections. In the forced excitation
case, low coherence is also obtained at frequencies higher than 15Hz. This may be attributed
to the dynamic characteristics of the flaperon servos, as the high frequency excitation signals
are truncated by the servo mechanical limitations. At the lower frequency band, relatively high
coherence levels are obtained, except for at specific frequencies, which generally correspond
to the aeroelastic frequencies. This further indicates that the structural response to flaperon
excitation is considerably affected by air turbulence.
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Figure 6: Flaperon deflections and wingtip accelerations variation during the flight test; solid line - turbulent exci-
tation, dashed line - forced excitation
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Figure 7: Wingtip acceleration response spectrogram during TP 1 excitations
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Figure 8: Wingtip acceleration responses periodograms; solid line - turbulent excitation, dashed line - forced exci-
tation
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Figure 9: Left wingtip acceleration to flaperon deflection angle coherence functions, TP 2; solid line - turbulent
excitation, dashed line - forced excitation

6 INSTABILITY ENVELOPE PREDICTION

6.1 ARMA/ARMAX/ARX Estimation

Figures 10 to 13 present stability parameters estimations using the ARMA, ARMAX and ARX
models for the turbulent and forced excitations data. All evaluations presented in this section
are based on the acceleration signals after they were filtered using a 4th order butterworth filter
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in the band of [4.5 − 6.5]Hz. In all estimations, the AR model order is set to p = 4, which
corresponds to a 2-DOF dynamic system, while the MA and/or X orders are set to q = p − 1
or determined by the AIC minimization method. This determination of the AR model order
assumes that the flutter mechanism characteristics may be well identified using a binary modal
model. In all estimations, multiple accelerometers and signal segments from nearby dynamic
pressure conditions are averaged using the roots classification procedure using tol = 2× 10−3.
The presented confidence bounds of the stability parameters represent the standard deviation of
each data point based on the population of all available proper estimations within an equivalent
air speed range of 1Kts.

Figure 10 presents the estimated frequency and stability parameter variations with dynamic
pressure for the turbulent excitation data cases using an ARMA(p = 4, q = 3) model. The
estimated modal frequencies are in good agreement with the linear analysis predictions (see
fig. 4a). In this case, the Fz stability parameter presented in fig. 10b follows the expected linear
decrease with dynamic pressure. Furthermore, extrapolation of this linear trend to a zero value
dynamic pressure, which represent the instability onset condition, agrees well with the LCO
onset condition that was identified in the flight test (indicated by the red line).
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(b) Stability Parameter

Figure 10: Estimated modal frequencies and stability parameter, turbulent excitation data cases; ARMA(p =
4, q = 3) model

Similar results are presented in fig. 11 for a case in which the AIC minimization technique was
used to determine the MA orders according to qopt = arg [minAIC]. Using this technique, op-
timal MA orders in the range of [3−30] were identified for the different segments. Nevertheless,
results indicate that the MA order effect on the estimated frequency and stability characteristics
is minor.
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(b) Stability Parameter

Figure 11: Estimated modal frequencies and stability parameter, turbulent excitation data cases; ARMA(p =
4, q = qopt) model

As demonstrated in figs. 7 to 9, structural responses to forced excitation are considerably af-
fected by the presence of turbulent excitation. This raises a dilemma regarding of proper AR-
MAX modeling for the forced excitation data. Using the ARX and ARMA models seems
generally unjustified, as they assume either single deterministic (X) or stochastic (MA) excita-
tion sources. From this point of view, the full ARMAX model seems more appropriate for the
current test case characteristics. Figures 12 and 13 present stability parameter estimations for
the forced excitation data points using the ARMA, ARX and ARMAX models with constant
AR model orders of p = 4 and constant MA/X orders of q = m = 3 (fig. 12) or optimal MA/X
orders according to [qopt,mopt] = arg [minAIC] (fig. 13). It is seen that the ARX and ARMA
stability parameter estimations are more scattered in this case compared to the turbulent exci-
tation case. The ARMA model does not provide a linear trend and therefor can not be used
for instability onset prediction (see fig. 12a and fig. 13a), while the ARX model is consider-
ably more sensitive to the model order m, as indicated by comparison of fig. 12b and fig. 13b.
The ARMAX model provides the best estimation capabilities with fairly good prediction of the
instability onset conditions and relatively low sensitivity to MA/X order selection, as seen in
fig. 12c and fig. 13c.
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(a) ARMA
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(b) ARX
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Figure 12: Estimated modal frequencies and stability parameters, forced excitation data cases; ARMA(p = 4, q =
3), ARX(p = 4,m = 3) and ARMAX(p = 4,m = 3, q = 3) models
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(a) ARMA
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(b) ARX
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Figure 13: Estimated modal frequencies and stability parameters, forced excitation data cases; ARMA(p = 4, q =
qopt), ARX(p = 4,m = mopt) and ARMAX(p = 4,m = mopt, q = qopt) models

6.2 OMA Estimation

OMA estimations were conducted in two main steps: non-parametric estimation of the power
spectra and power spectra covariance matrices according to the periodogram method, and poly-
reference parametric estimation according to the pIQML method, as described in the Theoretical
Background section. The first part of the procedure assumes constant power spectra matrix of
the excitation sources SXX , which is consistent with the pure stochastic white noise excitation
assumptions, similar to the ARMA model. Attempts to apply this method to the forced excita-
tion data resulted in poor estimations, similarly to the findings presented in the previous section
for the ARMA model. Consequently, only results of the turbulent excitation data points are
presented in this section. It is noted that combined stochastic-deterministic excitation sources
versions of the OMA method (OMAX) were developed by Cauberghe [17], but these were not
implemented in the current study. Using the OMA method, the original data samples were used,
without any prior filtering.

Figure 14 presents the power spectra and corresponding covariance function estimations for the
third test point data. These results were obtained using segmentation of Nb = 4 and allowing
for 90% overlap between the segments. Following the signal segmentation trade-off discussed
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above, the periodogram method is highly affected by the signal time length, as it directly affects
both the frequency resolution and estimation noise resistance by allowing for more segments of
the signal to be used and therefore improving spectral averaging. In the current case, while the
unstable mode (mode 2) is clearly estimated above noise level, mode 1 is hard to identify among
the surrounding noise, which poses a serious challenge for the OMA method. To improve
the estimation quality, the original data signals were not pre-segmented to decrease dynamic-
pressure variations, as performed in the ARMA processing.
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Figure 14: Non-parametric estimation of accelerations power spectra; TP3, turbulent excitation data

Figure 15 presents stability charts obtained using the pIQML estimator for the four test points.
These charts identify the estimation stabilization conditions for each of the system roots as a
function of model order (red stars). The unstable roots (roots with negative damping values) are
omitted from these charts for the sake of simplicity. The mean SY Y estimation is also presented
in each chart for reference purposes (blue line). For all test points the two aeroelastic flutter-
related modes are identified as stable modes. However, in most cases delicate classification
between relevant and non-relevant/ficticious modes is required. In the current study this was
obtained effectively by identifying the relevant modes according to the mode shapes, which are
estimated in a third step based on the pIQML model results.
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Figure 15: Stabilization diagrams, IQML estimator; turbulent excitation data. ∗ symbol - stabilized mode, +
symbol - stabilized frequency, unsterilized damping

Figure 16 presents the estimated modal parameters, as well as the FM stability parameter, nor-
malized by its maximum value. In this presentation, positive damping coefficients represent
stable modal characteristics (as opposed to the ω − V − g charts convention). The frequency
and damping variations are in general agreement with the linear analysis presented in fig. 4,
and ARMA estimations presented in fig. 10, except for two discrepancies. The OMA estimated
mode 1 frequency is about 0.3Hz lower compared with the ARMA estimation, which may be
related to the effect of filtering bounds on the ARMA estimation. The decrease in mode 1 modal
damping is in contradiction with the linear analysis trend, as well as typical flutter mechanism
behavior. It may be argued that as the the frequencies of the two modes are coalescing, the
modal damping estimations of the stable mode are distorted by the unstable mode, resulting in
this non-physical decrease in mode 1 damping. Nevertheless, the FM stability parameter vari-
ations with dynamic pressure presented in fig. 16c are in good agreement with the theoretical
characteristics of a quadratic variation with dynamic pressure, and enable, good prediction of
the instability onset conditions.
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Figure 16: OMA estimated modal parameters and flutter margin parameter for the test flutter mechanism, turbulent
excitation test points

7 SUMMARY AND DISCUSSION

The current paper presents an assessment study for several AFFTTs including two excitation
techniques, namely free air turbulence excitation and forced random excitation, two aeroelastic
system identification methods, namely discrete time-series ARMAX estimators and the least-
square complex frequency OMA estimator, and two corresponding flutter stability parameters,
namely the FZ and FM parameters. The assessment was conducted based on dedicated flight
test data obtained on a reference configuration of the F-16 aircraft at near-LCO onset flow
conditions, which are assumed to be the aeroelastic system instability onset boundaries for the
purposes of this study. The aeroelastic system is identified according to the different methods
assumptions and stability characteristics are investigated using the different stability parameters.

Generally speaking, all tested methods were shown to be effective for aeroelastic instability
prediction, with good accuracy, under some limitations. While both excitation methods were
found effective for perturbing the structural dynamics, the use of forced excitation along with
system identification techniques requires the proper use of a combined deterministic-stochastic
estimation approaches, such as the ARMAX model. If the test configuration is characterized
by relatively lightly-damped relevant modes that may be easily perturbed using turbulent exci-
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tation (as in the current study case), the use of turbulent excitation and stochastic identification
methods (ARMA) may be preferable from simplicity considerations. From a practical point of
view, turbulent excitation methods also have the advantage of not relying on dedicated external
mechanical excitation accessories. On the other hand, the robustness of the ARMAX method
when used at low subcritical dynamic pressure conditions, where the flutter modes are highly-
damped, may not be addressed based on the current study test case. At such conditions, forced
excitation methods may have an advantage over turbulent excitation.

From the point of view of real-time test prediction capabilities, the ARMAX method is more
straight-forward and easy to implement compared with OMA, which may require delicate iden-
tification of the relevant modes. On the other hand, OMA methods have the advantage of ana-
lyzing aeroelastic systems without prior knowledge of the instability mechanism. This may be
attractive in case a linear analysis in unavailable, or for purposes of analytic model calibration
(rather than instability prediction). Such applications will naturally require a dedicated method-
ology. One requirement that is relevant to both ARMAX and OMA identification methods is for
adequate data samples time length. Recording times of around 60 seconds or more are essential
in order to obtain good predictions by both methods.

Based on the findings of this study, it is natural to further validate both the ARMA and OMA
methods using more real-life cases. Of particular interest are the methods’ performances in
cases of highly-damped flutter modes or low air turbulence levels.
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