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Abstract: In this work, we seek parametrically rich modes that can be used to analyze 

nonlinear systems for a continuous variation of operating conditions. Towards this end, based 

on the Modally Equivalent Perturbed System (MEPS) and the Degenerate Transformation 

(DT) methods, a new and linear perturbed system is formulated and the basis vectors that span 

a rich nonlinear solution space are obtained from the resulting system of equations. These 

basis vectors, which obey the principle of linear superposition, lead to a new approach to 

nonlinear analysis that has the potential for a significant reduction in the complexity of the 

analysis as well as in computing time. The new scheme is demonstrated using a 

computational model of a two-dimensional incompressible, viscous flow in which the basis 

modes are obtained conveniently from snapshots of time responses of the unsteady flow field. 

It is shown that when used in conjunction with nonlinear reduced-order modeling they 

produce very accurate results for a wide range of Reynolds numbers and boundary conditions. 

1. INTRODUCTION 

 

It is well known that the principle of superposition does not apply to nonlinear systems. One 

nonlinear solution for one condition is different from another nonlinear solution for another 

condition, which implies it is difficult to find similarities or scalability between any two 

nonlinear solutions. This is why solving and analyzing nonlinear equations are so challenging 

and time consuming. Lately, there has been much effort to circumvent the difficulty by first 

calculating basis modes for the system and then approximating the solution in a modal 

expansion with these modes. This approach which is generally known as modal analysis 

comes down to solving a reduced set of equations with respect to the chosen modal 

coordinates, instead of the original full dimensional equations. Frangos, et. al, [1] gives a 

good overview of important research milestones in the past. Unfortunately, despite much 

progress it is still impossible to avoid the fundamental limitation of the nonlinear analysis, 

that is, the inability to apply the linear superposition. Thus, researchers have seen fit to 



execute the so called Greedy Sampling by populating the mode set through a rich ensemble of 

snapshots for multiple conditions which inevitably involves a long computing process [2]. 

 

Recently, Kim [3] reported a new finding that may at first seem contradictory and counter-

intuitive to the notion about the nature of nonlinear systems. More specifically, it was shown 

that based on the creation of a Modally Equivalent Perturbed System (MEPS) and a 

Degenerate Transformation (DT), along with a frequency domain formulation, basis vectors 

that span a parametrically rich nonlinear solution space can be obtained such that they obey a 

form of linear superposition. Because they satisfy the linear property, these vectors could lead 

to a new approach to nonlinear analysis that may result in a significant reduction in the 

complexity of the analysis as well as in computing time.  

 

In the present work, we introduce another version of this approach which is formulated and 

solved entirely in the time domain and therefore may be more attractive for some applications. 

The new scheme is demonstrated using a computational model of a two-dimensional Lid-

Driven Cavity Flow in which the basis modes are obtained conveniently from time snapshots 

of the unsteady flow field. It is shown that when used in conjunction with nonlinear reduced-

order modeling they produce very accurate results for a wide range of operating conditions, 

i.e., Reynolds numbers and lid boundary speeds.  

2. STATIC VS. DYNAMIC EIGENMODES  
 

Before embarking on the theoretical development, let us review briefly one of the most 

commonly performed methods in engineering and science, i.e. modal analysis. In this general 

approach, to model and find a solution of a physical system described by multiple degrees of 

freedom we assume that the system response is a linear superposition of certain modes or 

vectors 𝒗𝑖’s and their generalized coordinates, 𝑞𝑖(𝑡)’s: 

 

𝒙(𝑡) = 𝒗1𝑞1(𝑡) + 𝒗2𝑞1(𝑡) … +𝒗𝑅𝑞𝑅(𝑡)        (1) 

 

Normally, a small number of modes are included in the expansion so that it can lead to a 

reduced set of equations approximating the full equations. Among the potential candidates for 

𝒗𝑖 ’s are the system eigenmodes for the corresponding linear system. For a well defined 

system matrix 𝑨, they satisfy 

 

      𝑨𝒗𝑖 = 𝜆𝑖𝒗𝒊           (2) 

 

Frequently, the physical system is subjected to parameter variations or uncertainties. For 

example, there may be uncertainty in the modeling. From the design perspective, during an 

optimization it becomes necessary to permit the design variables to change. On the other hand, 

if the system is nonlinear different operating points would yield different solutions. The static 

eigenmodes defined as in (2) for one set of model parameters have serious shortcomings in 

that they cannot account for any changes in the parameters or a nonlinear operating point. One 

set of the modes are strictly valid only for one set of system properties and a fixed operating 

condition, although they may be useful for a moderate range of parameter variations IF the 

system response is not sensitive to a given parameter.  



Consider now instead an expansion in which the response is expressed by dynamic 

eigenmodes, 𝒗𝑖(𝑡)’s and convolutions between the modes and the generalized coordinates: 

 

    𝒙(𝑡) = 𝒗1 ∗ 𝑎1 + 𝒗2 ∗ 𝑎2 … + 𝒗𝑅 ∗ 𝑎𝑅       (3) 

 

where * represents the time convolution. The idea is that by allowing the eigenmodes to be 

time-varying and replacing the multiplication 𝒗𝑖𝑞𝑖 with the convolution 𝒗𝑖 ∗ 𝑞𝑖, (3) broadens 

the range of the modal space, thereby providing an opportunity to capture the continuous 

parameter variation and nonlinear operating points. Much like the conventional eigenvalue 

problem, the dynamic eigenmodes may be associated with dynamic eigenvalues, 𝜆𝑖(𝜔)’s: 

 

         𝑻(𝜔)𝒗𝑖(𝜔) = 𝜆𝑖(𝜔)𝒗𝑖(𝜔)         (4) 

      

for a properly defined frequency valued matrix 𝑻(𝜔). If the idea works the same set of modes 

𝒗𝑖(𝜔)’s will be valid for large  variations in the parameters and operating conditions.  

 

Several questions arise as to the idea of invoking and using the dynamic eigenmodes. First, 

how should 𝑻(ω) be formulated in a meaningful way such that (3) effectively covers the 

range of variations in the parameters and operating conditions? Second, how do we determine 

stability of the system using λi(ω) ’s? Third, are there alternatives to 𝒗i(t) ’s because 

calculating the convolutions as given in (3) may be computationally expensive? Lastly, will it 

be possible to apply to experimental data as well as computational data? Some of these 

questions have been explored and answered in the recent works [4-5]. In particular, it has 

been shown and demonstrated that in the case of linear systems a MEPS can be defined and 

set up so that its dynamic eigenmodes satisfy equation (4). Most recently, this approach has 

been extended to nonlinear systems as well as time-varying cases leading to the same 

outcome and benefits that have been proved and demonstrated in the linear cases [3]. 

Regarding the third question, it is practical and makes sense to approximate the time 

convolutions in (3) by a plain superposition: 

 

  𝒗1 ∗ 𝑎1 + 𝒗2 ∗ 𝑎2 … + 𝒗𝑅 ∗ 𝑎𝑅 ≈ 𝝓1𝑞1(𝑡) + 𝝓2𝑞1(𝑡) … +𝝓𝑆𝑞𝑆(𝑡)             (5) 

 

For example, modes (not to be confused with the eigenmodes) 𝝓𝑖 ’s can be found by 

processing 𝒗𝑖(𝜔)’s via the Frequency Domain Karhunen-Loeve Procedure [6] and POD 

(Proper Orthogonal Decomposition) [7]. Due to the nature of convolution, it is expected that 

𝑆 > 𝑅, that is, being time-varying the dynamic eigenmodes will spread over a larger range of 

regular modes.  

 

In the sections to follow, a new procedure for obtaining parametrically rich nonlinear solution 

space will be introduced following the idea of dynamic eigenmodes. This approach is 

different from that of [3] in that it is set entirely in the time domain and the nominal system is 

nonlinear rather than linear, although the important outcomes of the earlier development, i.e., 

the MEPS and DT, will be utilized in the derivation. 

3. THEORETICAL FRAMEWORK 



In this section, following the key ideas of the MEPS and DT a brief outline and key highlights 

of the theoretical development for the proposed modal solutions of nonlinear systems will be 

presented. For detailed derivations of the MEPS and DT, refer to the supplementary materials 

attached to Ref. [3]. 

 

Given a nonlinear system with multiple degrees of freedom, 

 

�̇�(𝑡) = 𝒇(𝒙) + 𝒃           (6) 

where 

   

                 𝒇 = (𝑁 × 1)  𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 

𝒙 ≡ (𝑁 × 1) 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟    

𝒃 ≡ (𝑁 × 1) 𝐼𝐶 𝑜𝑟 𝐵𝐶 𝑜𝑟 𝐼𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

 

we seek for a solution in the form 

  

     𝒙(𝑡) = 𝒙0(𝑡) + 𝚫𝒙(𝑡)                  (7) 

 

where the nominal and perturbed solutions satisfy, respectively, 

 

 �̇�0 = 𝒇(𝒙0) + 𝒃0 : Nominal                            (8) 

𝜟�̇� = 𝒇(𝒙) − 𝒇(𝒙0) + 𝜟𝒃 : Perturbed                 (9) 

 

Note that we do not separate – if there is any – the linear part from 𝒇(𝒙). This is a main 

departure from the previous work, but will better suit nonlinear systems that do not have well 

defined linear parts. For instance, the Euler equations of fluid mechanics intrinsically do not 

have a linear part. 

 

Define 𝜟𝑨(𝒙) such that 

 

 𝒇(𝒙) ≡ 𝜟𝑨(𝒙)𝒙                     (10) 

 

where 𝜟𝑨(𝒙) satisfies a Lipschitz condition: 

 

         ‖𝜟𝑨(𝒙2) − 𝜟𝑨(𝒙1)‖ ≤ 𝛼(𝐾)‖𝒙2 − 𝒙1‖                            (11) 

 

It is noted that a selection of 𝜟𝑨(𝒙) is not unique but can always be found [8]. Then (9) can 

be rewritten as 

  

 𝜟�̇� = [𝜟𝑨(𝒙0) + 𝚫𝑨𝑑(𝒙0, 𝚫𝒙)]𝜟𝒙 + 𝚫𝑨𝑑(𝒙0, 𝚫𝒙)𝒙0 + 𝚫𝒃            (12) 



where 

 

 𝚫𝑨𝑑(𝒙0, 𝚫𝒙) ≡ 𝜟𝑨(𝒙) − 𝜟𝑨(𝒙0)                      (13) 

3.1 Modally Equivalent Perturbed System (MEPS) 

 

Following the procedure described in [3], it can be shown that the perturbed system (12) is 

modally equivalent to the following system: 

 

                                             𝜟�̇�′ = 𝜟𝑨(𝒙0)𝜟𝒙′ + 𝚫𝑨𝑑(𝒙0, 𝚫𝒙′)𝒙0 + 𝚫𝒃           (14) 

 

As a result, although the two solutions of (12) and (14), 𝚫𝒙 and 𝚫𝒙′ are different they share 

the same set of the dynamic eigenmodes, and therefore modes that span the solution space of 

the perturbed system can be found by solving the MEPS (14) instead of solving the original 

(12).  See Figure 1 for a graphical description of the MEPS.  

 

 

 

 

 

 

 

 

 

 

Figure 1 Solution space shared by the original (left) and MEPS (right) solutions, Δ𝑥 and Δ𝑥′. 

 

Originally, the MEPS was derived for time-invariant linear systems undergoing parameter 

variations based on the Dynamic Eigen Decomposition and Cayley-Hamilton Theorem, and 

was used in constructing Parametric Reduced-Order Model (PROM) [4-5]. More recently, the 

analysis was extended to time-varying cases treating 𝜟𝑨(𝒙) as time-varying parameters and 

using frequency-domain convolution [3]. In the above, we treat both 𝜟𝑨(𝒙0)  and 

𝚫𝑨𝑑(𝒙0, 𝚫𝒙′) as such, 

 

𝜟𝑨(𝒙0) ≡ 𝜟𝑨(𝑡) 

𝚫𝑨𝑑(𝒙0, 𝚫𝒙′) ≡ 𝚫𝑨𝑑(𝑡)         (15) 

 

It is noteworthy that the mechanism that derives the nonlinear system and ultimately leads to 

the MEPS is the Dynamic Eigen Decomposition (which was introduced earlier in Eq. (4)). In 

this light, let us examine closely the eigen structure of the frequency solution of the perturbed 

equation. Taking Fourier Transform of the time-varying Eq. (12) gives 

 



𝑗𝜔 𝚫𝓧(𝜔) = ∫ [𝚫𝓐(𝜔 − 𝜔′)
∞

−∞

+ 𝚫𝓐𝑑(𝜔 − 𝜔′)]𝚫𝓧(𝜔′)𝑑𝜔′ 

+ ∫ 𝚫𝓐𝑑(𝜔 − 𝜔′)𝓧0(𝜔′)𝑑𝜔′
∞

−∞
+ 𝚫𝒃                                 (16)  

 

Given 𝑀 + 1 uniformly distributed frequencies 0,  𝜔1,  𝜔2,  … , 𝜔𝑀   (𝜔𝑖 ≡ 𝑖Δ𝜔,  𝜔𝑀 = Ω𝑓) 

(16) can be written in compact form, 

 

(𝑰�̅� − 𝚫𝓐̅̅ ̅̅ ̅ − 𝚫𝓐̅̅ ̅̅ ̅
𝑑)𝚫𝓧̅̅ ̅̅ ̅ = 𝚫𝓐̅̅ ̅̅ ̅

𝑑(�̅�0 + 𝚫𝓐̅̅ ̅̅ ̅
𝒅
−𝑝𝚫𝒃̅̅ ̅̅ )              (17) 

 

where 𝑰�̅�, 𝚫𝓐̅̅ ̅̅ ̅ , 𝚫𝓐̅̅ ̅̅ ̅
𝑑  are (2𝑀 + 1)𝑁 × (2𝑀 + 1)𝑁  frequency-valued matrices of the 

augmented dimension. Its solution is obtained as 

 

𝚫𝓧̅̅ ̅̅ ̅ = (𝑰�̅� − 𝚫𝓐̅̅ ̅̅ ̅ − 𝚫𝓐̅̅ ̅̅ ̅
𝑑)−1𝚫𝓐̅̅ ̅̅ ̅

𝑑(�̅�0 + 𝚫𝓐̅̅ ̅̅ ̅
𝒅
−𝑝𝚫𝒃̅̅ ̅̅ )     (18) 

 

Taking eigen decomposition of the transfer function, 

 

[𝑰�̅� − 𝚫𝓐̅̅ ̅̅ ̅(�̅�) − 𝚫𝓐̅̅ ̅̅ ̅
𝑑(�̅�)]−1𝚫𝓐̅̅ ̅̅ ̅

𝑑(�̅�) ≡ �̅�𝜈(�̅�)�̅�𝜈(�̅�)�̅̅̅�𝜈
𝑇(�̅�)     (19) 

 

where  

 

 �̅�𝜈 =  (𝑣 × 𝑣) diagonal matrix with nonzero     

           eigenvalues 

 �̅�𝜈 , �̅̅̅�𝜈 = right and left eigenvectors      (20) 

 

all of which are not constants but vary with frequency (and time). Hence, they are called the 

dynamic eigenmodes. Using the Cayley-Hamilton’s theorem [9] it can be shown that (19) has 

the same dynamic eigenmodes as the following transfer function: 

 

[𝑰�̅� − 𝚫𝓐̅̅ ̅̅ ̅(�̅�)]−1𝚫𝓐̅̅ ̅̅ ̅
𝑑(�̅�) ≡ �̅�𝜈(�̅�)�̅�′𝜈(�̅�)�̅̅̅�𝜈

𝑇(�̅�)      (21) 

 

except that the two sets of the dynamic eigenvalues are related via 

 

�̅�′𝜈 ≡ (𝑰𝜈 + �̅�𝜈)−1�̅�𝜈      (22) 

 

We recognize that the system which has (21) as the extended Fourier Transform is indeed the 

perturbed system expressed in (14). Therefore, we conclude that (12) and (14) are modally 

equivalent.  

3.2 Degeneration Transformation (DT) 

 



Another feature of the nonlinear modal analysis introduced is the DT [3]. It was shown 

through a series of polynomial expansions and MEPS transformations that the perturbed 

variable 𝚫𝒙′ appearing in the forcing term of the MEPS equation (14) can be ignored without 

affecting the modal property of its solution. This is because its effect is canceled by its  

presence in the homogeneous part of the equation. Note, 

 

𝜟�̇�′ = 𝜟𝑨(𝒙0)𝜟𝒙′ + 𝚫𝑨𝒅(𝒙0, 𝚫𝒙′)𝒙0 + 𝚫𝒃 

           = 𝜟𝑨(𝒙0)𝜟𝒙′ + 𝜟𝑨(𝒙0 + 𝚫𝒙′)𝒙0 − 𝒇(𝒙0) + 𝚫𝒃       (23) 

 

Applying the DT, 𝚫𝒙′ in the second term is dropped, the two inner terms cancel each other, 

and we reach the following new system: 

 

                                               𝜟�̇�" = 𝜟𝑨(𝒙0)𝜟𝒙" + 𝚫𝒃                                (24) 

 

However, in solving (24) we desire 𝜟𝒙" to be dimensionally rich. This is possible if we let the 

matrix differential at a nominal point 𝜟𝑨(𝒙0) be rich. Thus, 𝒙0 is replaced with 𝜱0𝒓0 where 

 

       𝒓0(𝑡) ≡ 𝜱0
𝑇�̅�0 + 𝒘(𝑡)       

          �̅�0 ≡ 𝑚𝑒𝑎𝑛(𝒙0(𝑡)) 

     𝒘(𝑡) ≡ 𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑛 𝑠𝑖𝑔𝑛𝑎𝑙𝑠   (25) 

 

with ‖𝒘‖𝑠𝑡𝑑 = ‖𝜱0
𝑇(𝒙0 − 𝒙0)‖𝑠𝑡𝑑 , 𝑚𝑒𝑎𝑛(𝒘(𝑡)) = 0.  The vector space spawned by 

nonlinear solutions of (6) now comprises those of the  nominal system equation (8) and yet 

another perturbed equation (24).  

4. LINEARITY AND SUPERPOSITION 

 

It is immediately noted that although it started out as a nonlinear equation there is nothing 

nonlinear about the perturbed equation (24) because once 𝒙0 is known the equation becomes 

linear though time-varying, an outcome of the MEPS transformation followed by the DT. 

Consequently, one can expect that the principle of superposition will be satisfied and its 

solution will yield a parametrically rich vector space containing a continuous set of the 

nonlinear solutions that cover not only the nominal operating point in (8) but all others away 

from. The nominal equation (8) is still nonlinear, but since the accompanying (24) is linear, 

there will be no strict limit as to how much the two equations together can steer away from 

the nominal operating point and extrapolate beyond. What is revealing is that in the course of 

seeking for the nonlinear solution space, the nonlinearity of the original equation has been 

lifted. Importantly, Eq. (24) will generate the same (invariant) dynamic eigenmodes for all 

scalar multiples of 𝚫𝒃. Hence, by setting 𝒃0 = 𝚫𝒃 = 𝒃, it is possible to produce a single 

vector space containing all the solutions for inputs 𝛼𝑖𝒃 (𝛼𝑖 > 1, 𝑖 = 1,2, … ). Similarly, one 

can seek out a vector space due to multiple different inputs or boundary conditions, 𝒃𝑖 (𝑖 =
1,2, … 𝐾) by having the system subject to a simultaneous excitation of all the inputs, 

 



      𝜟�̇�" = 𝜟𝑨(𝒙0)𝜟𝒙" + ∑ 𝚫𝒃𝑖
𝐾
𝑖=1 𝑟𝑖(𝑡)                                  (26) 

 

with  𝚫𝒃𝑖 ≡ 𝒃𝑖 − 𝒃0  and 𝑟𝑖(𝑡) ’s are statistically uncorrelated time signals. The resulting 

modes will span a rich vector space of all the individual solutions due to 𝒃𝑖 ’s. It is also 

noteworthy that despite the notion of dynamic eigenmodes used in the derivation, the time 

convolution in the modal expansion (3) was not necessary and was indeed replaced by the 

regular expansion as invoked by (5).   

5. CALCULATION OF MODES FOR NONLINEAR SYSTEM 
 

As a summary, we describe a procedure to calculate a set of modes that span a parametrically 

rich vector space for the nonlinear system given in Eq. (6). As opposed to the procedure given 

in Ref. [3], all the calculations are done in time domain, but as in the frequency-domain 

formulation the underlying linearity shapes the problem solution. 

 

1. Set a nominal input (or BC) 𝒃0 and solve the nominal system Eq. (8). 

2. Using the time history data of 𝒙0, calculate POD modes set 𝜱0 = [ 𝝓0
1  𝝓0

2 … 𝝓0
𝑅0 

]. 
3. Define 𝜟𝑨(𝒙) such that 𝒇(𝒙) = 𝜟𝑨(𝒙)𝒙. 

4. Substitute 𝒙0 with 𝜱0𝒓0(𝑡) where 𝒓0(𝑡) is (𝑅0 × 1) random signals vector according 

to (25), and solve  

          𝜟�̇�" = 𝜟𝑨(𝜱0𝒓0)𝜟𝒙" + 𝚫𝒃 or 𝜟�̇�" = 𝜟𝑨(𝜱0𝒓0)𝜟𝒙" + ∑ 𝚫𝒃𝑖
𝐾
𝑖=1 𝑟𝑖.                      

5. Using the time history data of 𝜟𝒙", calculate POD modes set 𝜱1 = [ 𝝓1
1  𝝓1

2 … 𝝓1
𝑅1 

]. 
6. Get the global modest set, 𝜱 = [𝜱0  𝜱1]. Gram-Schmidt orthogonalization may be 

necessary to ensure linear independence and orthogonality of the obtained modes. 

6. NONLINEAR REDUCED-ORDER MODEL 
 

It is natural to consider a reduced-order model of the original full-order model once basis 

vectors 𝝓𝑖 ’s are obtained. As usual, a ROM can be constructed by 𝒙 = ∑ 𝝓𝑖𝑞𝑖
𝑅
𝑖=1  and 

projecting the residual vector onto 𝑺𝑅 via Galerkin: 

 

�̇�(𝑡) = 𝒇𝑅(𝜱𝒒) + 𝒃𝑅                            (27) 

           

 where 

 

       𝒇𝑅 ≡ 𝜱𝑇𝒇 

            𝒃𝑅 ≡ 𝜱𝑇𝒃          (28) 

 

As can be expected, much computing will be consumed in executing the key vector product, 

𝜱𝑇𝒇𝑅(𝜱𝒒) at every time step. As matter of fact, due to this limitation the nonlinear ROM 

might even take longer than FOM unless the vector multiplication is done efficiently. The 

ROM construction is not the main focus of the present work and interested readers may find 

ample research on nonlinear ROM in the literature [1]. Of particular interest is a Petrov-

Galerkin projection that allows accurate estimation of the vector projection, and DEIM 



(Discrete Empirical Interpolation Method) [10-11] that minimizes the CPU time and memory 

during the calculation of 𝜱𝑇𝒇𝑅(𝜱) . According to the latter, the vector product is 

approximated via a least-square scheme: 

 

     𝜱𝑇𝒇(𝜱𝒒) ≅ 𝜱𝑃
𝑇𝒇𝑃(𝜱𝒒)          (29) 

 

where only P rows of the matrices are extracted: 

 

     𝜱𝑃
𝑇 ≡ 𝜱𝑇𝜳𝜳𝑃

−1  (𝑃 ≪ 𝑁)      (30) 

 

And where 𝜳 are the basis vectors of 𝒇(𝒙).  In the present work, since our aim is to 

demonstrate the calculation of the modes, we did not employ an efficient scheme such as 

DEIM but directly executed the vector multiplication in the time integration. 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2 2D incompressible, viscous flow in a reservoir. 

 

7. NEMERICAL EXAMPLE: 2D Lid-Driven Cavity Flow  
 

For demonstration of the parametrically rich modal solution method presented in the previous 

sections, we apply the technique to a two-dimensional incompressible, viscous flow in a 

reservoir, namely the 2D Lid-Driven Cavity Flow. The lid driven cavity is a frequently used 

example for demonstrating new theory and algorithms. In References [12] and [13], this 

example is studied using a standard POD method as well as a new POD  method. Other fluid 

flow examples are also considered in these references. The goal of the work in [12-13] is to 

reduce the number of degrees of freedom to as small a number as possible without any 

essential loss in accuracy for a single set of parameters. Thus that work is complementary to 

that of the present paper which seeks a reduced order model that may be used for a broad 

range of system parameters, but may not be the minimal order for any single set of parameters. 

The present application is limited to laminar viscous flows at relatively low Reynolds 

numbers although the lid driven cavity has been studied at higher Reynolds numbers where 

the laminar flow becomes unstable which leads to a limit cycle oscillation and then to chaotic 

or turbulent flow at even higher Reynolds numbers. Figure 2 shows the geometry of the cavity 



and the flow inside it. One wall of the cavity (the lid) moves with a specified velocity which 

excites oscillations in the cavity. 

7.1 Nonlinear Differential Equations for Cavity Flow 

 

Governing fluid dynamic equations are 

 

     𝜵 ∙ 𝒗 = 𝟎           :  Continuity 

          
𝝏𝒗

𝝏𝒕
+ 𝒗 ∙ 𝜵𝒗 = −

𝟏

𝝆
𝜵𝒑 + 𝝂𝜵𝟐𝒗   :  Momentum                 (31) 

 

which defining the vorticity and the stream function as 

 

     𝝎 = 𝜵 × 𝒗           :    vorticity 

    𝒖 =
𝝏𝝍

𝝏𝒚
,   𝒗 = −

𝝏𝝍

𝝏𝒙
                    :    stream function 

 𝝎 = 𝛁𝟐𝝍         (32) 

 

yield, 

 

𝝏𝝎

𝝏𝑡
+ 𝒖

𝝏𝝎

𝝏𝒙
+ 𝒗

𝝏𝝎

𝝏𝒚
= 𝜈𝜵𝟐𝝎    (33) 

 

Or in terms of solely the stream function, 

 

𝜕

𝜕𝑡
𝛻2𝜓 +

𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
𝛻2𝜓 −

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
𝛻2𝜓 = 𝜈𝛻4𝜓      (34) 

 

The right-hand side of (33) represents the linear viscous term, while the second and third 

terms on the left-hand side are the nonlinear convective terms. 

7.2 Discretization and Nonlinear State-Space Equation 

 

To generate state-space equations, Eq. (33) along with the last of (32) is discretized in the 

𝑥 − 𝑦 plane using equally distributed elements in each direction. This results in the following 

matrix equation: 

 

𝒙𝑛+1 = 𝜈𝑨𝒙𝑛 + 𝒇(𝒙𝑛) + 𝑈𝑡𝑜𝑝𝒃      (35) 

 

where 

     



𝑨 ≡ 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 

𝒇(𝒙) ≡ 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 

𝒃 ≡ 𝑙𝑖𝑑 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

𝑈𝑡𝑜𝑝 ≡ 𝑡𝑜𝑝 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝜈 ≡ 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

 

It can be seen that in (33) the convective nonlinear terms are quadratic in 𝒙. Hence, a linear 

𝜟𝑨(𝒙) can be defined such that it contains the constant matrix 𝜈𝑨. Since Reynolds number is 

given as 𝑅𝑒 ≡
𝐿𝑦𝑈𝑡𝑜𝑝

𝜈
, changing the number will affect both the linear and the boundary 

condition terms. In the current study, for simplicity we fix 
𝐿𝑦

𝜈
= 200 while varying the lid top 

boundary speed, 𝑈𝑡𝑜𝑝. Hence, 𝑅𝑒 = 200𝑈𝑡𝑜𝑝 and only the lid velocity boundary condition 

will change proportionally the Reynolds number. Total of 60 equal elements are placed along 

the x and y axes resulting in 3,540 unknown states in 𝒙. 

7.3 Calculation of Nonlinear Vector Space and Reduced-Order Model  

 

First, a nominal operating point is defined to be at 𝑅𝑒 =200 and 𝑈𝑡𝑜𝑝 = 1. For the nominal 

flow condition chosen, the system Eq. (8) is solved by integrating the equation at 1,000 

equally distributed time steps with Δ𝑡 = .005 𝑠𝑒𝑐 . The resulting time history data is then 

processed using POD and this yields 48 modes for the set 𝜱0  when all of the linearly 

independent modes are taken (which is usually indicated by the rank of the covariant matrix). 

Next, the second modes set 𝜱1 is calculated using the procedure described in Section 5. and 

Eq. (24). Note that we set 𝚫𝒃 = 𝒃 because the boundary term is only changing by the scalar, 

𝑈𝑡𝑜𝑝. After examining eigenvalue distribution of the POD covariance matrix carefully, 458 

modes are selected for 𝜱1. This number, if less than the rank of the covariance matrix, is 

somewhat arbitrary but always can be chosen to be big enough to give accurate results. After 

orthogonalizing using the Gram-Schmidt, 505 modes are obtained for the total modes set 

𝜱 = [𝜱0 𝜱1]. Thus, 𝜱 is (3540 × 505). 

 

The nonlinear ROM discussed in Section 6. is constructed by a Galerkin method. As 

mentioned earlier, no attempt has been made to minimize the computing time required in 

carrying out the vector multiplication 𝜱𝑇𝒇 in Eq. (27). However, it was reported previously 

that executing DEIM does reduce the computation although the saving is only marginal for 

the flow conditions under consideration. In order for the nonlinear ROMs to be effective 

further research is necessary to implement the scheme for the present formulation and 

estimate how much computational time can be saved using the scheme. 

7.4 Numerical Results: FOM vs. ROM  
 

Figure 3 is a velocity profile within the cavity for the simulated nominal flow condition 

𝑅𝑒 = 200 at 𝑡 = 5 𝑠𝑒𝑐 after the uniform speed 𝑈𝑡𝑜𝑝 = 1 has been applied at the top. It was 

obtained using the original full model. Figure 4 is the velocity file obtained by solving the 

ROM that was constructed using the 505 modes. Figures 5 and 6 are the corresponding 

horizontal (U) and vertical (V) velocity components along the vertical line at the center of the 



cavity. Also presented here are results from another ROM that was built using just the 

nominal 48 modes. As expected, an excellent agreement between all three models is seen in 

the figures. The real question is, how well will these ROMs capture the flow field when the 

key parameter, i.e. the Reynolds number changes? To answer this question, 𝑈𝑡𝑜𝑝 is increased 

and the results of the ROMs are examined again. 

 

Figure 3 Velocity profile by FOM: 𝑅𝑒 = 200,       Figure 4 Velocity profile by ROM: 𝑅𝑒 = 200,  

𝑈𝑡𝑜𝑝 = 1 (nominal) at 𝑡 = 5 𝑠𝑒𝑐.                      𝑈𝑡𝑜𝑝 = 1 (nominal) at 𝑡 = 5 𝑠𝑒𝑐.  

 

 

 Figure 5 U velocity component: 𝑅𝑒 = 200,          Figure 6 V velocity component: 𝑅𝑒 = 200,     

𝑈𝑡𝑜𝑝 = 1 (nominal) at 𝑡 = 5 𝑠𝑒𝑐                                              𝑈𝑡𝑜𝑝 = 1 (nominal) at 𝑡 = 5 𝑠𝑒𝑐 

 

Figures 7 and 8 are velocity profiles for 𝑅𝑒 = 400, 𝑈𝑡𝑜𝑝 = 2  at 𝑡 = 5 𝑠𝑒𝑐  based on the 

(3540 × 3540)  FOM and the (505 × 505)  ROM. Despite the doubling of the boundary 

speed, the two profiles match extremely well. Figures 9 and 10 are the two velocity 

components at the center of the cavity. Not surprisingly, the (48 × 48) ROM based on the 

nominal modes cannot approximate the FOM at this Reynolds number. That is, these modes 

are good and valid only for the very flow condition at which they were obtained.  



 

Figure 7 Velocity profile by FOM: 𝑅𝑒 = 400,      Figure 8 Velocity profile by ROM: 𝑅𝑒 = 400,  

𝑈𝑡𝑜𝑝 = 2 at 𝑡 = 5 𝑠𝑒𝑐.        𝑈𝑡𝑜𝑝 = 2 at 𝑡 = 5 𝑠𝑒𝑐.  

 

 

Figure 9 U velocity component: 𝑅𝑒 = 400,      Figure 10 V velocity component: 𝑅𝑒 = 400,   

𝑈𝑡𝑜𝑝 = 2 at 𝑡 = 5 𝑠𝑒𝑐.                             𝑈𝑡𝑜𝑝 = 2 at 𝑡 = 5 𝑠𝑒𝑐. 

 

Figures 11 and 12 are velocity profiles for 𝑅𝑒 = 600, 𝑈𝑡𝑜𝑝 = 3 at 𝑡 = 5 𝑠𝑒𝑐, Figures 13 and 

14 are the two velocity components at the middle. Again, throughout the figures the (505 ×
505) ROM is seen to be parametrically rich matching with the FOM very well, whereas the 

(48 × 48) ROM deviates substantially from the correct results. Due to a numerical stability 

requirement inherent in the CFD code it was not possible to go beyond Reynolds numbers 

greater than 600 with Δ𝑡 = .005 𝑠𝑒𝑐. This issue could be easily fixed by using a smaller time 

step. The last batch of figures, Figures 15-18 are for 𝑅𝑒 = 100, 𝑈𝑡𝑜𝑝 = .5. Again, an excellent 

agreement is found between the FOM and the (505 × 505) ROM, but the (48 × 48) ROM 

fails to predict the flow field even if the boundary speed is lowered from the nominal value, 

all of which are an indication that the convective terms play a critical role and the flow field is 

very sensitive to the nonlinearity. 

 



 

Figure 11 Velocity profile by FOM: 𝑅𝑒 = 600,    Figure 12 Velocity profile by ROM: 𝑅𝑒 = 600,  

𝑈𝑡𝑜𝑝 = 3 at 𝑡 = 5 𝑠𝑒𝑐.        𝑈𝑡𝑜𝑝 = 3 at 𝑡 = 5 𝑠𝑒𝑐.  

 

 

Figure 13 U velocity component: 𝑅𝑒 = 600,      Figure 14 V velocity component: 𝑅𝑒 = 600 ,   

𝑈𝑡𝑜𝑝 = 3 at 𝑡 = 5 𝑠𝑒𝑐.                             𝑈𝑡𝑜𝑝 = 3 at 𝑡 = 5 𝑠𝑒𝑐. 

 

8. CONCLUDING REMARKS  

 

In this work, we have sought parametrically rich basis vectors that can be used for analysis of 

nonlinear systems effectively allowing continuous variation of parameters and operating 

conditions. Towards this end, the nonlinear system equation was split into a nominal and a 

perturbed parts. The latter is transformed into a linear equation using two transformation 

techniques, namely the Modally Equivalent Perturbed System (MEPS) and the Degenerate 

Transformation (DT). When processed by Proper Orthogonal Decomposition (POD), 

solutions of the nominal and the perturbed systems together form a set of global modes for the 

nonlinear system. It was found that because they obey linear superposition, the basis vectors 

of the perturbed equation can span a rich nonlinear solution space covering multiple boundary 

conditions and inputs. That is, one does not need to repeat the calculations of POD modes for  



 

Figure 15 Velocity profile by FOM: 𝑅𝑒 = 100,    Figure 16 Velocity profile by ROM: 𝑅𝑒 = 100,  

𝑈𝑡𝑜𝑝 = .5 at 𝑡 = 5 𝑠𝑒𝑐.       𝑈𝑡𝑜𝑝 = .5 at 𝑡 = 5 𝑠𝑒𝑐.  

 

 

Figure 17 U velocity component: 𝑅𝑒 = 100,      Figure 18 V velocity component: 𝑅𝑒 = 100,   

𝑈𝑡𝑜𝑝 = .5 at 𝑡 = 5 𝑠𝑒𝑐.                              𝑈𝑡𝑜𝑝 = .5 at 𝑡 = 5 𝑠𝑒𝑐. 

 

different conditions, as opposed to the aforementioned Greedy Sampling technique that is 

now often used in the literature. Naturally, this strategy invokes an efficient reduced-order 

modeling that can potentially save a significant computing time. The major difference 

between the previous research by the first author and the current work is that whereas the 

former assumes that the nonlinear system has an inherent linear part and formulates the 

perturbed equation in frequency domain, the latter treats systems that do not have explicit 

linear parts and hence formulates the perturbed system in time domain. The current scheme, 

therefore, has an advantage in that it can deal with nonlinear systems that do not have natural 

linear parts, e.g., the Euler equations of fluid mechanics.   

 

The new scheme has been demonstrated using a computational model of a two-dimensional 

Lid-Driven Cavity Flow in which the basis modes were obtained from snapshots of time 

responses of the modified unsteady flow field. It is shown that the nonlinear reduced-order 



model constructed from the calculated modes produce very accurate results for a wide range 

of Reynolds numbers and boundary speeds. In fact, because of the linearity of the basis 

functions,  the MEPS/DT does not pose any limit in principle on how much of the parameter 

space the modes can span. In this regard and others, it is worthwhile to revisit the four 

questions raised at the end of Section 2, particularly the first and the third questions:  

 

 How should 𝑻(ω) be formulated in a meaningful way such that (3) effectively 

covers the range of variations in the parameters and operating conditions?  

 Are there alternatives to 𝒗i(𝑡)’s because executing the convolutions as given in (3) 

could be computationally expensive?  

 

In fact, throughout the course of the current and previous cited research works, the frequency 

valued transfer function of the perturbed system has been used for  𝑻(ω). In the case of linear 

systems, this is equal to the transfer function from the nominal solution to the perturbed 

solution. In the case of nonlinear system, it is a transfer function from a linear or a nonlinear 

nominal solution to the perturbed solution. As for the other question, the dynamic eigenmodes 

𝒗i(𝑡)’s have been replaced with static modes, 𝝓i’s via the POD procedure.  

 

There remain several questions and issues that need to be addressed and answered in future 

research. First, the number of modes, 505 seems very large compared to the number of 

nominal modes, 48. One may argue that this is because the scheme seeks all the modes that 

are necessary to capture for the entire range of nonlinear operating conditions. Still, it will be 

useful to control the range of the conditions, hence the number of modes. One option would 

be, after getting 𝝓i’s, to perform POD on the modes specifically for a given fixed condition. 

This will result in a reduced set of modes of a much smaller size good for the fixed condition. 

Second, using randomly distributed signals 𝑟0𝑖(𝑡) ’s in  𝜟𝑨(𝜱0𝒓0)  is not in general 

recommended, especially if it involves running an advanced CFD code. This is because CFD 

solvers are highly sensitive to noisy inputs and do not converge well under such an excitation. 

One might have to use an alternative signal such as a smoothed random or a Gaussian input. 

Lastly and most importantly, it will be necessary to demonstrate the method for nonlinear 

systems that exhibit severe nonlinearities, such as turbulent flows, compressible flows, 

transonic flows with shocks, etc. 
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