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Abstract: Two methods for modeling unsteady transonic flows at low computational cost are
presented as a first step towards a fast and accurate aeroelastic calculation methodology for the
preliminary design stage in the transonic flow regime. The first approach corresponds to a quasi-
steady approximation based on few steady simulations that is improved through the use of an
unsteady filter. The second approach is based on the interpolation of dynamic modes between
solutions at different frequencies that are obtained either from Dynamic Mode Decomposition
(DMD) of unsteady simulations or directly from Harmonic Balance (HB) simulations. The two
methods are illustrated in the case of a pitching airfoil in the transonic regime. Results show
that the first method is fast and provides a first approximation of the unsteady dynamics. The
computational cost of the second approach is higher, but the method provides better results in
predicting aerodynamic forces and shock motion for a large range of reduced frequencies.

1 INTRODUCTION

The prediction of transonic flutter is of great importance to aircraft design as transport aircraft
commonly cruise in the transonic flow regime. Some supersonic aircraft must also be designed
to fly at transonic conditions during specific phases of their mission. However, the computation
of the aeroelastic response of aircraft wings or control surfaces is challenging in this regime be-
cause unsteady transonic flows are characterized by aerodynamic nonlinearities such as moving
shock waves and shock-boundary layer interactions. These nonlinear phenomena can result in
unwanted aeroelastic effects including Limit Cycle Oscillations (LCOs), and limit the perfor-
mance of aircraft [1, 2].

The aerospace industry relies on unsteady panel methods based on the linearized potential equa-
tion, such as the Doublet-Lattice Method (DLM) [3], for routine aeroelastic analyses. Although
these linear codes provide rapid and accurate predictions of the aerodynamic loads for purely
subsonic or supersonic flows, they cannot capture the critical unsteady phenomena present in
transonic flows (e.g., shock oscillations). This type of flow being inherently nonlinear, the full
potential equation cannot be linearized even for small perturbations, and the aeroelastic calcu-
lations require higher-fidelity approaches.
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Driven by the advance in computing power, different approaches have been proposed based on
the Transonic Small Disturbance (TSD) equation, the full potential equation, the inviscid Euler
equations, or the Reynolds-Averaged Navier-Stokes (RANS) equations [1]. At the present time,
the best option to accurately account for unsteady nonlinear phenomena is to rely on the Euler
or RANS equations. However, the use of Euler or RANS codes in industrial aeroelastic applica-
tions is limited due to the high computational cost required for repeated unsteady simulations.
Another approach currently available is the field-panel method based on the Time-Linearized
Transonic Small Disturbance (TLTSD) equation [4], which models the flow as a linear time-
varying perturbation around a mean nonlinear steady solution. The major shortcoming of this
method is that it precludes large unsteady disturbances, i.e., the shocks cannot oscillate and the
boundary layers cannot feature significant unsteadiness.

The overall objective of this work is to develop a novel unsteady aerodynamic modeling method-
ology with higher fidelity than the linear panel approaches, especially at transonic conditions,
and with a computational cost that is low enough to be applied to aeroelastic tailoring problems.

The present study proposes two approaches as a first step towards this objective. It focuses on
the computation of the transonic flow around a pitching airfoil. This configuration has been
chosen because it enables the study of shocks that move due to structural oscillations. Sec-
tion 3 presents the reference case and the time-accurate Euler solutions, which will be used for
validation purposes.

The first proposed approach introduced in Section 4 relies on a few steady results calculated by
solving the steady Euler equations. However, the steady flow fields are clearly different from
the unsteady ones, and a filtering technique is suggested to improve the steady estimations.

The second approach presented in Section 5 is based on the interpolation of a few Dynamic
Mode Decomposition (DMD) [5, 6] modes, obtained from the decomposition of the results of
unsteady Euler simulations. The motivation is to develop a methodology that accounts for the
unsteady nonlinear aerodynamic effects more accurately for a large range of frequencies. More-
over, an unsteady Euler simulation being computationally expensive for practical applications,
the Harmonic Balance (HB) [7,8] method is suggested as an efficient alternative for calculating
the dynamic modes. An overview of the existing numerical methods used in the present study
is presented in the next section.

2 NUMERICAL METHODS

2.1 Time-accurate simulation

All numerical simulations are performed with the open-source CFD code SU2 [9]. This solver
is based on a finite volume discretization and a dual time-stepping time integration to solve the
Euler or RANS equations.

2.2 Dynamic mode decomposition

The unsteady flow fields are processed using the Dynamic Mode Decomposition (DMD) [5, 6,
10] in order to extract information about the flow dynamics. DMD is applied to a sequence of
N flow fields represented by a matrix VN

1 :

VN
1 = {v1,v2,v3, . . . ,vN}, (1)
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where vn is a vector corresponding to the nth flow field. Two consecutive snapshots vn and
vn+1 are assumed to be separated by a constant time step ∆t that must be small enough so that
the relevant dynamic processes can be extracted from the input data sequence.

The application of the DMD procedure results inN−1 modes, which consist of the eigenvalues
λi, the modal amplitudes αi, and the mode shapes φi such that

vn =
N−1∑
i=1

αiφie
λi(n−1)∆t, n ∈ {1, 2, 3, . . . , N − 1}. (2)

The growth/decay rates and frequencies of the individual modes are respectively the real and
imaginary parts of λi.

2.3 Harmonic balance method

The Harmonic Balance (HB) method [7, 8] solves the governing equations for a specified set
of frequencies

ω =
[
ω0 ω1 ω2 . . . ωK ω−K . . . ω−1

]T
, (3)

where ω0 = 0, ω−i = −ωi, and K is the number of specified frequencies. In general, the
HB method can be used for flows with several fundamental frequencies, and so the discrete
frequencies are not necessarily multiples of each other. The period T of HB simulation is
divided into N = 2K + 1 time instances. In the case where the flow problem contains multiple
fundamental frequencies, T can be calculated by the algorithm given in [11].

A Fourier representation of each conservation variable is written using the period and the set of
frequencies:

ϕ̂k =
1

N

N−1∑
n=0

ϕne−iωktn , (4)

or in matrix form using the discrete Fourier transform matrix E:

ϕ̂ = Eϕ∗, Ek,n =
1

N
e−iωktn , (5)

where

• ϕ∗ =
[
ϕ0 ϕ1 ϕ2 . . . ϕN−1

]T represents a single conservation variable at the N time
instances throughout the period tn = (n− 1)T/N .
• ϕ̂ =

[
ϕ̂0 ϕ̂1 ϕ̂2 . . . ϕ̂K ϕ̂−K . . . ϕ̂−1

]T is the vector of Fourier coefficients in
the frequency domain.

Applying the time derivative operator to ϕ∗ gives

Dtϕ
∗ = Dt(E

−1ϕ̂) =
∂E−1

∂t
ϕ̂ =

∂E−1

∂t
Eϕ∗, (6)

and therefore

Dt =
∂E−1

∂t
E. (7)
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If the system has only one fundamental frequency, the discrete frequencies are given by ωk =
k2π/T and the inverse Fourier transform E−1 has the analytic expression

E−1
n,k = eiωktn . (8)

Otherwise, it is easier to first write an analytical expression directly for E−1 to determine its
derivative, and calculate E by numerically inverting E−1 [11].

The formulation leads to a system of coupled steady simulations that are solved simultaneously
by marching in time towards steady state.

3 REFERENCE CASE

The reference case consists in the calculation of the 2D transonic flow over a NACA 64A010
airfoil, shown in Figure 1(a), pitching about its quarter-chord point. In the experiment by
Davis [12], the free-stream Mach number M∞ is 0.796 and the Reynolds number, Re, based on
the chord c is 12.56× 106. The pitching motion is specified as

α(τ) = αm + α0 sin(kτ) (9)
= 0◦ + 1.01◦ sin(0.202τ), (10)

where α(τ) is the variation of the angle of attack with non-dimensional time τ = tU∞/b, U∞ is
the free-stream velocity, b = c/2, αm is the mean angle of attack, α0 is the pitching amplitude,
and the reduced frequency is defined as k = ωb/U∞ = 0.202 with ω the angular frequency.
Because the maximum pitch angle is small, the flow remains attached.

3.1 Time-accurate Euler solution

In the present study, only two-dimensional Euler simulations are considered. A C-type grid is
generated around the airfoil, as shown in Figure 1(b). The grid has about 29,500 quadrilaterals
with 300 points around the airfoil. The boundaries of the computational domain are located
about 50c away from the airfoil in order to minimize their impact on the solution in the region
of interest. The time-accurate simulation uses 25 time steps per period of oscillation to capture
the relevant time scales, and the calculation is run until a periodic state has been reached to
eliminate transient effects.
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(a) Airfoil shape. (b) Grid.

Figure 1: NACA 64A010 airfoil shape and close-up view of the grid around the airfoil for Euler simulations.

Figure 2 shows that the variation of the lift coefficient, cl, and the chordwise position of the
shock on the upper surface, xs, obtained by the unsteady Euler simulation are in agreement
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with the experimental measurements for the reference conditions. Although convergence ac-
celeration techniques available for steady-state problems can be used with a dual time-stepping
approach, time-accurate simulations remain computationally expensive. In particular, the cal-
culation of transients consumes a significant part of the computational time.
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(b) Shock position.

Figure 2: Variation of lift coefficient and position of the shock on the upper surface of the airfoil over one oscillation
cycle, k = 0.202.

4 APPROACH USING A FEW STEADY SOLUTIONS

The present section focuses on using a small number of steady Euler simulations and applying
a filter to estimate the unsteady flow around the pitching airfoil. First, the approach is demon-
strated on the time response of the Mach field. Then, the shock motion is considered as a
quantitative comparison to the unsteady Euler simulation results for a large range of reduced
frequencies.

4.1 Mach field

The first row of Figure 3 represents three snapshots of the Mach field M(x, y, τ) at three in-
stantaneous phase angles computed by an unsteady Euler simulation of the reference case, for
k = 0.202. The shocks lie at the edge of the supersonic regions and their position clearly varies
over time. The shock on the upper surface moves downstream and becomes stronger during the
upstroke. The opposite happens during the downstroke; the shock on the upper surface moves
upstream and becomes weaker. The same behavior is observed on the lower surface with a
half-period lag, as the configuration is symmetric.
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(a) kτ = 0◦. (b) kτ = 120◦. (c) kτ = 240◦.

(d) kτ = 0◦. (e) kτ = 120◦. (f) kτ = 240◦.

(g) kτ = 0◦. (h) kτ = 120◦. (i) kτ = 240◦.

Figure 3: Mach contours at different phases of the oscillation cycle obtained by (a–c) an unsteady Euler simulation,
(d–f) using steady Euler solutions, and (g-i) applying Theodorsen’s filter to steady Euler solutions.
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The second row of Figure 3 depicts snapshots at the same instantaneous angles obtained through
a quasi-steady approximation. In particular, two steady Euler simulations are used to determine
the mean field at the mean angle of attack, and the derivative of this field with respect to alpha.
In the context of this quasi-steady approximation, the time response of the Mach number field
can be expressed as

Mqs(x, y, τ) = M(x, y, α = αm) +
∂M(x, y, α = αm)

∂α
(α(τ)− αm). (11)

In this case, the two steady simulations have been performed at the mean angle of attack and at
the maximum pitching amplitude.

When kτ = 0◦(α = 0◦), it can be seen that the lower and upper parts of the Mach field are not
symmetrical for the unsteady case, while the steady simulation at this angle of attack provides
a symmetrical solution, which is expected from the symmetry of the airfoil. When kτ = 120◦

(α ≈ 0.87◦), the quasi-steady calculation overestimates the extent of the supersonic region on
the upper part and underestimates its size on the lower part.

A quasi-steady approach is tempting because of its low computational cost and independence
with respect to the reduced frequency, but the resulting Mach field predictions, and hence shock
motions, are inaccurate. More representative results can be obtained by applying an unsteady
filter to Equation (11). As a simple example, Theodorsen’s function C(k) [13] is considered
(see Figure 4). The function C(k) can be seen as an analog filter since its amplitude decreases
with k, tending to 0.5 as k tends to infinity. Equation (11) becomes

Mf (x, y, τ) = M(x, y, α = αm) +
∂M(x, y, α = αm)

∂α
=(C(k̄)α0eikτ ), (12)

where k̄ = ωb/(βU∞) and β =
√

1−M2
∞.
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Figure 4: (a) Magnitude and (b) phase angle of Theodorsen’s function as a function of the reduced frequency.

The third row of Figure 3 shows the results computed by the filtered quasi-steady technique. At
kτ = 0◦, the filter introduces a dissymmetry in the field compared to the steady case, which is
qualitatively closer to the unsteady case. At kτ = 120◦, the filter reduces the supersonic region
on the upper part obtained by the steady case, and thus provides a better approximation to the
unsteady case. Nonetheless, discrepancies with the unsteady Euler solution are still present.

4.2 Shock motion

A supersonic flow is decelerated to subsonic through a shock wave. Therefore, a shock lying
on the airfoil can be extracted directly from the Mach field of an inviscid flow. Applying the
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idea of the quasi-steady analysis, the two steady simulations can be used to determine the mean
shock position, xm, and the amplitude of the shock motion, x0, such that

xs(τ) = xm + x0 sin kτ. (13)

Theodorsen’s filter corrected for compressibility can again be applied in order to improve the
quasi-steady approximation, such that

xs(τ) = xm + =(C(k̄)x0eikτ ). (14)
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(a) k = 0.1.
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(b) k = 0.2.
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(c) k = 0.3.
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(d) k = 0.4.
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(e) k = 0.5.
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(f) k = 2.

Figure 5: Influence of the reduced frequency on the shock motion on the upper surface of the airfoil.

Figure 5 repeats the analysis performed for the reference case to different values of the reduced
frequency. It shows that the filtered quasi-steady approach provides acceptable results when k
is below 0.4, which is promising knowing that the reduced frequency at flutter is typically of
the order of 0.1 for most transonic flutter problems encountered in aircraft wings or control sur-
faces [1]. For higher frequencies, the predicted unsteady shock motion becomes more irregular,
and this behavior cannot be fully recovered by applying the filter. On the other hand, when k is
very large (k = 2), the shock motion is negligible.

The basic Theodorsen’s function depends on the oscillation frequency. More specifically, apply-
ing Theodorsen’s filter cannot predict higher harmonics, which partly explains the discrepancies
observed with the exact unsteady solution. Better results could potentially be obtained with a
different filter that includes harmonics. The contribution of higher harmonics is discussed in
the next section.
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5 APPROACH USING A FEW DMD MODES

Before presenting the second proposed methodology, flow fields obtained from unsteady Euler
simulations at different pitching frequencies are first processed using Dynamic Mode Decom-
position (DMD) in order to extract information about the flow dynamics. More specifically,
a DMD analysis generates dynamic modes oscillating at a single frequency, allowing a better
description of the influence of the reduced frequency on the transonic flow around the pitching
airfoil.

5.1 Dynamic mode decomposition analyses

DMD is applied to the Mach fields generated by the unsteady Euler simulations for three re-
duced frequencies k = 0.1, 0.3, and 0.5. The spatial size of the snapshots is chosen large enough
to include the supersonic regions, and 25 snapshots are taken per period. Figure 6 plots the re-
sulting modal amplitudes αi against the corresponding modal reduced frequencies =(λi)b/U∞
for the simulations carried out at the three values of k. Each DMD amplitude distribution is
discrete and symmetrical with respect to =(λi) = 0 because the input data are real [5]. The
modes are sorted by descending amplitude. The highest peak represents the contribution of the
mean flow, which is constant over time (=(λ0) = 0).

A peak appears at the fundamental frequency, which corresponds to the imposed pitching fre-
quency, such that =(λ1)b/U∞ = k. The harmonics (i.e., integer multiples of the fundamen-
tal frequency) are well distinguishable, even at high k, but their amplitude decreases with
=(λi)b/U∞. Therefore, the modes at high =(λi)b/U∞ make a relatively small contribution
to the dynamics of the system.

(a) k = 0.1. (b) k = 0.3. (c) k = 0.5.

Figure 6: Absolute value of the DMD amplitude as a function of non-dimensional frequency in a semilogarithmic
plot.

Figure 7 plots the shape α0φ0 of mode zero, i.e., the mean flow, as calculated from three un-
steady simulations at k = 0.1, 0.3, and 0.5. It shows that the DMD representation of the mean
flow does not vary with reduced frequency for these cases. Note that the oscillations have small
amplitude, separated flow cases would not necessarily lead to the same result.
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(a) k = 0.1. (b) k = 0.3. (c) k = 0.5.

Figure 7: Influence of the reduced frequency on the mean mode.

The Modal Assurance Criterion (MAC) is used in order to demonstrate quantitatively that the
reduced frequency does not influence mode α0φ0. The MAC is a technique used to compare
mode shapes [14]. Considering two families of modes x{1} and x{2}, the modal assurance
criterion between the ith mode of the first family and the jth mode of the second family is
calculated from

MAC
(
x
{1}
(i) ,x

{2}
(j)

)
=

 x
{1}T
(i) x

{2}
(j)∥∥∥x{1}(i)

∥∥∥∥∥∥x{2}(j)

∥∥∥
2

. (15)

A quantitative comparison is given by the value of the criterion, which varies between 0 and 1.
If MAC is equal to 1, then the correlation is perfect. Figure 8 shows the MAC values calculated
between the mean flow mode shapes α0φ0 at the three values of k are always 1, which means
that the modes are identical and that there is no effect of k on the mean mode shape.
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Figure 8: MAC matrix comparing the mean modes at different k.

Each dynamic mode is characterized by a spatial structure oscillating at a frequency =(λi). The
first dynamic mode given in Figure 9 oscillates at the fundamental frequency. Some streamlines
have been added to better visualize the mode shape. The real part of the first dynamic mode
has a vortex close to the trailing edge due to the pitching motion of the airfoil. Moreover, the
streamlines around the airfoil indicate the expansion and contraction of the supersonic regions.
However, it is difficult to give a precise physical interpretation of these streamlines because only
the contribution of the first dynamic mode is illustrated.

Figure 9 also highlights that the first dynamic mode changes progressively as the reduced fre-
quency k is increased. For instance, the MAC matrix points out that the mode shapes at k = 0.1
and k = 0.5 are quite different. The second dynamic modes, α2φ2, obtained for different k
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are even less correlated, as can be seen in Figure 10. As a result, the dynamics of the flow in
time, and hence the variation of the shock positions, will also change with k. This analysis is
consistent with the results shown for the shock motion in Figure 5.

(a) k = 0.1. (b) k = 0.3. (c) k = 0.5.

(d) k = 0.1. (e) k = 0.3. (f) k = 0.5.
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Figure 9: Influence of the reduced frequency on (a–c) the real part and (d–f) the imaginary part of DMD mode 1.
MAC matrix that compares (g) the real part and (h) the imaginary part of DMD mode 1 at different k.
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Figure 10: Influence of the reduced frequency on DMD mode 2. MAC matrix that compares (a) the real part and
(b) the imaginary part of DMD mode 2 at different k.

The DMD analysis demonstrates that the frequency spectrum of the transonic flow around a
pitching airfoil is discrete. It also allows the identification of the most dominant frequencies,
which will be used with the Harmonic Balance (HB) method discussed in the following section.

5.2 Harmonic balance solutions

The transonic flow around the pitching airfoil is simulated with the harmonic balance method
using the fundamental frequency of the flow, which is equal to the imposed pitching frequency.
Another computation is carried out by adding the second harmonic. As discussed in the previous
section, the DMD modes occur at the frequency of oscillation and its harmonics, exactly as in
the case of a harmonic balance procedure with a single fundamental frequency. Therefore, a
harmonic balance solution with only the fundamental frequency is a single-mode solution. If
the second harmonic is included, the solution corresponds to a two-mode DMD representation.

Figure 11 shows the results for the aerodynamic forces and the shock motion. The results
obtained with one mode are in good agreement with the time accurate unsteady solutions, es-
pecially for the aerodynamic forces. Two modes are sufficient to capture the time responses of
the aerodynamic forces and the shock motion accurately. The HB computation for two input
frequencies is significantly faster than a time-accurate computation. If the number of included
frequencies increases, the estimations are more accurate, but the HB method can become ex-
pensive in terms of memory requirements and computation time.
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(h) k = 0.3.
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(i) k = 0.5.

Figure 11: Comparison between the results of unsteady simulations and harmonic balancing with 1 and 2 modes.
Variation of (a–c) lift coefficient, (d–f) moment coefficient, and (g–i) position of the shock on the upper
surface of the airfoil over one oscillation cycle, k = 0.1, 0.3, and 0.5.
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5.3 Interpolation of dynamic modes

The previous analyses show that the dynamic behavior of the flow problem can be estimated by
the most dominant modes. In this case, the relevant modes are essentially the first two dynamic
modes. The idea of the proposed methodology is to compute the most dominant modes at
several reduced frequencies, and then estimate the modes at an intermediate k by interpolation
in order to take into account the modification of the mode shapes with k.

In the following example, the exact dynamic modes at k = 0.3 and k = 0.5 are used to estimate
the dynamic modes at k = 0.4. The unsteady shock motion largely deviates from the one
obtained by steady simulations at this intermediate reduced frequency (see Figure 5).

5.3.1 Mach field

The Mach field is first considered as it contains information about the moving shocks that can
profoundly affect the aeroelastic instability. The related dynamic modes have been obtained by
a harmonic balance simulation with two modes.

From a qualitative point of view, the first dynamic mode at k = 0.4 obtained using a linear
interpolation of the exact modes at k = 0.3 and k = 0.5 is in good agreement with the exact
solution at k = 0.4 as can be seen in Figure 12. Moreover, the MAC values given in Table 2
are very close to 1 indicating a very good correlation. Table 2 also shows that the interpolated
second dynamic mode corresponds quite well to the exact solution.

(a) (b)

(c) (d)

Figure 12: (a) Exact real part and (c) exact imaginary part of HB mode 1 at k = 0.4. (b) Real part and (d) imaginary
part of HB mode 1 at k = 0.4 interpolated from the solution at k = 0.3 and k = 0.5.
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Mode 1 Mode 2
Real part Imaginary part Real part Imaginary part

k = 0.4 0.99 0.98 0.87 0.85

Table 1: MAC values comparing the modes interpolated from a solution at k = 0.3 and k = 0.5 with the corre-
sponding exact modes.

5.3.2 Pressure coefficient field

The pressure coefficient fields can also be considered in order to evaluate the aerodynamic lift
and moment on the airfoil. Figure 13 reiterates the analysis of Figure 12 with the first dynamic
mode associated with the pressure coefficient. Once again, the exact and interpolated mode
shapes are very similar, as quantified in Table 13.

(a) (b)

(c) (d)

Figure 13: (a) Exact real part and (c) exact imaginary part of DMD mode 1 at k = 0.4. (b) Real part and (d)
imaginary part of DMD mode 1 at k = 0.4 interpolated from k = 0.3 and k = 0.5.
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Mode 1 Mode 2
Real part Imaginary part Real part Imaginary part

k = 0.4 0.99 0.98 0.87 0.85

Table 2: MAC values comparing the modes interpolated using k = 0.3 and k = 0.5 with the corresponding exact
modes.

5.3.3 Lift, moment and shock motion

The evolution of the flow fields can be reconstructed from the interpolated modes. The aerody-
namic lift and moment coefficients shown in Figure 14 are calculated from the pressure fields,
and the shock motion is extracted from the Mach fields. The results obtained with the interpo-
lated modes are in good agreement with the harmonic balance solutions.
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(a) Lift coefficient.
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Figure 14: Variation of (a) lift coefficient, (b) moment coefficient, and (c) position of the shock on the upper surface
of the airfoil over one oscillation cycle, k = 0.404.

The first two dynamic modes can be estimated accurately for the range of reduced frequencies
until k = 0.5 if the exact modes are available for k = 0.1, k = 0.3, and k = 0.5 as can be
seen in Table 3. Table 4 shows that if the modes are interpolated from exact modes whose
frequencies are further apart, i.e., k = 0.1 and k = 0.5, the first dynamic mode can still be
estimated precisely by interpolation, but the second dynamic modes do not correlate well with
the exact modes. In other words, this interpolation approach provides accurate results provided
that the frequencies of the corresponding HB solutions are sufficiently close.

Overall, the second approach is more accurate than the first one, as it includes higher harmonics.
However, its cost is also higher because it requires several HB simulations rather than simply
two steady simulations.
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Mode 1 Mode 2
Real part Imaginary part Real part Imaginary part

k = 0.2 0.97 0.99 0.82 0.92
k = 0.4 0.99 0.98 0.87 0.85

Table 3: MAC values comparing the modes interpolated using k = 0.1, k = 0.3, and k = 0.5 with the correspond-
ing exact modes.

Mode 1 Mode 2
Real part Imaginary part Real part Imaginary part

k = 0.2 0.92 0.95 0.47 0.77
k = 0.3 0.87 0.88 0.09 0.44
k = 0.4 0.95 0.93 0.57 0.51

Table 4: MAC values comparing the modes interpolated using k = 0.1 and k = 0.5 with the corresponding exact
modes.

6 CONCLUSIONS AND PERSPECTIVES

Applying an unsteady filter to a limited number of steady Euler solutions provides a first ap-
proximation of the transonic flow around a pitching airfoil. An advantage of relying on steady
simulations is their independence with respect to frequency. Nevertheless, the shock motion
becomes increasingly nonlinear as the frequency of the pitching airfoil increases, and this be-
havior cannot be fully recovered by applying the Theodorsen’s filter. One research direction
may be to develop an improved filter. On the other hand, instead of using this methodology as
a stand-alone approach, it could be combined with a linear panel method so as to extend the
range of applicability of the latter to transonic flows with moving shocks.

The dynamic mode decomposition of the unsteady Euler flow fields reveals that the flow dy-
namics can be represented by the most dominant dynamic modes. The first two dynamic modes,
which can be obtained by a harmonic balance simulation, are sufficient to calculate the aerody-
namic forces and the shock motion accurately in the case of a pitching airfoil. In addition, the
dynamic modes can be estimated over an entire range of reduced frequencies by interpolation
from the modes computed for a set of k values. In the present flow problem, interpolating from
full solutions at k = 0.1, 0.3, and 0.5 provides accurate estimations of the first two dynamic
modes for all 0 ≤ k ≤ 0.5 and, hence, of the complete dynamic flowfields in this frequency
range. This approach can significantly decrease the computational cost compared to repeated
time-accurate simulations while accounting for the motion of the shocks. The formulation of the
proposed approach still needs further development. In particular, different types of interpolation
may be investigated.

Overall, both approaches represent a promising first step towards a fast and accurate transonic
aeroelastic calculation methodology. Nonetheless, the present analysis is based on several sim-
plifications. More specifically, a two-dimensional airfoil with only one degree-of-freedom has
been considered. The two methods have relied on Euler simulations so that the nonlinear in-
teraction between the shock and the viscous boundary layer cannot be captured. Finally, the
pitching motion was restricted to small amplitudes. Future work will focus on extending the
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present methodologies to more complex cases. Effort will also be directed towards the devel-
opment of a new filter. Additionally, the present methodology will be illustrated in the case of
a transonic flutter calculation.
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