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Abstract: Formulations for the flight dynamics of flexible aircraft have been commonly ap-
plied to aircraft free to fly in the three-dimensional space, having all six rigid-body degrees
of freedom. For risk reduction in the future flight operations of the X-HALE testbed at ITA,
however, wind-tunnel tests of the remotely-piloted, four-meter-span configuration of the aircraft
were performed. In the wind tunnel, the rigid-body translations were completely constrained,
but the same was not valid for the rigid-body rotations, which could be conveniently left free or
not with a proper selection of the connection between the aircraft and the wind-tunnel mount.
In the present paper, in order to computationally assess the response and stability characteris-
tics of the aircraft in the wind tunnel, we derive equations of motion for a constrained flexible
aircraft with up to three rigid-body rotational degrees of freedom, mounted on an also flexible
wind-tunnel strut. The numerical model has its value confirmed by the wind-tunnel tests in the
predicted and observed roll-control reversal for anti-symmetrical deflections of the all-moving
tails, and absence of reversal for aileron deflections.

1 INTRODUCTION

The inclusion of elastic degrees of freedom in the formulation of the flight dynamics of aircraft
becomes more necessary as the aircraft structures present improved structural strength but re-
duced weight and stiffness. In flexible aircraft, the dynamic coupling between the rigid-body
motion and the elastic deformation occurs more easily, and neglecting it may result in unaccept-
able error levels in simulation models.

A comprehensive literature review of the different formulations available for the flight dynamics
of flexible aircraft was provided by Guimarães Neto et al. [1]. The dynamically-coupled for-
mulations were classified as those in which n elastic degrees of freedom (DOFs) are included
in the mathematical model of the aircraft, representing its structural dynamics; consequently,
the number of equations of motion (EOMs) increases as the classical six-degree-of-freedom
(6-DOF) rigid-body system is converted to an arbitrary (6+n)-DOF system.
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Bisplinghoff, Ashley and Halfman [2], Bisplinghoff and Ashley [3], and Etkin [4] were among
the first to derive dynamically-coupled but inertially-decoupled formulations [1]. However,
formulations of this kind would only be used in practical applications more than a decade later
due to the necessary development of electronic computing resources. The FLEXSTAB [5, 6]
system of computer programs developed at the Boeing Company from the late 1960s to the
middle 1970s deserves special mention, as it enabled an adequate prediction of the stability
characteristics of elastic aircraft at both subsonic and supersonic speeds.

The introduction of n additional structural-dynamic degrees of freedom while keeping the clas-
sical six DOFs of the rigid body implies that constraints must be included in the formulations
to eliminate the rigid-body DOFs from those of the structural-dynamic model. Such constraints
are usually expressed by the choice of body axes. Milne [7] introduced more formalism to this
important topic. In his report, three particular choices of body axes were discussed: attached,
mean and principal axes.

The origin of the attached axes remains invested in one material point and the axes’ directions
may be tangent, normal and binormal to a curve of material points that contains the original
point [7]. The mean axes were probably first defined by Lamb [8] in 1929: with respect to
them, the linear and angular momenta of the elastic motion are identically zero at every instant.
At last, the principal axes are those with respect to which the inertia matrix is diagonal at any
instant [7].

Recently, the work of Guimarães Neto et al. [1] extended Milne’s concept of attached axes to
a more general form named dually-constrained axes, in which the origin of the structural axes
(the point where elastic deformations are assumed null) does not necessarily coincide with the
origin of the flight-dynamic body axes (with respect to which the EOMs are written). Attached
axes became, then, a particular case when such coincidence occurs.

Rodden and Love [9] derived EOMs for a quasi-steady vehicle using the flexibility matrix of
the restrained vehicle but calculating the orientation of the mean axes as a function of the de-
formation of the restrained structure. Their paper exerted a significant impact on computational
aeroelasticity worldwide, since the solution sequence of MSC.Nastran for static aeroelasticity is
based on their work [10]. More recently, Dykman and Rodden [11] derived EOMs considering
dynamic aeroelastic effects as well, based on the modal superposition technique, and showed
that a quasi-steady vehicle formulation can be obtained by the residualization of all modes of
vibration.

Considering large rigid-body motions but small elastic deformations, Waszak and Schmidt [12]
used Lagrange’s equation to derive the same EOMs previously obtained in Refs. [3,4]. None of
these are readily applicable to constrained vehicles.

It is highly desirable from a computational viewpoint that flight-dynamic formulations consider
the finite-element method (FEM) in modeling the structural-dynamic EOMs. References [9]
and [11] e.g. can be applied to FEM-modeled aircraft, but do not consider large rigid-body
rotations. Cavin III and Dusto [13] developed FEM approximations with respect to a body
mean-axis system in which collinearity between deformations and deformation velocities was
assumed, but with small body angular rates.

Buttrill, Zeiler and Arbuckle [14] derived EOMs considering the availability of a lumped-mass
FEM model and retained all the inertial coupling terms. Zeiler and Buttrill [15] refined the
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EOMs using nonlinear strain-displacement relations to improve the calculation of the incre-
mental stiffness matrix due to nonzero body angular rates – the centrifugal stiffening effect.
However, in both studies [14, 15], the rotational DOFs of the lumped mass elements were not
considered.

Meirovitch and Tuzcu [16] developed a modular dynamic formulation using Lagrange’s equa-
tions for quasi-coordinates [17] to derive inertially-coupled, hybrid EOMs. The EOMs were
then discretized in space for the solution of the boundary-value problem for the elastic defor-
mation. The formulation, however, is not easily adaptable to the employment of lumped-mass
FEM models with rotational DOFs [18, 19].

Reschke [19, 20] also used Lagrange’s equations for quasi-coordinates in the derivation of
EOMs, and had in mind the direct integration with FEM models. Differently from Refs. [14,15],
the author considered the rotational DOFs of the FEM nodes. All inertial coupling terms were
derived. The elastic DOFs were represented by free-free modes of vibration, making some but
not all of the inertial coupling terms vanish, and variations of the inertia matrix were allowed.

Baldelli, Chen and Panza [21] used rational function approximations (RFAs) to develop a uni-
fied aeroelastic and flight-dynamic formulation aimed at control system design. Higher-fidelity
quasi-steady aerodynamic data and gravity terms were used to modify the RFAs. The use of
unsteady aerodynamics generates a full-frequency flight dynamic model, in which the rigid-
body modes are subject to high-frequency unsteady aerodynamic effects usually not considered
in flight dynamics. However, the EOMs are essentially linear due to the linear transformations
used from the body axes to the stability axes and also due to the linear character of the RFAs
nonlinear effects in the quasi-steady aerodynamic coefficients are not present. These issues
would be of concern in flight simulation applications.

Guimarães Neto [22] derived equations of motion neglecting none of the inertial-coupling
terms, and which can be readily applied to aircraft with lumped-mass FEM models. The inertial-
coupling terms were however linearized with respect to the structural degrees of freedom, in-
spired by the method of Hesse and Palacios [23]. Consistent RFAs [24] were used to represent
the unsteady aerodynamic effects calculated with the doublet-lattice method [25].

Wind-tunnel testing of clamped aeroelastic models has been common practice for decades, and
for such models only the aeroelastic equations of motion do actually matter. On the other
hand, devices such as the classical Pitch and Plunge Apparatus (PAPA) [26] used in NASA’s
Transonic Dynamics Tunnel (TDT) were developed to conduct two-degree-of-freedom flutter
research using rigid wings, and then do not correlate much with the proposition of the present
paper.

To the best of the authors’ knowledge, no previous work exists on the physical-mathematical
modeling or on the experimental aspects of the wind-tunnel testing of a remotely-piloted aeroe-
lastic aircraft. It is a fact that, for small rigid-body rotations, the formulations of Rodden and
Love [9], Dykman and Rodden [11] or Baldelli, Chen and Panza [21], for example, can be ap-
plied in the assessment of the response of vehicles with motion constrained in a wind tunnel.
However, arbitrarily-large angular excursions result in nonlinearities in the rigid-body rotational
kinematics that would not be considered in such formulations, as well as nonlinearities in the
aerodynamic forces and moments would be more difficultly included. Moreover, a theoretical
advantage exists in the derivation of the equations of motion from first principles, avoiding the
need to perform adaptations that can be cumbersome.
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The equations of motion are derived using Lagrange’s equations with holonomic constraints
[17, 28]. Structural flexibility of both the aircraft and the wind-tunnel mount is allowed, rep-
resented by a finite-element model with lumped-mass elements and beam elements for small
deformations. In principle, all aircraft rigid-body degrees of freedom are included, but the cor-
responding constraint equations need also be considered. The rotational degrees of freedom are
modeled as the Euler angles of the body reference frame (BRF).

The developed formulation is applied to the four-meter-span X-HALE configuration [27], with
the objective of determining the general response and stability characteristics of the aircraft in
the IAE (Instituto de Aeronáutica e Espaço, Portuguese for Institute of Aeronautics and Space)
TA-2 subsonic wind tunnel in São José dos Campos, Brazil. Correlation with experimental data
is presented.

2 DERIVATION OF THE EQUATIONS OF MOTION

In the equations of motion to be derived in this section, the aircraft is, in the most general case,
assumed to be connected with 6 − nc free degrees of freedom to the extremity of a flexible
mount (strut), which is itself clamped in its other extremity to the wind-tunnel wall. Therefore,
the whole aeroelastic system consisting of the aircraft plus the flexible mount is subjected to
12 + nc constraints. Six constraints refer to the clamp of the flexible mount to the wind-tunnel
wall; other six refer to equations that define the aircraft body axis system with respect to the
structural motion; and nc refer to the aircraft-mount connection constrained degrees of freedom.

The body reference frame (BRF) is related to the aircraft only, with a corresponding coordinate
system given by a set of orthonormal basis vectors that form the columns of a matrix Fb. This
set of axes is known as the body axes. Because the basis vectors are orthonormal, Fb is an
orthogonal matrix: Fb

−1 = Fb
T .

The mount reference frame (MRF) is considered to coincide with the inertial reference frame
(IRF) of the assumed flat and non-rotating Earth [29], an excellent approximation for the aircraft
dynamics in the wind tunnel. With no loss of generality, the IRF orthonormal basis vectors are
assumed to be unit vectors in each of the three dimensions, the columns of a matrix F0 = I3.
This set of axes is known as the inertial axes, the origin of which is considered to be at 03×1. A
generic vector v can be written in such a frame as:

v = F0v0 = I3v0. (1)

The same generic vector v can also be written as Fbvb, from which the following transformation
of coordinates is obtained:

vb = Fb
TF0v0 = Cb0v0. (2)

The transformation matrix Cb0 from the inertial frame to the body frame is obtained by a clas-
sical sequence (3-2-1) of Euler rotations, ψ, θ and φ [29], and is given by:

Cb0 =

 cos θ cosψ cos θ sinψ − sin θ
cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ
cosψ sin θ cosφ+ sinψ sinφ sinψ sin θ cosφ− cosψ sinφ cos θ cosφ

 . (3)
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The equations of motion for the flexible system with 12 + nc constrained degrees of freedom
can be derived using Lagrange’s equations with holonomic constraints [28]:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+
∂F
∂q̇i

=
12+nc∑
k=1

λk
∂fk
∂qi

+Qi, (4)

whereL = T−U is the Lagrangian;F is Rayleigh’s dissipation function; fk, k = 1, 2, · · · , 12+
nc, are the functions describing the constraints of the system; λk are the corresponding Lagrange
multipliers; qi, i = 1, 2, · · · , 6 + n, are the 6 + n generalized coordinates of the system; and Qi

are the corresponding nonpotential generalized forces.

The generalized coordinates qi constitute a vector q. By definition, the holonomic constraints
depend only on the generalized coordinates and time:

fk = fk (q, t) , (k = 1, 2, · · · , 12 + nc) . (5)

The elected set of 6 + n generalized coordinates for the flight dynamics of the flexible system
comprises: the components of the position vector RO,b of the origin O of the BRF, expressed
in the body axes, b: RO,b =

{
xO yO zO

}T ; the Euler angles providing the orientation of the
BRF with respect to the inertial reference frame (IRF): ψ, θ, and φ; and n elastic degrees of
freedom of the whole system, constituting the displacement vector uG =

{
u1 u2 · · · un

}T .

As in Ref. [1], the aeroelastic system is considered to be structural-dynamically represented by
a finite-element model with lumped properties of inertia. The energy terms are calculated with
integral expressions over the mathematical spatial domain V representing the whole system,
but a convenient subdivision into the VA sub-domain representing the aircraft, where body axes
are used, and the VM representing the flexible mount, where the inertial axes are used, is here
appropriate. The integral expressions are given exactly by the sum ofNm = Nm,acft+Nm,mount

integrals over a collection of mutually-exclusiveNm sub-domains Vj . A sub-domain Vj contains
one, and only one, mass element, and there exists no sub-domain without a mass element.
Therefore, the total number of mass elements is also Nm. The CM of the jth mass element is
at a point J . Besides J , the sub-domain Vj also contains an infinite quantity of generic points,
each denoted by I .

The sub-domains Vj are considered to have no elastic deformation, with their internal rigid-
body motion hence due solely to the elastic motion of a corresponding structural node K with
which the CM of the mass element coincides (K ≡ J) or to which the mass element is rigidly
attached.

The position vector of any point I in the aeroelastic system with respect to the origin of the IRF
is then expressed by:

RI = RO + sOK + sKJ + sJI + dOK + dKJ + dJI , (6)

where s(•) refers to the relative position vectors in the undeformed (unstrained) condition, usu-
ally called the jig shape; and d(•) stands for the changes in the s(•) vectors due to the structural
deformation.
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For points in the aircraft, the position vectors in Eq. (6) can then be written as:

RI |acft = FbRI,b = Fb (RO,b + sOK,b + sKJ,b + sJI,b + dOK,b + dKJ,b + dJI,b) . (7)

For points in the flexible mount, the position vectors in Eq. (6) are written as:

RI |mount = F0RI,0 = F0 (sOK,0 + sKJ,0 + sJI,0 + dOK,0 + dKJ,0 + dJI,0) . (8)

To calculate the kinetic energy, the velocity vectors are expressed in terms of time derivatives
taken in the IRF:

0ṘI

∣∣∣
acft

= 0Ḟb (RO,b + sOK,b + sKJ,b + sJI,b + dOK,b + dKJ,b + dJI,b) + (9)

Fb

(
bṘO,b + bḋOK,b + bḋKJ,b + bḋJI,b

)
,

0ṘI

∣∣∣
mount

= F0

(
0ḋOK,0 + 0ḋKJ,0 + 0ḋJI,0

)
. (10)

The following equations were derived in Ref. [1] and are used in the present development:

0Ḟb = Fbω̃b, (11)

ω̃b = Cb0Ċ
T
b0, (12)

with the skew-symmetric operator, (̃•) or skew (•), providing an R3×3 representation of a vector
(•) ∈ R3, in which, if v =

{
vx vy vz

}T ∈ R3, then:

ṽ = skew (v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (13)

The vector ωb =
{
p q r

}T is the angular velocity vector of the BRF with respect to the IRF,
and has the components (body angular rates) p, q and r in the body axes. From Eqs. (3) and
(12), one can express such components in terms of the vector of time derivatives of the Euler
angles, ϕ̇ =

{
φ̇ θ̇ ψ̇

}T
:

ωb =

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 ϕ̇ = Hϕ
−1ϕ̇ (14)

From Eqs. (9), (11) and (12), the velocity vector of aircraft material points in the inertial frame
becomes:
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0ṘI

∣∣∣
acft

= Fb

(
bṘO,b + ω̃bRO,b + bḋOI,b + ω̃bsOI,b + ω̃bdOI,b

)
, (15)

where sOI,b = sOK,b + sKJ,b + sJI,b and dOI,b = dOK,b + dKJ,b + dJI,b.

The elastic displacements of a node K are given by the translation vector dK = FbdK,b for
aircraft nodes or dK = F0dK,0 for mount nodes, and by the Euler rotation vector ϕK,b ={
φK,b θK,b ψK,b

}T for aircraft nodes and ϕK,0 =
{
φK,0 θK,0 ψK,0

}T for mount nodes.
Small deformations are assumed. Hence, as derived in Ref. [1], one obtains:

dOK,b = dK,b, (16)
dOK,0 = dK,0, (17)

dKJ,b = ϕ̃K,bsKJ,b, (18)
dKJ,0 = ϕ̃K,0sKJ,0, (19)
dJI,b = ϕ̃K,bsJI,b, (20)
dJI,0 = ϕ̃K,0sJI,0. (21)

The nodal displacements and rotations, dK,b, ϕK,b, dK,0 and ϕK,0, can be recovered from
the finite-element displacement vector, uG, with time-invariant Boolean matrices [1], Ut,b,KG,
Ur,b,KG, Ut,0,KG and Ur,0,KG, respectively:

dK,b = Ut,b,KGuG, (22)
dK,0 = Ut,0,KGuG, (23)
ϕK,b = Ur,b,KGuG, (24)
ϕK,0 = Ur,0,KGuG. (25)

Equations (7-8) and (15-25) yield:

RI |acft = Fb (RO,b + sOI,b + (Ut,b,KG − s̃KI,bUr,b,KG) uG) , (26)

RI |mount = F0 (sOI,0 + (Ut,0,KG − s̃KI,bUr,0,KG) uG) , (27)

0ṘI

∣∣∣
acft

= Fb

(
bṘO,b + ω̃bRO,b + ω̃bsOI,b + (Ut,b,KG − s̃KI,bUr,b,KG) u̇G+

ω̃b (Ut,b,KG − s̃KI,bUr,b,KG) uG) , (28)
0ṘI

∣∣∣
mount

= F0

((
Ut,0,KG − s̃KI,0Ur,0,KG

)
u̇G
)
. (29)

The kinetic energy is calculated using the equation:
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T = 1/2

∫
V

0ṘI · 0ṘIρdV = 1/2
Nm∑
j=1

∫
Vj

0ṘI · 0ṘIρdV . (30)

The point J is the CM of each sub-domain Vj and, then:

∫
Vj

sJI,bρdV = 0. (31)

With gravity assumed uniform over the airframe, the aircraft CM and center of gravity (CG)
coincide, the reason why only the latter designation will be used henceforth. Calculating and
summing the contributions of each sub-domain to the kinetic energy, and considering that Vb =
bṘO,b + ω̃bRO,b, the final expression for the kinetic energy becomes:

T = 1/2 macftVb
TVb + 1/2 ωb

T (JO,acft + ∆JO,acft)ωb (32)

−macftVb
T
(

˜sCG,acft,b + ˜dCG,acft,b

)
ωb +macftVb

T bḋCG,acft,b

+u̇TGMωG
Tωb + 1/2 u̇TGMGGu̇G

with:

JO,acft =
1

2

Nm,acft∑
j=1

(
mj s̃OJ,b

T s̃OJ,b + Jj

)
, (33)

∆JO,acft = 2

Nm,acft∑
j=1

mj

(
s̃OJ,b

T d̃K,b + s̃OK,b
T
sKJ,bϕK,b

T − s̃OJ,b
TϕK,bsKJ,b

T
)

(34)

+

Nm,acft∑
j=1

mj

(
d̃K,b

T
d̃K,b + 2

(
d̃K,b

T
sKJ,bϕK,b

T − d̃K,b
T
ϕK,bsKJ,b

T
))

+

Nm,acft∑
j=1

((
mj s̃KJ,b

T
s̃KJ,b + Jj

)
ϕK,bϕK,b

T
)

+

Nm,acft∑
j=1

(
ϕ̃K,b

(
2Jj − tr (Jj) I3 − ϕ̃K,b

(
mjsKJ,bsKJ,b

T − Jj + 1/2 tr (Jj) I3
)))

,
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MGG =

Nm,acft∑
j=1

mj

(
Ut,b,KG

TUt,b,KG −Ut,b,KG
T s̃KJ,bUr,b,KG (35)

−Ur,b,KG
T s̃KJ,b

T
Ut,b,KG

)
+

Nm,acft∑
j=1

Ur,b,KG
T
(
mj s̃KJ,b

T
s̃KJ,b + Jj

)
Ur,b,KG

+

Nm,acft+Nm,mount∑
j=Nm,acft+1

mj

(
Ut,0,KG

TUt,0,KG −Ut,0,KG
T s̃KJ,0Ur,0,KG

−Ur,0,KG
T s̃KJ,0

T
Ut,0,KG

)
+

Nm,acft+Nm,mount∑
j=Nm,acft+1

Ur,0,KG
T
(
mj s̃KJ,0

T
s̃KJ,0 + Jj

)
Ur,0,KG,

sCG,acft,b =
1

macft

Nm,acft∑
j=1

mj (sOK,b + sKJ,b), (36)

dCG,acft,b =
1

macft

Nm,acft∑
j=1

mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)
uG = DCG,acft,buG, (37)

MωG
T = −

Nm,acft∑
j=1

(
mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)T
s̃OJ,b −Ur,b,KG

TJj

)
(38)

−
Nm,acft∑
j=1

mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)T
skew

(
Ut,b,KGuG − s̃KJ,bUr,b,KGuG

)
−

Nm,acft∑
j=1

Ur,b,KG
T
(

˜Ur,b,KGuG (−Jj + 1/2 tr (Jj) I3)
)

= MωG
T

+ ∆MωG
T ,

and Jj the inertia matrix of the jth lumped-mass element about its own center of mass.

The elastic strain energy for the aeroelastic system structure modeled with finite elements reads:

U elas = 1/2
(
TFEM |BRFuG

)T
KFEM

(
TFEM |BRFuG

)
= 1/2 uG

TKGGuG, (39)

where the FEM model nodal displacements can be calculated in generic coordinate systems
other than the flight-mechanics BRF coordinate system. The three-dimensional transformation
matrices from the BRF to such coordinate systems are collected in the block-diagonal transfor-
mation matrix TFEM |BRF , such that the original FEM stiffness matrix, KFEM , is transformed
to KGG = TFEM |BRF

TKFEMTFEM |BRF .
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The gravitational potential energy is given by:

Ugrav = −
Nm∑
j=1

∫
Vj

g ·RIρdV (40)

= −macftgb
T (RO,b + sCG,acft,b + dCG,acft,b)−mmountg0

T (sCG,mount,0 + dCG,mount,0) ,

where:

sCG,mount,0 =
1

mmount

Nm,acft+Nm,mount∑
j=Nm,acft+1

mj (sOK,0 + sKJ,0), (41)

dCG,mount,0 =
1

mmount

Nm,acft+Nm,mount∑
j=Nm,acft+1

mj

(
Ut,0,KG − s̃KJ,0Ur,0,KG

)
uG = DCG,mount,0uG,

(42)

At last, structural dissipation due to damping forces of viscous nature is assumed [30]:

F = 1/2 u̇TGBGGu̇G. (43)

2.1 Constraints

Six of the constraints to which the aeroelastic system is subjected correspond to the clamp of
the flexible mount to the wind-tunnel wall. Such constraints can be expressed by the equation:

uc,mount,0 = UT
c,mountuG = 0, (44)

where Uc,mount ∈ Rn,6 is the Boolean matrix that selects the structural clamp degrees of free-
dom from the complete set of DOFs.

Additionally, the aircraft structure is considered to be clamped at the structural node that coin-
cides in position with the mount node connected to the aircraft, resulting in other six constraints:

uc,acft,b = UT
c,acftuG = 0, (45)

with Uc,acft ∈ Rn,6.

The degrees of freedom of the node at the other end of the mount, where the connection to
the aircraft is located, are given by the vector ucon,mount,0 = UT

con,mountuG. Therefore, the
translational holonomic constraints for the aircraft are represented by the equations:
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RO,b (t) = Cb0 (t)
(
scon,mount,0 + Ut,con,mount

TuG
)
, (46)

where scon,mount,0 is the position vector of the mount node at the aircraft-mount connection
in the undeformed condition, and Ut,con,mount

T is the Boolean matrix giving the translational
displacements of the same node.

Any of the rotational degrees of freedom of the body reference frame, given by the Euler angles,
can also be constrained. These correspond to nc − 3 constraints.

The first fifteen constraints of the aeroelastic system can be summarized by the equation F15 (q, t) =
0, where F15 (q, t) is given by:

F15 (q, t) =

 Uc,mount
TuG (t)

Uc,acft
TuG (t)

RO,b (t)−Cb0 (t)
(
scon,mount,0 + Ut,con,mount

TuG (t)
)
 . (47)

The additional nc − 3 constraints can be summarized by:

Fnc−3 (q, t) =


mφ

(
φ (t)− φc − e3,1

TUr,con,mount
TuG (t)

)
, k = mφ,

mθ

(
θ (t)− θc − e3,2

TUr,con,mount
TuG (t)

)
, k = mφ +mθ,

mψ

(
ψ (t)− ψc − e3,3

TUr,con,mount
TuG (t)

)
, k = mφ +mθ +mψ,

(48)

where mφ, mθ, and mψ are 1 if the constraint is active and 0 if the constraint is inactive; φc, θc
and ψc are the values at which the corresponding angles are constrained in addition to the elastic
rotational twist of the mount tip; and Ur,con,mount

T is the Boolean matrix giving the rotational
displacements about the inertial axes of the structural node at the end of the mount to which the
aircraft is connected.

The whole set of holonomic constraints can be written in matrix form:

F12+nc (q, t) =

[
F15 (q, t)

Fnc−3 (q, t)

]
. (49)

Considering Lagrange’s equations, Eq. (4), the following relations become useful:

∂F12+nc

∂RO,b

=

 012×3
I3

0nc−3×3

 , (50)

∂F12+nc

∂ϕ
=


012×3

−R̃O,b

(
Hϕ

−1)
mφenc−3,mφe3,1

T +mθenc−3,mφ+mθe3,2
T+

+mψenc−3,mφ+mθ+mψe3,3
T

 =

 012×3

−R̃O,b

(
Hϕ

−1)
Mφθψ

 , (51)

11
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∂F12+nc

∂uG
=


Uc,mount

T

Uc,acft
T

−Cb0 (t) Ut,con,mount
T

−mφenc−3,mφe3,1
TUr,con,mount

T −mθenc−3,mφ+mθe3,2
TUr,con,mount

T+
−mψenc−3,mφ+mθ+mψe3,3

TUr,con,mount
T

 , (52)

where eN,i denotes a column matrix with N entries of which the ith is equal to 1 and all the
others are null, and the notation ∂f

∂x
is such that enf ,i

T ∂f
∂x

enx,j = ∂fi
∂xj

, with nf the number of
elements of f and nx the number of elements of x.

The right-hand side of Eq. (4) can then be represented by:

12+nc∑
k=1

λk
∂fk
∂qi

+Qi =
∂F12+nc

∂qi

T

Λ +Qi = Qc,i +Qi, (53)

whereQc,i = ∂F12+nc/∂qi
TΛ is the generalized constraint reaction on the qi degree of freedom,

and e12+nc,kΛ = λk. In the next section, the generalized forces Qi are derived.

2.2 Generalized Forces

The aerodynamic forces acting on the wind-tunnel mount will be neglected in this paper. Thus,
the generalized forces, comprising the aerodynamic and the propulsive forces of the aircraft, are
calculated with the equation [30]:

Qi =

∫
V A

fI ·
∂RI

∂qi
dV =

∫
V A

fI,b
TFb

T

(
∂Fb
∂qi

RI,b + Fb
∂RI,b

∂qi

)
dV , (54)

where fI is the force vector per unit volume acting on the generic point I in the aircraft.

The propulsive forces can be modeled as concentrated thrust forces acting on the thrust center
of each one of theNE aircraft engines. Considering that a matrix Cbe transforms the thrust force
from an engine frame – whose x axis is aligned with the thrust line – to the body frame, one
has the concentrated force Te,b = Cbee3,1Te applied at a point E whose position vector with
respect to O in the undeformed aircraft is sOE,b.

Every thrust center is also considered to be coincident with or rigidly connected to a structural
node KE in the FEM model of the aircraft, with associated Boolean matrices Ut,b,KEG and
Ur,b,KEG. The translations and the rotations of the thrust center are then given by the vectors
de,b =

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)
uG and ϕe = Ur,b,KEGuG, respectively, with sKEE,b the

position vector of the thrust center with respect to KE .

Under small deformations, the thrust vector is Te,b = (Cbe + ϕ̃e) e3,1Te and the thrust center
is sOE,b + de,b. The concentrated propulsive force can be represented as a distributed force by
means of a three-dimensional Dirac’s delta function [16]. As a result, the final expressions for
the generalized forces in the BRF DOFs become:

12
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QRO,b
= Fa,b +

NE∑
e=1

CbeTee3,1 + ∆Fa,b +

NE∑
e=1

ϕ̃eTee3,1 = Fb + ∆Fb, (55)

Qϕ =
(
Hϕ

−1)T (Ma,O,b +

NE∑
e=1

s̃OE,bTeCbee3,1 + ∆Ma,O,b + ∆Mp,O,b + R̃O,bQRO,b

)
(56)

=
(
Hϕ

−1)T (MO,b + ∆MO,b + R̃O,b (Fb + ∆Fb)
)
,

where Fa,b and Ma,O,b are the net aerodynamic force and moment vectors, respectively, associ-
ated with the rigid airframe; ∆Fa,b and ∆Ma,O,b are the net incremental aerodynamic force and
moment vectors, respectively, due to the elastic motion; and:

∆Mp,O,b =

NE∑
e=1

Te

(
s̃OE,b ˜(Ur,b,KEGuG) + skew

((
Ut,b,KEG − s̃KEE,bUr,b,KEG

)
uG
)
Cbe

)
e3,1

is the net linearized incremental propulsive moment vector due to the structural displacements.
All the moments are about O.

The aerodynamic forces can be simplified with the use of lifting-surface methods like the vortex-
lattice method (VLM) [31] and the doublet-lattice method (DLM) [25]. Hence, the aerodynamic
forces and moments are concentrated on a discrete set ofNP aerodynamic grid points, located at
the centroids of the VLM/DLM boxes, with NP equal to the number of boxes in the discretiza-
tion of the aerodynamic model. The structural displacements at the aerodynamic grid points
are calculated with a linear transformation matrix GAG that provides the vector of aerodynamic
normal and rotational displacements, uA, from the structural displacements, uG: uA = GAGuG.
Each aerodynamic grid point has two degrees of freedom – plunge and pitch – and the length
NA of the uA vector is then NA = 2NP . The vector containing the aerodynamic forces and
moments at the aerodynamic grid points is PA. With this rationale and based on Eq. (54), the
generalized force in each ug = en,g

TuG DOF reads:

Qg = en,g
TGAG

TPA (57)

+en,g
T

NE∑
e=1

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)T
Te (Cbee3,1 − ẽ3,1Ur,b,KEGuG),

and each Qg can be collected in a vector QG =
n∑
g=1

en,gQg respecting the ordering of uG:

QG = GAG
TPA +

NE∑
e=1

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)T
Te (Cbee3,1 − ẽ3,1Ur,b,KEGuG) (58)

13
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2.3 Equations of Motion

The equations of motion for the constrained flexible aircraft can be obtained by the substitution
of the energy expressions, Eqs. (32), (39) and (40); Rayleigh’s dissipation function, Eq. (43);
the holonomic constraints’ partial derivatives, Eqs. (50), (51), and (52); and the generalized
forces, Eqs. (55), (56) and (58), into Lagrange’s equations, Eq. (4). It is assumed in the
derivation that no change in the aircraft mass occurs with time. The EOMs then read:

macftV̇b +macftω̃bVb −macft ˜sCG,acft,bω̇b −macftω̃b ˜sCG,acft,bωb (59)

+macft
˜̇ωbDCG,acft,buG + 2macftω̃bDCG,acft,bu̇G

+macftω̃bω̃bDCG,acft,buG +macftDCG,acft,büG

= macftgb + Fb + ∆Fb +
{
λ13 λ14 λ15

}T
,

JO,acftω̇b + ω̃bJO,acftωb +macft ˜sCG,acft,b

(
V̇b + ω̃bVb

)
(60)

+macft
˜DCG,acft,buG

(
V̇b + ω̃bVb

)
+∆J′O,acftω̇b + ω̃b∆J′O,acftωb + ∆J̇′O,acftωb + ṀωGu̇G + MωGüG + ω̃bMωGu̇G

= macft ˜sCG,acft,bgb +macft
˜DCG,acft,buGgb + MO,b + ∆MO,b

+Hϕ
T
(
mφe3,1λ15+mφ +mθe3,2λ15+mφ+mθ +mψe3,3λ15+mφ+mθ+mψ

)
,

MGGüG + BGGu̇G + KGGuG (61)

+macftDCG,acft,b
T
(
V̇b + ω̃bVb

)
+ MωG

T ω̇b

+2ṀT
ωGωb −

1

2

n∑
g=1

en,gωb
T ∂∆JO,acft

∂ug
ωb

= macftDCG,acft,b
Tgb +mmountDCG,mount,0

Tg0 + QG

+Uc,mount

{
λ1 λ2 λ3 λ4 λ5 λ6

}T
+Uc,acft

{
λ7 λ8 λ9 λ10 λ11 λ12

}T −Ut,con,mountCb0
T
{
λ13 λ14 λ15

}T
−Ur,con,mount

(
mφe3,1λ15+mφ +mθe3,2λ15+mφ+mθ +mψe3,3λ15+mφ+mθ+mψ

)
,

with ∆J′O,acft = 1/2
(
∆JO,acft + ∆JO,acft

T
)

being the symmetric inertia matrix increment,
and with all the time derivatives taken in the BRF (the left superscript bwas omitted for brevity).
Moreover, the equations of motion are also subjected to the constraints of Eqs. (47) and (48),
so that the number of equations and unknowns match, allowing the calculation of the Lagrange
multipliers.
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2.4 Use of Modes of Vibration as Shape Functions

The modal superposition technique is generally a valid practical approach to solve dynamic
problems involving the deformation of structures [30]. Mode shapes obtained from the un-
damped, linearized and conservative system can then be applied as shape functions in the so-
lution of the structural-dynamic problem of the constrained aeroelastic aircraft. In the present
study, it is proposed that the elastic disturbances around the equilibrium condition are repre-
sented by a superposition of the aeroelastic system modes of vibration, ∆uG = Φη.

Different modal bases can be used for the aircraft and for the flexible mount. Since the latter
is assumed to be clamped at its root, its modal basis consistently corresponds to a selected set
of constrained modes of vibration. On the other hand, the aircraft structure would have in fact
nc ≤ 6 constrained rigid-body DOFs at its connection to the mount. Hence, the modal basis
for the aircraft structure may consist of the corresponding inertia-relieved constrained modes
of vibration [1], with the inertia relief matrix calculated using only the unconstrained rigid-
body modes of the aircraft structure. The consideration of inertia relief ensures that no support
reaction will develop on unconstrained rigid-body DOFs [1].

2.5 Aerodynamic Model

The aerodynamic loads acting on the flexible aircraft can be calculated as the superposition of
loads that would be obtained were the airframe perfectly rigid with incremental loads due to
the structural deformation. In this case, the aerodynamic data for the rigid aircraft consists of
tables of non-dimensional force and moment coefficients and do not comprise any structural
flexibility effect. To obtain the generalized aerodynamic loads related to the structural motion,
the VLM [31] and the DLM [25] are used in this paper, yielding the following linear system of
equations:

A−1 (κ)∆Cp = w, (62)

where w ∈ CNP is the vector of non-dimensional normalwashes at the NP panel control points;
∆Cp ∈ CNP is the vector of panel pressure coefficient differences; and A ∈ CNP×NP is the AIC
(aerodynamic influence coefficient) matrix. The AIC matrix is dependent upon the reduced
frequency, κ, and the geometry and discretization of the aerodynamic lifting surfaces in the
model. Dependence on the Mach number, M , is neglected in this paper, since compressibility
effects are not present in the cases studied here.

To allow linearized boundary-layer effects to be approximated in the incremental aerodynamic
formulation, correction methods [34–36] can be applied to modify the AIC matrix, yielding a
modified matrix A′:

∆Cp = A′ (κ)w. (63)

The body frame of reference used to calculate the aerodynamic loads is defined as an aerody-
namic reference frame (ARF). Its inertial angular rates are written in the ARF coordinate system
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as pa, qa, and ra, and its inertial velocity has the components ua, va, and wa in the same sys-
tem [1]. The rigid-body motion of the aircraft then contributes to the generalized aerodynamic
forces (GAFs) in the elastic DOFs in terms of pa, qa, ra, ua, va, wa, the control surface deflec-
tions and other possible rigid-body variables. The elastic deformation of the structure measured
with respect to the ARF, given by the vector uG/A, contributes to the incremental GAFs. The
total GAFs are then given by [1]:

QG = q̄GAG
TSAP (∆Cp,u + ∆Cp,e) . (64)

In Eq. (64), q̄ is the dynamic pressure; GAG ∈ RNA×n is the matrix that interpolates the elastic
displacements from the structural nodes to the aerodynamic grid points (at the centroids of the
VLM/DLM boxes); SAP ∈ RNA×NP transforms the panel pressure coefficient differences to
forces and moments at the aerodynamic grid points, and is usually called an integration matrix;
∆Cp,u is the vector of panel pressure coefficient differences related to the rigid-body states,
without elastic deformation; and ∆Cp,e is the vector of panel incremental pressure coefficient
differences.

The problem hidden in Eqs. (63) and (64) is that the former is written in the frequency domain
and the latter contains pressure coefficient difference distributions, ∆Cp,u and ∆Cp,e, already
in the time domain. Hence, a transformation from the frequency to the time domain is implicit.
As in [22], the multiple-pole rational-function approximation (RFA) proposed by Eversman and
Tewari [24] can be performed. In the frequency domain, one has [22]:

∆Cp,e = A′ (κ) (DPA,0 + iκDPA,1) GAGuG/A, (65)

with DPA,0,DPA,1 ∈ RNP×NA the differentiation matrices that allow the calculation of control
point normalwashes at three quarters of the boxes’ mean chords from the displacements at the
aerodynamic grid points, respectively; and NA = 2NP is the total number of aerodynamic
degrees of freedom (each panel has two DOFs, plunge and pitch). In the special case where the
correction method corresponds to a left-multiplying correction matrix, WPP , independent of
the reduced frequency, one has the following frequency-dependent term in Eq. (65):

QPG = A (κ) (DPA,0 + iκDPA,1) GAG. (66)

If the matrix QPG is approximated by rational functions and then written in the time domain,
one can left-multiply it by WPP to obtain the corresponding corrected pressure coefficient
difference distribution. Hence, in the RFA, QPG is approximated as a rational function QPG,ap

with zero-, first- and second-order terms, and a series of NL real poles β` of multiplicity E`
belonging to the left semi-plan, representing the aerodynamic lag effect caused by the flow
unsteadiness:

QPG,ap (iκ) =
2∑
j=0

QPG(j)(iκ)j +

NL∑
`=1

E`∑
e=1

QPG(2+E0+...+E`−1+e)

(
iκ

iκ+ β`

)e
, (67)
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with QPG(i) ∈ Rn×n the approximant matrices, still to be determined; and E0 = 0. Eversman
and Tewari [24] did not include the multiplication of each lag term by (iκ)e in their RFA, but
this is done in this paper to keep a stronger analogy with Roger’s RFA method [37] and so that
the approximate static generalized aerodynamic matrix becomes directly equal to QPG(0).

The unavailable QPG,ap (s) matrix in the Laplace variable s = σ + iω can be assumed analytic
for a causal, stable, and linear system [24]. In this case, the analytic continuation principle can
be used to express QGG,ap (s) as QGG,ap (iω) with the appropriate replacement of iω by s. Then,
using inverse Laplace transform, it can then be demonstrated that the corrected incremental
pressure coefficient difference distribution in the time domain is:

∆Cp,e = WPP

 2∑
j=0

QPG(j)

(
bw
V

)j
djuG
dtj

+

NL∑
`=1

E`∑
e=1

QPG(2+E0+...+E`−1+e)ulag(E0+...+E`−1+e)

 ,

(68)

with:

u̇lag(E0+...+E`−1+e) = u̇G − (V/bw ) β`

e∑
ε=1

ulag(E0+...+E`−1+ε), ` = 1, · · · , NL. (69)

Therefore, the representation of the aerodynamic lag by the RFA results in an augmentation of

the system with n
NL∑̀
=1

E` states, showing the importance of keeping the quantity and the order

of the lag parameters at a minimum. This implies a trade-off between the system complexity
and the approximation quality.

To determine the approximant matrices QPG(i) ∈ Rn×n as a function of the selected set of lag
parameters, β`, and their corresponding multiplicities, E`, a least-squares procedure is used,
which is detailed in Ref. [22]. The solution of the least-squares problem is achieved by speci-
fying the set of values of β` and E`. Since the least-squares procedure assures that the error is
the minimum for the set of specified lag parameters and multiplicities, but not a global mini-
mum, these nonlinear parameters shall be included as design variables in nonlinear optimization
procedures [24].

The integration and differentiation matrices in Eq. (65) are given by:

SAP =

NP∑
k=1

Sk
(
eNA,2k−1eNP ,k

T + eNA,2keNP ,k
T (x050,k − x025,k)

)
, (70)

DPA,0 =

NP∑
k=1

eNP ,keNA,2k
T , (71)

DPA,1 =
1

bw

NP∑
k=1

(
eNP ,keNA,2k−1

T + eNP ,keNA,2k
T (x075,k − x025,k)

)
, (72)
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with x025,k, x050,k, x075,k the x coordinates, in the aerodynamic model coordinate system, of the
points at one quarter, one half and three quarters of the k th aerodynamic box (panel) mean
chord; and Sk the k th aerodynamic box area.

In this paper, the aerodynamic reference frame is modeled with attached axes [1]. This means
that the origin A is coincident with or rigidly connected to a material point C that remains fixed
when structural deformation occurs. For small elastic deformations, one can write:

uG/A = uG −Ψr,AuA,b, (73)

uA,b =

[
I3 −s̃CA,b
03 I3

]
Uc

TuG, (74)

where Ψr,A is the rigid-body mode matrix of the free-free aircraft calculated with origin atA [1]
and UC is the Boolean matrix that selects the node C degrees of freedom among all DOFs.
The left multiplication of Eq. (73) by KGG and the partition of uG/A into its fixed DOFs,
uG/A,c = 06×1, and free DOFs, uG/A,f , i.e., uG/A = UfuG/A,f + UcuG/A,c = UfuG/A,f , allow
one to determine that [1]:

uG/A = Uf

(
Uf

TKGGUf

)−1
Uf

TKGGuG. (75)

The position vector of A in the BRF reads:

RA,b = RO,b + sOA,b +
[
I3 03

]
uA,b. (76)

A matrix Cab generated with the small rotations ϕA =
[
03 I3

]
uA,b:

Cab = I3 − ϕ̃A (77)

transforms vectors from the BRF to the ARF, such that RA is written in the ARF as:

RA,a = Cab

(
RO,b + sOA,b +

[
I3 03

]
uA,b

)
. (78)

The velocity of A with respect to the wind-tunnel flow, Vw,0 =
{
−Vwt 0 0

}T , then becomes:

Va = 0ṘA,a = Cab

(
Vb +

[
I3 03

]
u̇A,b (79)

+ω̃b
(
sOA,b +

[
I3 03

]
uA,b

)
+ Cb0

{
Vwt 0 0

}T)
.
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The acceleration in the ARF with respect to the wind-tunnel flow, assumed of constant speed,
is:

aV̇a = − ˜̇ϕA (Vb +
[
I3 03

]
u̇A,b + ω̃b

(
sOA,b +

[
I3 03

]
uA,b

)
+ Cb0

{
Vwt 0 0

}T) (80)

+Cab

(
bV̇b +

[
I3 03

]
üA,b + b̃ω̇b

(
sOA,b +

[
I3 03

]
uA,b

)
+ω̃b

([
I3 03

]
u̇A,b

)
− ω̃bCb0

{
Vwt 0 0

}T)
,

from which one obtains the effective aerodynamic velocity and acceleration components:

ua = e3,1
T 0ṘA,a, (81)

va = e3,2
T 0ṘA,a, (82)

wa = e3,3
T 0ṘA,a, (83)

u̇a = e3,1
T aV̇a, (84)

v̇a = e3,2
T aV̇a, (85)

ẇa = e3,3
T aV̇a. (86)

Knowing ua, va, wa, u̇a, v̇a, and ẇa, one can calculate the corresponding Va, αa, βa, V̇a, α̇a, and
β̇a using the well-known relations, as in Ref. [29]. The inertial angular velocity of the ARF and
its derivative in the ARF can be calculated as [1]:

ωa = Cab ωb + ϕ̇A, (87)
aω̇a = − ˜̇ϕAωb + Cab

bω̇b + ϕ̈A, (88)

from which the corresponding angular rates and derivatives can be obtained:

pa = e3,1
Tωa, (89)

qa = e3,2
Tωa, (90)

ra = e3,3
Tωa, (91)

ṗa = e3,1
T aω̇a, (92)

q̇a = e3,2
T aω̇a, (93)

ṙa = e3,3
T aω̇a. (94)

The aerodynamic forces and moments due to the rigid-body motion of the ARF are then given
by the equations:
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Fa,b = q̄SrefCbaCav

{
−CD −CY −CL

}T
,

Ma,O,b = q̄SrefCba

{
swCl cwCm swCn

}T
+ s̃OA,bFa,b, (95)

with Ci = Ci

(
αa, α̇a, βa, β̇a,M,Re, ωa, δc, . . .

)
, i = D,L, Y, l,m, n the aerodynamic force

or moment coefficients for the rigid aircraft; Sref the reference wing planform area; sw the
reference wing span; cw the wing mean aerodynamic chord; and Cav given by:

Cav =

cosαa cos βa − cosαa sin βa − sinαa
sin βa cos βa 0

sinαa cos βa − sinαa sin βa cosαa

 (96)

The incremental forces and moments in the rigid-body DOFs are given by:

∆Fa,b = q̄CbaCav

NP∑
k=1

Sk


−eNP ,k

T∆cd,e

e3,2
Tnk,u,b

(
eNP ,k

T∆Cp,e

)
e3,3

Tnk,u,b
(
eNP ,k

T∆Cp,e

)
, (97)

∆Ma,O,b = ∆M0,1 + ∆M1,0 + ∆M1,1 + ∆MA→O, (98)

∆M0,1 = q̄

NP∑
k=1

SkCba

− skew

Cav


−eNP ,k

Tcd,u

e3,2
Tnk,u,beNP ,k

T∆Cp,u

e3,3
Tnk,u,beNP ,k

T∆Cp,u




nk,u,b
(
eNP ,k

TC025AGAGuG/A
))
, (99)

∆M1,0 + ∆M1,1 = q̄

NP∑
k=1

SkCba

− skew

Cav


−eNP ,k

T∆cd,e

e3,2
Tnk,u,b

(
eNP ,k

T∆Cp,e

)
e3,3

Tnk,u,b
(
eNP ,k

T∆Cp,e

)



(
R025,aeNP ,k + nk,u,b

(
eNP ,k

TC025AGAGuG/A
)))

, (100)

∆MA→O = skew
([

I3 03

]
uA,b

)
Fa,b + skew

(
sOA,b +

[
I3 03

]
uA,b

)
∆Fa,b, (101)

where ∆cd,e = ∆cd,ind,e is the vector of panel drag coefficient disturbances due to the structural
deformation, with ∆cd,ind,e the vector of panel induced drag disturbances; nk,u,b is the normal
vector to each panel in its undeformed position, with components written in the BRF coordinate
system; ∆Cp,e = A′welas; C025A ∈ RNP×NA is a matrix that transforms the aerodynamic grid
points’ displacements to the normal displacement of the points at 25% of the mean chord of the
panels; R025,a ∈ R3×NP is a matrix containing the three-dimensional coordinates, in the ARF
coordinate system, of the points at 25% of the mean chord of all the panels; cd,u = cd,0+cd,ind,u

is the vector of panel drag coefficients due to the rigid-body states: cd,0 is the vector of panel

zero-lift drag coefficients, approximated as cd,0 =
NP∑
k=1

eNP ,k

(
Sref/

NP∑
k=1

Sk

)
CD,0; and cd,ind,u

is the vector of panel induced drag coefficients due to ∆Cp,u. The induced drag is calculated
based on the methodology of Ref. [38].
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3 NUMERICAL MODEL

The X-HALE aircraft [27] in its four-meter-span configuration is the aircraft analyzed in the
present paper. The four-meter-span configuration contains four wing sections with span of 1.0
m and chord of 0.2 m each, as well as three pods at the connections between the wing panels.
At the pods, the aircraft engines, landing gears, electronics and sensors are installed. Booms are
connected to the pods and, at the tip of each boom, a horizontal tail is mounted. The two side
tails are all-moving control surfaces that can be used for both longitudinal and lateral-directional
control, and are then named as elevons. The central tail has a flipping-up capability, in order to
modify the aircraft longitudinal and lateral-directional flying qualities as desired in operation.
For ground clearance during take-off, the central tail has approximately 33% less span in its
right (bottom) part than in the left (top) part. The wing-tip sections have a dihedral angle of
10◦. The wing is built with an incidence of 5◦.

The aircraft was modeled in the recently developed small-deformation implementation of the
ITA/AeroFlex program. Convergence analysis showed that using 96 beam elements along the
wing span was an excellent trade-off between an accurate calculation of the modal frequencies
less than 50 Hz and general computing time in the calculation of the equilibrium condition,
which is done with all the degrees of freedom of the structural-dynamic model – modes of
vibration are introduced afterward for time-marching simulations.

The structural-dynamic model was then adjusted to match the measured inertia properties and
relevant modal frequencies, as obtained from a ground-vibration test (GVT) previously per-
formed with the aircraft suspended with bungees. The measured inertia properties for the GVT
included the aircraft total mass and the concentrated inertias of engines, servos and ballasts.
The adjusted modes include the first two symmetric wing bending modes, the first antisymmet-
ric wing bending, fore-and-aft in-plane wing bending and wing torsion modes, as well as lateral
bending modes of the booms. After the GVT, the ballasts used were removed and replaced
by the aircraft batteries, sensors, transmitters and receivers, the masses and locations of which
were measured and included in the computational model. The central pod was also replaced by
a metallic one, with which the wind-tunnel mount is connected.

The wind-tunnel strut effective length from a structural-dynamic viewpoint is 1.75 m. At its tip,
the aircraft-to-mount connection mechanism with an additional length of 0.215 m is installed.
A GVT of the wind-tunnel mount installed in the wind tunnel was also performed, searching
for the lowest frequency of the out-of-plane bending modes. The first out-of-plane bending was
determined to be at 12.1 Hz, without the aircraft and connection mechanism installed, implying
the need to take the mount flexibility into account in the computational model. The mount,
together with the connection mechanism (assumed rigid, but with non-negligible inertias), was
modeled in the ITA/Aeroflex program using 35 beam elements, and adjusted using its real di-
mensions and material properties to match the first modal frequency obtained from GVT.

The complete structural-dynamic model assembled in the ITA/AeroFlex program is presented
in Fig. 1. The tails and ailerons are assumed rigid. Scalar spring elements are included to
represent the stiffness of the motion of all the control surfaces around the corresponding hinge
lines, but such stiffnesses are high enough not to modify the results to be obtained.

The rigid-body aerodynamic model of the aircraft is obtained by combining the XFOIL code
[39] and the VLM [31] code embedded in ITA/AeroFlex, in the following fashion: the pressure
distributions that are provided come from XFOIL runs at different angles of attack and Reynolds
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numbers, using either the wing EMX07 [27] or the elevons/horizontal tail NACA 0012 airfoils
as geometry. The normalwashes produced by the VLM for a specific angle of attack (AOA)
can then be used to calculate the spanwise induced AOAs through an averaging of each strip
boxes’ normalwashes by the same strip boxes’ pressure coefficient differences. These spanwise
induced AOAs are then subtracted from the geometrical AOA to allow the determination of
new stripwise effective AOAs and corresponding new pressure distributions at each wing or
elevon/horizontal tail strip. When the provided and the calculated stripwise induced AOAs
are equal to each other within a specified tolerance, the process has converged and one then
has a three-dimensional pressure distribution all over the wing and the elevons/horizontal tail.
This process is repeated for each angle of attack of the aircraft and for each Reynolds number,
allowing the determination of coupled XFOIL-VLM pressure distributions and longitudinal
aerodynamic coefficients.

The process also produces the spanwise pressure and friction drag coefficients for all the hor-
izontal lifting surfaces. The spanwise induced drag coefficients can be calculated using the
technique of Klmn, Giesing and Rodden [38]. The drag of vertical aircraft components (pods)
is calculated using semi-empirical techniques.

However, the rigid-body aerodynamic coefficients also depend on other variables, like the
sideslip angle, the body angular rates and the control surface deflections. The dependencies
of the rigid-body aerodynamic coefficients on other variables, like the sideslip angle, the body
angular rates and the control surface deflections, are also calculated with the complete VLM
model, but are adjusted for each different range of angle of attack and value of Reynolds num-
ber. The adjustments are provided by classical left-multiplying weighting matrices [36], whose

Figure 1: Flexible aircraft and wind-tunnel mount structural-dynamic model with a total of 1530 degrees of free-
dom, as output from ITA/AeroFlex. Legend entries: GRIDs are the structural nodes; CBARNs are
the beam elements; CONM2 CGs are the CG locations of lumped-mass elements; CONM2 Offsets are
the offsets between such CG locations and the structural node the lumped-mass element is attached to;
RBARs are rigid bar elements; RBE2s are rigid-body elements; MPCs are multi-point constraints; and
CELAS2s are scalar spring elements.
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diagonal is equal to the nonlinear XFOIL-VLM disturbances in the pressure distribution divided
by the linear VLM disturbances due to a given variation in the angle of attack of the aircraft.
The pressure distribution of the pods is adjusted with an arbitrary factor of 0.30, due to the
absence of the pod fairings in the wind-tunnel test.

The same adjustments are also used in the calculation of the generalized aerodynamic forces
in the elastic degrees of freedom. It must be clear that the adjustment is dependent on the
ARF angle of attack and Reynolds number, being stored as a look-up table like all the other
coefficients.

The VLM mesh used to obtain the rigid-body aerodynamic models is the same one to be used
for unsteady aerodynamics calculations in the doublet-lattice method [25]. As such, the VLM
model anticipated guidelines that need to be taken into account in the DLM [40]. The resulting
VLM/DLM mesh is shown in Fig. 2.

Figure 2: VLM/DLM mesh of the aircraft, with a total of 1908 boxes. Control surfaces are plotted in orange.

In the calculation of the rational function approximations, fifteen different reduced frequencies
are used: 0.0001, 0.0010, 0.0123, 0.0489, 0.1090, 0.1910, 0.2929, 0.4122, 0.5460, 0.6910,
0.8436, 1.0000, 1.2500, 1.6000, and 2.0000. A multi-objective optimization using the NSGA-II
– Non-Dominated Sorting Genetic Algorithm-II [41] – allowed the determination of an op-
timum set of lag paremeter values and orders. The chosen RFA is of order 7, with the lag
parameter 0.3950 having order 2 and the lag parameter 0.5079 having order 5. An RFA is also
generated for the rigid-body degrees of freedom, allowing a representation of the rigid-body
unsteady aerodynamics. The rigid-body RFA is also of order 7, with the lag parameter 0.3871
having order 2 and the lag parameter 0.5871 having order 5.

Linear spline interpolation matrices, as derived in Ref. [10], are calculated and used to obtain the
displacement-transferal and the load-transferal matrices between the structural-dynamic model
and the aerodynamic model.
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4 STABILITY OF THE AIRCRAFT WITH CONSTRAINED TRANSLATIONS AND
UNCONSTRAINED ROTATIONS

In this section, a numerical study of the effects on dynamic stability of constraining only the
aircraft translations in the wind tunnel is done. In order to more closely represent the aircraft
flight shape, the trimming algorithm solves for equilibrium with null support reactions at the
aircraft-to-mount connection, λ13 = λ14 = λ15 = 0. Wind-tunnel speed of 14 m/s is considered.
The aircraft is trimmed for a null sideslip angle.

The trimmed condition states, controls and wing tip displacements and twist angles obtained for
the free aircraft and for the 3-DOF-constrained aircraft are summarized in Table 1. The small
differences have a reason: whereas the 3-DOF-constrained aircraft must have null moments
about the connection point with the mount (located approximately 0.011 m forward and 0.046
m downward of the structural node at the wing symmetry plane), the free aircraft must have null
total moments about its CG, which is located, in the deformed condition, approximately 0.027
m rearward and 0.019 m downward of the same structural node.

Free aircraft 3-DOF constrained Units
Angle of attack (α) 1.222 1.226 deg
Left elevon deflection (δle) 4.884 4.887 deg
Right elevon deflection (δre) 4.794 4.797 deg
Left engine thrust (Tl) 1.085 1.085 N
Central engine thrust (Tc) 1.086 1.086 N
Right engine thrust (Tr) 1.087 1.087 N
Left wing tip vert. displacement (dz,lwt,b) -0.050 -0.050 m
Right wing tip vert. displacement (dz,rwt,b) -0.050 -0.050 m
Left wing tip twist angle (θlwt,b) -0.121 -0.126 deg
Right wing tip twist angle (θrwt,b) -0.100 -0.105 deg

Table 1: Trimmed condition of the free aircraft in level flight at 14 m/s and of the 3-DOF-constrained aircraft
without support reactions at 14 m/s of wind-tunnel speed.

Considering that the trimmed conditions are practically the same, the dynamic stability of the
aircraft can then be compared for the two cases based on the linearization of the equations
of motion. Stiffness-proportional damping is assumed, such that the first free-free mode of
vibration of the aircraft has 1.5% damping ratio, and the first strut constrained mode of vibration
has 3.0% damping ratio. Aircraft and strut modes of vibration up to 25 Hz are kept in the
equations of motion. The obtained eigenvalues are plotted in Fig. 3.

The phugoid mode naturally disappears in the constrained aircraft. Little modification occurs
for the roll subsidence mode, which is expected since the roll damping of the aircraft is not much
affected by the constraints. The first aeroelastic mode, dominantly consisting of symmetric
wing bending, is also only slightly affected. However, the same cannot be stated with respect to
the short-period and Dutch-roll modes. The former loses damping mainly because there is no
difference between α̇a and qa in a wind-tunnel at constant speed. The latter, however, becomes
significantly unstable for this configuration, due to the absence of a vertical tail or vertical fins
providing directional stability about the aircraft-to-mount connection. Actually, the pods are
potentially destabilizing for this configuration.

The instability of the Dutch-roll mode was faced in practice in the first wind-tunnel test run
for the X-HALE at the TA-2 wind tunnel, on March 15, 2017. The aircraft was uncontrollable
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even at very low speeds, and the test ended prematurely with the failure of both aluminum L
brackets [27] connecting the central modified metallic pod to the wing, due to excessive bending
moment.

5 WIND-TUNNEL TEST

Experiments have been run in the TA-2 subsonic wind tunnel at the Institute of Aeronautics and
Space (IAE), Brazil. The experimental setup inside the wind tunnel can be seen in Fig. 4. The
aircraft is mounted on a strut, on top of a hinge that constrains yawing and pitching angular
motions, but leaves the aircraft free to roll up to ±12 degrees. For safety reasons, lateral cables
connecting the external booms to the ground limit the rolling motion to ±10 degrees.

The aircraft is equipped with a Microbotics MIDG II INS/GPS system at the central pod com-
bining a three-axis accelerometer, GPS, and gyroscope into a small self-contained unit. This
single unit acts as an inertial navigation system that will in the future provide the aircraft con-
troller data regarding the position and orientation of the aircraft. The angular rate sensor’s
accuracy of 0.05◦/sec and linear acceleration sensor accuracy of 150 µg provide the necessary
accuracy for code validation. Two Pitot tubes at the wing tips, another Pitot tube in the inner
right section of the wing, and an additional Pitot tube on the ground of the wind tunnel provide
information on the wind speed.

A camera is positioned behind the aircraft and the recorded video is displayed in real-time
on a screen outside the wind tunnel available to the test pilot, as shown in Fig. 5. A lateral
GoPro camera fixed to the wind-tunnel wall and focusing the left wing tip helps to observe the
elevons’ deflections and their effect on wing torsion. Due to the large wing span compared
with the wind-tunnel sections, the aircraft is positioned downstream of the test section and is
therefore subjected to non-modeled flow turbulence. Despite this effect, overall rolling motions
were well captured by the MIDG unit.
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Figure 3: Eigenvalues of the linearized dynamics of the free aircraft in level flight at 14 m/s and of the 3-DOF-
constrained aircraft without support reactions at 14 m/s of wind-tunnel speed. Short-period (SP), first
aeroelastic (1AE), roll subsidence (RS), Dutch-roll (DR), and phugoid (PH) modes’ eigenvalues are
highlighted.
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strut

roll hinge

limiting cable

Pitot tube

MIDG

Figure 4: X-HALE in the TA-2 wind tunnel, mounted on a strut with a roll hinge at the connection.

Figure 5: Execution of the wind tunnel test by the test pilot.
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6 CORRELATION BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

The results to be presented and analyzed in this section refer to the aircraft with only the roll
DOF left free.

Computational simulations were run for the aircraft subjected both to anti-symmetrical elevon
doublets and to anti-symmetrical aileron doublets. The referred control surfaces can be seen in
Figs. 1 and 2. Time histories are presented in Figs. 6 and 7 for the aileron command and 8 and
9 for the elevon command.

Figures 6 and 7 show that nothing unusual is predicted by the numerical model with respect
to aileron deflections in normal operating flight speeds. As the wind tunnel speed increases,
aileron roll control effectiveness increases. It can be seen that the elastic twist angles induced
by aileron deflection are relatively small at the wing tip. The induced bending is also on the
order of centimeters.

However, the same cannot be said for the elevons. Figures 8 and 9 show a clear reversal in
elevon roll control between 8 m/s and 10 m/s (closer to the latter). Aircraft roll response to
aileron commands are also much sluggish at speeds below 8 m/s. Since the aircraft will hardly
operate below 10 m/s, it can be considered that the elevons are in reversal in the whole flight
envelope of the X-HALE aircraft.

The numerical results indicate that the ailerons are more effective in roll control than the
elevons, due to the faster responses.

Positive elevon deflections induce considerable negative elastic twist angle disturbances at the
semi-wing lying on the same side as the deflected elevon, and vice-versa. Wing bending, on the
other hand, is not significantly affected. The reversal mechanism was clearly observed in the
wind-tunnel tests, as illustrated by the video frames shown in Fig. 10.
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Figure 6: Anti-symmetrical aileron doublet and the roll angle as it would be measured by the MIDG system, at
different wind tunnel speeds.
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Figure 7: Left and right wing tip vertical displacements (positive down) and twist angles due to the anti-
symmetrical aileron doublet.
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Figure 9: Left and right wing tip vertical displacements (positive down) and twist angles due to the anti-
symmetrical elevon doublet.

Time histories were also recorded during the wind-tunnel tests, and selected time intervals of the
response of the bank angle measured by the MIDG are shown in Figs. 11 and 12, for the aileron
roll control test and for the elevon roll control test, respectively. In such time intervals, the
engines were off, but the propellers were windmilling, an effect that is by no means considered
in the numerical model. The actual control surface deflections were not measured. Instead, the
pulse width modulation (PWM) commands were recorded. Their conversion to commanded
deflections were determined prior to the beginning of each test, by physically measuring the
control surface deflection angle while a PWM command was being received and recorded. At
last, the MIDG measured bank angle is considered to have an uncertainty of ± 1.0 deg, based
on the system data sheets.
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Figure 10: The mechanism of elevon roll control reversal in two different frames of the video captured during the
wind-tunnel elevon roll control test. In the top frame, negative left elevon deflection induces positive
wing twist. In the bottom frame, positive left elevon induces negative wing twist. The central boom is
near the roll hinge line and served as reference for these observations.

In the experimental results, no reversal is observed for the aileron roll control, but the reversal
is seen to occur between 8 m/s and 11 m/s. The test pilot opinion was that the aircraft was much
less responsive between such speeds.

More extensive quantitative comparison between the wind-tunnel and the numerical results is
unfortunately precluded by some facts that the reader should be aware of. The aircraft had
to be installed downstream of the test section, due to the wing span, and was then subjected
to stronger turbulence effects. After the test using elevons to roll the aircraft, it was found
that the left elevon presented nonlinearity in its deflection response to a pilot command, which
may explain the asymmetry of the bank angle measured by the MIDG about 0 deg in Fig. 12.
Nonlinearities due to the limiting cables were also not included in the numerical model. At last,
the metallic pod used to allow the connection of the aircraft to the wind-tunnel mount did not
have its flexibility taken into account in the numerical model.
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Figure 11: Recorded anti-symmetrical aileron commands and roll angle measured by the MIDG system, at differ-
ent wind tunnel speeds.
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Figure 12: Recorded anti-symmetrical elevon commands and roll angle measured by the MIDG system, at different
wind tunnel speeds.
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7 CONCLUDING REMARKS

A formulation for the dynamics of constrained aircraft in wind tunnel was derived and imple-
mented, aimed at allowing the determination of response and stability characteristics. Holo-
nomic constraints were included in Lagrange’s equations to allow the inclusion of up to three
rotational constraints to the aircraft rigid-body motion. In the formulation, the aircraft rigid-
body translations are all constrained, but vary in time due to the consideration that the wind-
tunnel mount to which the aircraft is connected is flexible.

The effect of constraining only the translations was illustrated with the comparison of the dy-
namic modes of the X-HALE aircraft in free flight and in wind tunnel with the three translational
degrees of freedom constrained. An unstable Dutch-roll mode was obtained for the constrained
aircraft, and significant loss of the short-period damping was also observed. No flutter mode
developed.

The four-meter-span configuration of the remotely-piloted X-HALE was tested in the IAE TA-
2 wind tunnel in Brazil. A computational model of the tested aircraft was built and the for-
mulation proposed in this paper was used to determine the aircraft response characteristics to
anti-symmetric aileron or elevon deflections. Elevon roll control reversal was obtained both
numerically and experimentally, and the velocity range in which the phenomenon occurs is in
good agreement between both results, around 9 m/s. Aileron roll control is not reverted in
normal operation.

The good correlation between numerical and experimental results indicate that the wind-tunnel
test campaign was successful and also that the implemented formulations and created numerical
models are preliminarily approved for the next steps of validation, which will include flight tests.
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