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Abstract: A simple and self-contained methodology to assess the validity of the assumption of
small deformations in linear structural-dynamic models was recently proposed. The advantages
of the methodology lie in the fact that it does not depend on the availability of higher-fidelity,
nonlinear models: it is rather based on the selection of two different structural nodes where
the structural motion is to be one at a time completely constrained, typically, a node near the
center of mass and another in the region of maximum structural displacements with respect to
mean axes. If the two displacement vectors calculated in each case can be transformed between
themselves with linear rigid-body modes of the structure, then it is still in the regime of small
deformations. In the present paper, in order to demonstrate the value of this methodology, it is
applied to the X-HALE aircraft in its four-, six- and eight-meter-span configurations, and the
results obtained with the assumption of small deformations are compared with a higher-fidelity
model that comprises large structural deformations.

1 INTRODUCTION

Recently, a methodology to test for the validity of the assumption of small deformations in linear
structural-dynamic flexible aircraft models was proposed and applied to an idealized aircraft
model [1]. The methodology is simple and self-contained because it depends only on the linear
model itself, not requiring the availability of nonlinear models to compare with.

In structural-dynamic models not to be coupled with aerodynamic counterparts, the method-
ology is based on the assumption that the linear rigid-body modes of the structural model are
representative if, and only if, small deformations occur. Hence, if two different support loca-
tions, that is, two different totally-constrained structural nodes are considered, one at a time,
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one near the center of mass and the other in the region of maximum deformations with respect
to mean axes (in aircraft structures, typically, the wing tips), the conversion of displacement
vector from one condition to the other using linear rigid-body modes is possible with minimum
error if, and only if, small deformations occur. If there are differences between the original dis-
placement vector and the converted one above some desired tolerance, then large deformations
can be assumed to occur and nonlinear models become needed.

If the structural-dynamic model is coupled with an aerodynamic counterpart for aeroelastic or
flight-dynamic analyses, then the aerodynamic basis needs to be the same for different structural
support locations. In Guimarães Neto et al. [1], this problem was solved with the proposition of
an aerodynamic reference frame (ARF) that coexists with the body reference frame (BRF). The
latter is the one for which the equations of motion (EOMs) are obtained, with its translations
and rotations providing the rigid-body degrees of freedom (DOFs) of the flexible aircraft. The
former is the one for which relevant aerodynamic entities, like the angle of attack, the sideslip
angle, and aerodynamic angular rates are obtained. A displacement vector with respect to the
ARF is also determined, based on the displacement vector calculated for the BRF and a super-
position of linear structural rigid-body modes to convert structural displacements from the BRF
to the ARF. Hence, if two different structural support locations result in differences in e.g. aero-
dynamic angle of attack and sideslip angle greater than a desired tolerance, large deformations
become the case.

The formulation developed in Ref. [1], however, was obviously not the first dynamically-
coupled formulation for the flight dynamics of flexible aircraft. Several works deserve mention
for historical and scientific perspective. In this context, the dynamically-coupled formulations
are those in which n elastic degrees of freedom are included in the mathematical model of the
aircraft, representing its structural dynamics; consequently, the number of flight-dynamic equa-
tions of motion (EOMs) increases from the classical six-degree-of-freedom (6-DOF), rigid-
body system to an arbitrary 6+n-DOF system.

Bisplinghoff, Ashley and Halfman [7], Bisplinghoff and Ashley [8], and Etkin [9] were among
the first to derive dynamically-coupled but inertially-decoupled formulations. However, for-
mulations of this kind would only be used in practical applications more than a decade later
due to the necessary development of electronic computing resources. Particularly, from the
late 1960s to the middle 1970s, a system of computer programs named FLEXSTAB was devel-
oped at the Boeing Company to enable an adequate prediction of the stability characteristics of
elastic aircraft at both subsonic and supersonic speeds [10, 11]. The outputs from FLEXSTAB
included vehicle deformation and its effects on the trim parameters and the quasi-static stability
derivatives [10].

The introduction of n additional structural-dynamic degrees of freedom while keeping the clas-
sical six DOFs of the rigid body implies that constraints must be included in the formulations
to eliminate the rigid-body DOFs from those of the structural-dynamic model. Such constraints
are usually expressed by the choice of body axes. Milne [12] introduced more formalism to this
important topic. In his report, three particular choices of body axes were discussed: attached,
mean and principal axes.

The origin of the attached axes remains invested in one material point and the axes’ directions
may be tangent, normal and binormal to a curve of material points that contains the original
point [12]. Any set of axes having a fixed orientation with respect to such axes are also attached
axes [12]. For the mean axes, the first definition probably arose a few decades before, in 1929
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[13]: with respect to them, the linear and angular momenta of the elastic motion are identically
zero at every instant. At last, the principal axes are those with respect to which the inertia matrix
is diagonal at any instant [12].

In Ref. [1], Milne’s concept of attached axes was extended to a more general form named dually-
constrained axes, in which the origin of the structural axes (the point where elastic deformations
are assumed null) does not necessarily coincide with the origin of the flight-dynamic body axes
(with respect to which the EOMs are written). Attached axes became, then, a particular case
when such coincidence occurs.

Rodden and Love [14] derived EOMs for a quasi-steady vehicle considering the flexibility ma-
trix derived for the restrained vehicle, but correctly calculating the orientation of the mean axes
as a function of the deformation of the restrained structure. Their paper exerted a significant
impact on computational aeroelasticity worldwide, since the solution sequence of MSC.Nastran
for static aeroelasticity is based on their work [15]. Markedly, the stability derivatives for the
restrained aeroelastic aircraft do not depend on the mass distribution, the effects of which are
condensed in aerodynamic coefficients dependent upon the inertial accelerations of the vehicle
frame [14,15], a highly-desirable feature in the design of flight simulators. More recently, Dyk-
man and Rodden [16] derived EOMs considering dynamic aeroelastic effects as well, based on
the modal superposition technique, and showed that a quasi-steady vehicle formulation can be
obtained by the residualization of all modes of vibration.

Considering large rigid-body motions while keeping elastic deformations small, Waszak and
Schmidt [17] used Lagrange’s equation to derive the same EOMs previously obtained in Refs.
[8, 9]. They formalized and used the practical mean-axis constraints and neglected the changes
in the inertia tensor due to elastic deformation. A quasi-steady strip-theory aerodynamic model
was used to obtain the aerodynamics loads due to the elastic deformation, which in its turn was
modeled with a set of normal modes.

Several authors derived formulations that are also readily applicable to finite-element method
(FEM) models. References [14] and [16] e.g. can be applied to FEM-modeled aircraft, but they
do not consider large rigid-body rotations. Buttrill, Zeiler and Arbuckle [19] derived EOMs
considering the availability of a lumped-mass FEM model and retained all the inertial coupling
terms. Zeiler and Buttrill [20] refined the EOMs using nonlinear strain-displacement relations
to improve the calculation of the incremental stiffness matrix due to nonzero body angular rates
– the centrifugal stiffening effect. However, in both studies [19, 20], the rotational DOFs of the
lumped mass elements were not considered.

Meirovitch and Tuzcu [21] developed a modular dynamic formulation using Lagrange’s equa-
tions for quasi-coordinates [22] to derive inertially-coupled, hybrid EOMs. The EOMs were
then discretized in space for the solution of the boundary-value problem for the elastic defor-
mation. The authors used a reference frame fixed in the undeformed aircraft. The rotation of
the frame and the translation of its origin were treated as the rigid-body DOFs, whereas any
displacement relative to the frame was regarded as elastic deformation. The formulation, how-
ever, is not easily adaptable to the employment of lumped-mass FEM models with rotational
DOFs [23, 24].

Reschke [24,25] also used Lagranges equations for quasi-coordinates in the derivation of EOMs,
and had in mind the direct integration with FEM models. Differently from Refs. [19, 20], the
author considered the rotational DOFs of the FEM nodes in addition to the translational DOFs.
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All inertial coupling terms were derived. The elastic DOFs were represented by free-free modes
of vibration, making some but not all of the inertial coupling terms vanish, since no collinearity
was assumed between the deformations and the deformation velocities, and variations of the
inertia matrix were allowed.

Guimarães Neto [45] derived equations of motion neglecting none of the inertial-coupling
terms, and which can be readily applied to aircraft with lumped-mass FEM models. The inertial-
coupling terms were however linearized with respect to the structural degrees of freedom, in-
spired by the method of Hesse and Palacios [28]. Consistent RFAs [49] were used to represent
the unsteady aerodynamic effects calculated with the doublet-lattice method [42].

Regarding the formulations for very flexible aircraft, an accident with NASA’s Helios Proto-
type HP03-2 on June 26, 2003 served as an unfortunate demonstration of the importance of
adequately modeling the nonlinear behavior of very flexible aircraft. Helios encountered tur-
bulence in flight and morphed into a persistent and unstable high-dihedral configuration that
caused an increase in airspeed, which eventually resulted in the wing failure [34]. The in-
vestigation board recommended that more advanced, multidisciplinary, time-domain, nonlinear
analysis methods should be derived and used for the highly-flexible aircraft [34].

Actually, theoretical work in the field was already being developed at the time. Patil, Hodges
and Cesnik [35] developed a nonlinear formulation for the aeroelastic analysis of aircraft in
subsonic flow, with a geometrically-exact, nonlinear intrinsic formulation for the beam dynam-
ics in a moving frame [36]. Patil, Hodges and Cesnik [37] extended their work for the flight
dynamics of HALE aircraft. Their formulation showed that the trim solution and the flight dy-
namic modes were directly affected by the wing flexibility. Despite their example aircraft had
a straight wing, the trim angle of attack increased when flexibility was introduced – contrary
to what linear static aeroelasticity predicts – inasmuch as the nonlinear model predicted a large
flatwise bending that reduced the aerodynamic force component in the vertical direction.

Cesnik and Brown [3] developed a strain-based formulation for the preliminary structural de-
sign and control synthesis of high-aspect-ratio, aeroelastically-tailored flexible wings, for which
anisotropic piezoelectric actuators embedded in the skin and the spar provided active wing-
warping roll control. In Ref. [4], the authors refined their formulation from Ref. [4] to consider
six rigid-body DOFs and fully-coupled three-dimensional bending, twisting, and extensional
nonlinear deformation in the beam model.

Whereas in Refs. [3, 4] the fuselage and the tail were modeled as rigid, in Ref. [38] Cesnik and
Su dealt with a fully-flexible aircraft with slender bodies. Two vehicle concepts were studied: a
single-wing and a joined-wing vehicle. The latter was more susceptible to the induced flexibility
of the fuselage and the tail, having the roll performance more degraded.

Shearer and Cesnik [5] coupled the 6-DOF EOMs of a reference point on a very flexible aircraft
with the low-order constant strain-based nonlinear structural model of Ref. [4]. The formula-
tion was implemented in the University of Michigan’s nonlinear aeroelastic simulation toolbox
(NAST or UM/NAST).

The development at the University of Michigan of a low-cost platform for nonlinear aeroelastic
flight tests and future nonlinear control law studies also deserves mention: the remotely-piloted
X-HALE [2]. The X-HALE aims at capturing nonlinear interactions not easily obtained or not
even possible from wind tunnel tests. The aircraft is currently also being built at ITA in Brazil.
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In the present paper, the methodology that assesses the validity of the assumption of small de-
formations is applied to the X-HALE aircraft model, in a four-meter-span, in a six-meter-span,
and in an eight-meter-span configurations. Results obtained with a linear structural-dynamic,
nonlinear flight-dynamic model using the described methodology are compared with the re-
sults obtained with a fully nonlinear model, comprising a geometrically-exact beam formula-
tion [3,5,29,30], implemented in the ITA/AeroFlex program [6,33]. The aerodynamic model is
the same between both models, based on Hedman’s vortex-lattice method [41], whence being a
quasisteady aerodynamic formulation, without unsteady effects.

With the aircraft modeled using dissimilar structural-dynamic formulations, verifications and
convergence analyses become necessary to ensure that the linear and nonlinear structural-dynamic
models can actually be compared with one another. The same caution is needed with respect
to the aerodynamic model. With confidence that the difference between the models owes only
to the difference between linear and geometrically-nonlinear approaches, conclusions can be
drawn from the comparison of results. Numerical results are then presented and analyzed for
different equilibrium conditions and for the flight-dynamic modes predicted by each formula-
tion, allowing the validation of the proposed self-contained methodology to test for the validity
or not of small deformations.

2 THEORETICAL BACKGROUND

In this paper, a formulation for small deformations is compared with a formulation for large
deformations. The formulations are derived from first principles but independently from each
other. The following subsections describe the relevant details of such formulations.

2.1 Formulation for Small Deformations

The formulation for small deformations is based on [1]. There, the equations of motion for the
flexible aircraft are derived using Lagrange’s equations, with the elected set of 6+n generalized
coordinates comprising: the components of the position vector RO,b of the origin O of a body
reference frame (BRF) expressed in the body axes, b: RO,b =

{
xO yO zO

}T ; the Euler angles
providing the orientation of the BRF with respect to the inertial reference frame (IRF): ψ, θ, and
φ; and n elastic degrees of freedom of the aircraft structure, constituting the displacement vector
uG =

{
u1 u2 · · · un

}T .

The aircraft is considered to be structural-dynamically represented by a finite-element model
with lumped properties of inertia. The total number of mass elements is Nm. The CM of the jth
mass element is at a point J , which is coincident with or rigidly connected to a structural node
K.

The Earth is assumed as flat and non-rotating, and becomes an IRF [39]. The transformation
matrix Cb0 from the inertial frame to the body frame is obtained by a classical sequence (3-2-1)
of Euler rotations, ψ, θ and φ [39], and is given by:

Cb0 =

 cos θ cosψ cos θ sinψ − sin θ
cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ
cosψ sin θ cosφ+ sinψ sinφ sinψ sin θ cosφ− cosψ sinφ cos θ cosφ

 . (1)
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With the vector ωb =
{
p q r

}T being the angular velocity vector of the BRF with respect to
the IRF, one has [1]:

ω̃b = Cb0Ċ
T
b0, (2)

with the skew-symmetric operator, (̃•) or skew (•), providing an R3×3 representation of a vector
(•) ∈ R3, in which, if v =

{
vx vy vz

}T ∈ R3, then:

ṽ = skew (v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (3)

From Eqs. (1) and (2), one can express the angular velocity components in terms of the vector
of time derivatives of the Euler angles, ϕ̇ =

{
φ̇ θ̇ ψ̇

}T
:

ωb =

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 ϕ̇ = Hϕ
−1ϕ̇ (4)

With gravity assumed uniform over the airframe, the aircraft CM and center of gravity (CG)
coincide, the reason why only the latter terminology will be used henceforth. Calculating and
summing the contributions of each mass sub-domain to the kinetic energy, its final expression
becomes [1]:

T = 1/2
Nm∑
j=1

∫
Vj

0ṘI
T 0ṘIρdV (5)

= 1/2 m
(
bṘO,b + ω̃bRO,b

)T (
bṘO,b + ω̃bRO,b

)
+ 1/2 ωb

T (JO + ∆JO)ωb

−m
(
bṘO,b + ω̃bRO,b

)T (
s̃CG,b + d̃CG,b

)
ωb +m

(
bṘO,b + ω̃bRO,b

)T
bḋCG,b

+u̇TGMωG
Tωb + 1/2 u̇TGMGGu̇G,

with:

JO =
1

2

Nm∑
j=1

(
mj s̃OJ,b

T s̃OJ,b + Jj

)
, (6)
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∆JO = 2
Nm∑
j=1

mj

(
s̃OJ,b

T d̃K,b + s̃OK,b
T
sKJ,bϕK

T − s̃OJ,b
T
ϕKsKJ,b

T
)

(7)

+
Nm∑
j=1

mj

(
d̃K,b

T
d̃K,b + 2

(
d̃K,b

T
sKJ,bϕK

T − d̃K,b
T
ϕKsKJ,b

T
))

+
Nm∑
j=1

((
mj s̃KJ,b

T
s̃KJ,b + Jj

)
ϕKϕK

T
)

+
Nm∑
j=1

(
ϕ̃K

(
2Jj − tr (Jj) I3 − ϕ̃K

(
mjsKJ,bsKJ,b

T − Jj + 1/2 tr (Jj) I3
)))

,

MGG =
Nm∑
j=1

mj

(
Ut,b,KG

TUt,b,KG −Ut,b,KG
T s̃KJ,bUr,b,KG −Ur,b,KG

T s̃KJ,b
T
Ut,b,KG

)
(8)

+
Nm∑
j=1

Ur,b,KG
T
(
mj s̃KJ,b

T
s̃KJ,b + Jj

)
Ur,b,KG,

sCG,b =
1

m

Nm∑
j=1

mj (sOK,b + sKJ,b), (9)

dCG,b =
1

m

Nm∑
j=1

mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)
uG = DCG,buG, (10)

MωG
T =

Nm∑
j=1

Ur,b,KG
T
(
Jj − ˜Ur,b,KGuG (−Jj + 1/2 tr (Jj) I3)

)
(11)

−
Nm∑
j=1

mj

(
Ut,b,KG − s̃KJ,bUr,b,KG

)T
skew

(
sOJ,b + Ut,b,KGuG − s̃KJ,bUr,b,KGuG

)
,

mj the mass of the jth lumped-mass element and Jj the inertia matrix of the same element
about its own center of mass. Moreover, m is the aircraft total mass; Vb is the inertial velocity
vector of the origin O of the body reference frame (BRF), with components u, v , and w in the
body axes; s(•) refers to the relative position vectors in the undeformed (unstrained) condition,
usually called the jig shape; and d(•) stands for the changes in the s(•) vectors due to the struc-
tural deformation. The Boolean matrices Ut,b,KG and Ur,b,KG allow the recovery of the nodal
displacements and rotations for the nodeK from the finite-element displacement vector, uG [1].

The elastic strain energy for the aircraft structure modeled with finite elements reads:

7



IFASD-2017-080

U elas = 1/2
(
TFEM |BRFuG

)T
KFEM

(
TFEM |BRFuG

)
= 1/2 uG

TKGGuG, (12)

where the FEM model nodal displacements can be calculated in generic coordinate systems
other than the flight-mechanics BRF coordinate system. The three-dimensional transformation
matrices from the BRF to such coordinate systems are collected in the block-diagonal transfor-
mation matrix TFEM |BRF , such that the original FEM stiffness matrix, KFEM , is transformed
to KGG = TFEM |BRF

TKFEMTFEM |BRF .

The gravitational potential energy is given by:

Ugrav = −
Nm∑
j=1

∫
Vj

g ·RIρdV (13)

= −mgb
T (RO,b + sCG,b + dCG,b) .

At last, structural dissipation due to damping forces of viscous nature is assumed [40]:

F = 1/2 u̇TGBGGu̇G. (14)

The generalized forces comprise the aerodynamic and the propulsive forces. The former are
calculated considering the use of the vortex-lattice method (VLM) [41]. On the other hand, the
propulsive forces can be modeled as concentrated thrust forces acting on the thrust center of
each one of the NE engines. Considering that a matrix Cbe transforms the thrust force from an
engine frame – whose x axis is aligned with the thrust line – to the body frame, one has the
concentrated force Te,b = Cbee3,1Te applied at a point E whose position vector with respect
to O in the undeformed aircraft is sOE,b. The notation eN,i a column matrix with N entries of
which the ith is equal to 1 and all the others are null.

Every thrust center is also considered to be coincident with or rigidly connected to a structural
node KE in the FEM model of the aircraft, with associated Boolean matrices Ut,b,KEG and
Ur,b,KEG. The translations and the rotations of the thrust center are then given by the vectors
de,b =

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)
uG and ϕe = Ur,b,KEGuG, respectively, with sKEE,b the

position vector of the thrust center with respect to KE .

Under small deformations, the thrust vector is Te,b = (Cbe + ϕ̃e) e3,1Te and the thrust center
is sOE,b + de,b. The concentrated propulsive force can be represented as a distributed force by
means of a three-dimensional Dirac’s delta function [21]. As a result, the final expressions for
the generalized forces in the BRF DOFs become:

QRO,b
= Fa,b +

NE∑
e=1

CbeTee3,1 + ∆Fa,b +

NE∑
e=1

ϕ̃eTee3,1 = Fb + ∆Fb, (15)
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Qϕ =
(
Hϕ

−1)T (Ma,O,b +

NE∑
e=1

s̃OE,bTeCbee3,1 + ∆Ma,O,b + ∆Mp,O,b + R̃O,bQRO,b

)
(16)

=
(
Hϕ

−1)T (MO,b + ∆MO,b + R̃O,b (Fb + ∆Fb)
)
,

where Fa,b and Ma,O,b are the net aerodynamic force and moment vectors, respectively, associ-
ated with the rigid airframe; ∆Fa,b and ∆Ma,O,b are the net incremental aerodynamic force and
moment vectors, respectively, due to the elastic motion; and:

∆Mp,O,b =

NE∑
e=1

Te

(
s̃OE,b ˜(Ur,b,KEGuG) + skew

((
Ut,b,KEG − s̃KEE,bUr,b,KEG

)
uG
)
Cbe

)
e3,1

is the net linearized incremental propulsive moment vector due to the structural displacements.
All the moments are about O.

The incremental aerodynamic loads are modeled with the VLM [41]. Hence, the aerodynamic
forces and moments are concentrated on a discrete set of NP aerodynamic grid points, located
at the centroids of the VLM boxes, with NP equal to the number of boxes in the discretization
of the aerodynamic model. The structural displacements at the aerodynamic grid points are
calculated with a linear transformation matrix GAG that provides the vector of aerodynamic
normal and rotational displacements, uA, from the structural displacements, uG: uA = GAGuG.
Each aerodynamic grid point has two degrees of freedom – plunge and pitch – and the length
NA of the uA vector is then NA = 2NP . The vector containing the aerodynamic forces and
moments at the aerodynamic grid points is PA. With this rationale, the vector of generalized
force in the uG DOFs reads:

QG = GAG
TPA +

NE∑
e=1

(
Ut,b,KEG − s̃KEE,bUr,b,KEG

)T
Te (Cbee3,1 − ẽ3,1Ur,b,KEGuG) (17)

The equations of motion for the constrained flexible aircraft are obtained by the substitution of
the energy expressions, Eqs. (5), (12) and (13); Rayleigh’s dissipation function, Eq. (14); and
the generalized forces, Eqs. (15), (16) and (17), into Lagrange’s equations [1]. It is assumed in
the derivation that no change in the aircraft mass occurs with time. The equations of motions
are given by:

mV̇b +mω̃bVb −ms̃CG,bω̇b −mω̃bs̃CG,bωb
+m˜̇ωbDCG,buG + 2mω̃bDCG,bu̇G +mω̃bω̃bDCG,buG

+mDCG,büG = mgb + Fb + ∆Fb, (18)
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JOω̇b + ω̃bJOωb +ms̃CG,b

(
V̇b + ω̃bVb

)
+mD̃CG,buG

(
V̇b + ω̃bVb

)
+∆J′Oω̇b + ω̃b∆J′Oωb + ∆J̇′Oωb

+ṀωGu̇G + MωGüG + ω̃bMωGu̇G

= ms̃CG,bgb +mD̃CG,buGgb + MO,b + ∆MO,b, (19)

MGGüG + BGGu̇G + KGGuG

+mDCG,b
T
(
V̇b + ω̃bVb

)
+ MωG

T ω̇b

+2ṀT
ωGωb −

1

2

n∑
g=1

en,gωb
T ∂∆JO
∂ug

ωb

= mDCG,b
Tgb + QG, (20)

with ∆J′O = 1/2
(
∆JO + ∆JO

T
)

being the symmetric inertia matrix increment, and with all
the time derivatives taken in the BRF (the left superscript b was omitted for brevity).

The finite-element mass, damping and stiffness matrices are given by MGG, BGG, and KGG,
respectively. The total number of elastic degrees of freedom is n.

2.1.1 Dually-Constrained Axes

The finite-element stiffness matrix, KGG, refers to an unrestrained three-dimensional struc-
ture and hence it is a positive semi-definite matrix, with a null space spanned by six linearly-
independent vectors [27]. In other words, six linearly-independent rigid-body motions are al-
lowed by the finite-element formulation in this case. This rigid-body freedom of the finite-
element model is not desired, since the coordinates of the origin O and the Euler angles were
already considered to be the rigid-body degrees of freedom of the BRF of the flexible aircraft.
This means that six constraints are needed to eliminate the rigid-body motion from the elastic
DOFs.

In the so-called dually-constrained axes [1], the origin S of the structural axes (point of no
elastic displacement) is a material point (and structural node) that can be non-coincident with
the origin O of the body axes. Consider that the DOFs of the node S are part of a set named the
S-set and that the remaining DOFs are part of a set named the D-set. The union of the S- and
D-sets recovers the G-set, containing all the DOFs of the FEM model. If UGS is the Boolean
matrix that locates the S-set DOFs in the G-set and UGD is the equivalent for the D-set, then a
rigid-body mode matrix Ψr,S ∈ Rn×6 can be obtained from [1, 43]:

Ψr,S =
[
UGD UGS

] [−(UGD
TKGGUGD

)−1(
UGD

TKGGUGS

)
I6

]
, (21)

10
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where IN denotes the identity matrix of order N . The rigid-body modes can be shown to depend
exclusively on the geometry of the FEM model [27] and on the selected node S , about which
the rigid-body rotations occur.

For the dually-constrained axes, the constraint is that uS = 0, corresponding to a clamped
boundary condition at the node S . Due to the difficulty in attaining the same level of fidelity
in the aerodynamic forces and moments acting on the rigid-body DOFs and the generalized
aerodynamic forces acting on the elastic DOFs, the satisfaction of the equations of motion (2.1)
and (2.1) does not ensure that Eq. (2.1) is satisfied. In other words, the finite-element model
can present rigid-body accelerations, Ψr,S ξ̈S , due to the uneven level of fidelity. To avoid
this, a d’Alembert force vector [43], −MGGΨr,S ξ̈S , is included in Eq. (2.1), which is then left-
multiplied by Ψr,S

T , allowing the determination of ξ̈S . This procedure yields the final equations
of motion in the elastic DOFs [1, 43]:

PrMGGüG + PrBGGu̇G + PrKGGuG

+mPrDCG,b
T
(
V̇b + ω̃bVb

)
+ PrMωG

T ω̇b

+2PrṀ
T
ωGωb −

1

2
Pr

n∑
g=1

en,gωb
T ∂∆JO
∂ug

ωb

= mPrDCG,b
Tgb + PrQG, (22)

with Pr = In −MGGΨr,SMrr,S
−1Ψr,S

T the so-called inertia-relief projection matrix [43] and
Mrr,S = Ψr,S

TMGGΨr,S the FEM rigid-body mass matrix.

With the inertia relief effect taken into account, any structural node can have its displacements
assumed null in Eq. (22), e.g., uS = 0, which implies uG = UGDuD. Hence, in the case of the
dually-constrained axes, the origin O keeps its position constant with respect to the undeformed
aircraft (first constraint) and the structural node S is the point where the undeformed and the
deformed airframes coincide at any time instant (second constraint).

2.1.2 Aerodynamic Model

The aerodynamic loads acting on the flexible aircraft can be calculated as the superposition of
loads that would be obtained were the airframe perfectly rigid with incremental loads due to
the structural deformation. In this case, the aerodynamic data for the rigid aircraft consists of
tables of non-dimensional force and moment coefficients and do not comprise any structural
flexibility effect. To obtain the generalized aerodynamic loads related to the structural motion,
the VLM [41] is used in this paper, yielding the following linear system of equations:

A−1∆Cp = w, (23)

where w ∈ RNP is the vector of non-dimensional normalwashes at the NP panel (box) control
points; ∆Cp ∈ RNP is the vector of panel pressure coefficient differences; and A ∈ RNP×NP is

11
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the AIC (aerodynamic influence coefficient) matrix. The VLM AIC matrix is dependent upon
the geometry and discretization of the aerodynamic lifting surfaces in the model. Dependence
on the Mach number, M , is neglected in this paper, since compressibility effects are not present
in the cases studied here.

The body frame of reference used to calculate the aerodynamic loads is defined as an aerody-
namic reference frame (ARF). Its inertial angular rates are written in the ARF coordinate system
as pa, qa, and ra, and its inertial velocity has the components ua, va, and wa in the same sys-
tem [1]. The rigid-body motion of the aircraft then contributes to the generalized aerodynamic
forces (GAFs) in the elastic DOFs in terms of pa, qa, ra, ua, va, wa, the control surface deflec-
tions and other possible rigid-body variables. The elastic deformation of the structure measured
with respect to the ARF, given by the vector uG/A, contributes to the incremental GAFs. The
total GAFs are then given by [1]:

QG = q̄GAG
TSAP (∆Cp,u + ∆Cp,e) . (24)

In Eq. (24), q̄ is the dynamic pressure; GAG ∈ RNA×n is the matrix that interpolates the
elastic displacements from the structural nodes to the aerodynamic grid points (at the centroids
of the VLM boxes); SAP ∈ RNA×NP transforms the panel pressure coefficient differences to
forces and moments at the aerodynamic grid points, and is usually called an integration matrix;
∆Cp,u is the vector of panel pressure coefficient differences related to the rigid-body states,
without elastic deformation; and ∆Cp,e is the vector of panel incremental pressure coefficient
differences.

The elastic contribution to the generalized aerodynamic forces is calculated with the equation
[1]:

∆Cp,e = A

(
DPA,0GAGuG/A +

bw
Va

DPA,1GAGu̇G/A

)
, (25)

where DPA,0,DPA,1 ∈ RNP×NA are the differentiation matrices that allow the calculation of
control point normalwashes at three quarters of the boxes’ mean chords from the displacements
at the aerodynamic grid points, respectively; bw is the reference wing semi-chord; and NA =
2NP is the total number of aerodynamic degrees of freedom (each panel has two DOFs, plunge
and pitch).

The integration and differentiation matrices in Eq. (25) are given by:

SAP =

NP∑
k=1

Sk
(
eNA,2k−1eNP ,k

T + eNA,2keNP ,k
T (x050,k − x025,k)

)
, (26)

DPA,0 =

NP∑
k=1

eNP ,keNA,2k
T , (27)

DPA,1 =
1

bw

NP∑
k=1

(
eNP ,keNA,2k−1

T + eNP ,keNA,2k
T (x075,k − x025,k)

)
, (28)

12
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with x025,k, x050,k, x075,k the x coordinates, in the aerodynamic model coordinate system, of the
points at one quarter, one half and three quarters of the k th aerodynamic box (panel) mean
chord; and Sk the k th aerodynamic box area.

In this paper, the aerodynamic reference frame is modeled with attached axes [1]. This means
that the origin A is coincident with or rigidly connected to a material point C that remains fixed
when structural deformation occurs. For small elastic deformations, one can write:

uG/A = uG −Ψr,AuA,b, (29)

uA,b =

[
I3 −s̃CA,b
03 I3

]
Uc

TuG, (30)

where Ψr,A is the rigid-body mode matrix of the free-free aircraft calculated with origin atA [1]
and UC is the Boolean matrix that selects the node C degrees of freedom among all DOFs.
The left multiplication of Eq. (29) by KGG and the partition of uG/A into its fixed DOFs,
uG/A,c = 06×1, and free DOFs, uG/A,f , i.e., uG/A = UfuG/A,f + UcuG/A,c = UfuG/A,f , allow
one to determine that [1]:

uG/A = Uf

(
Uf

TKGGUf

)−1
Uf

TKGGuG. (31)

The position vector of A in the BRF reads:

RA,b = RO,b + sOA,b +
[
I3 03

]
uA,b. (32)

A matrix Cab generated with the small rotations ϕA =
[
03 I3

]
uA,b:

Cab = I3 − ϕ̃A (33)

transforms vectors from the BRF to the ARF, such that RA is written in the ARF as:

RA,a = Cab

(
RO,b + sOA,b +

[
I3 03

]
uA,b

)
. (34)

The inertial velocity of A then becomes:

Va = 0ṘA,a = Cab

(
Vb +

[
I3 03

]
u̇A,b + ω̃b

(
sOA,b +

[
I3 03

]
uA,b

))
, (35)

13
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from which one obtains the effective aerodynamic velocity components:

ua = e3,1
T 0ṘA,a, (36)

va = e3,2
T 0ṘA,a, (37)

wa = e3,3
T 0ṘA,a. (38)

Knowing ua, va, and wa, one can calculate the corresponding Va, αa and βa using the well-
known relations, as in Ref. [39]. The inertial angular velocity of the ARF can be calculated
as [1]:

ωa = Cab ωb + ϕ̇A, (39)

from which the corresponding angular rates can be obtained:

pa = e3,1
Tωa, (40)

qa = e3,2
Tωa, (41)

ra = e3,3
Tωa. (42)

The aerodynamic forces and moments due to the rigid-body motion of the ARF are then given
by the equations:

Fa,b = q̄SrefCbaCav

{
−CD −CY −CL

}T
,

Ma,O,b = q̄SrefCba

{
swCl cwCm swCn

}T
+ s̃OA,bFa,b, (43)

with Ci = Ci

(
αa, α̇a, βa, β̇a,M,Re, ωa, δc, . . .

)
, i = D,L, Y, l,m, n the aerodynamic force

or moment coefficients for the rigid aircraft; Sref the reference wing planform area; sw the
reference wing span; cw the wing mean aerodynamic chord; and Cav given by:

Cav =

cosαa cos βa − cosαa sin βa − sinαa
sin βa cos βa 0

sinαa cos βa − sinαa sin βa cosαa

 (44)

The incremental forces and moments in the rigid-body DOFs are given by:

14
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∆Fa,b = q̄CbaCav

NP∑
k=1

Sk


−eNP ,k

T∆cd,e

e3,2
Tnk,u,b

(
eNP ,k

T∆Cp,e

)
e3,3

Tnk,u,b
(
eNP ,k

T∆Cp,e

)
, (45)

∆Ma,O,b = ∆M0,1 + ∆M1,0 + ∆M1,1 + ∆MA→O, (46)

∆M0,1 = q̄

NP∑
k=1

SkCba

− skew

Cav


−eNP ,k

Tcd,u

e3,2
Tnk,u,beNP ,k

T∆Cp,u

e3,3
Tnk,u,beNP ,k

T∆Cp,u




nk,u,b
(
eNP ,k

TC025AGAGuG/A
))
, (47)

∆M1,0 + ∆M1,1 = q̄

NP∑
k=1

SkCba

− skew

Cav


−eNP ,k

T∆cd,e

e3,2
Tnk,u,b

(
eNP ,k

T∆Cp,e

)
e3,3

Tnk,u,b
(
eNP ,k

T∆Cp,e

)



(
R025,aeNP ,k + nk,u,b

(
eNP ,k

TC025AGAGuG/A
)))

, (48)

∆MA→O = skew
([

I3 03

]
uA,b

)
Fa,b + skew

(
sOA,b +

[
I3 03

]
uA,b

)
∆Fa,b, (49)

where ∆cd,e = ∆cd,ind,e is the vector of panel drag coefficient disturbances due to the structural
deformation, with ∆cd,ind,e the vector of panel induced drag disturbances; nk,u,b is the normal
vector to each panel in its undeformed position, with components written in the BRF coordinate
system; ∆Cp,e = A′welas; C025A ∈ RNP×NA is a matrix that transforms the aerodynamic grid
points’ displacements to the normal displacement of the points at 25% of the mean chord of the
panels; R025,a ∈ R3×NP is a matrix containing the three-dimensional coordinates, in the ARF
coordinate system, of the points at 25% of the mean chord of all the panels; cd,u = cd,0+cd,ind,u

is the vector of panel drag coefficients due to the rigid-body states: cd,0 is the vector of panel

zero-lift drag coefficients, approximated as cd,0 =
NP∑
k=1

eNP ,k

(
Sref/

NP∑
k=1

Sk

)
CD,0; and cd,ind,u

is the vector of panel induced drag coefficients due to ∆Cp,u.

The rigid-body and the incremental induced drags are calculated based on the methodology of
Ref. [51].

2.1.3 Shape functions and stiffness matrix of elastic elements for small deformations

In the present paper, it is assumed that the aircraft structure is modeled with beam elements.
The adopted beam element in three dimensions has two nodes and twelve degrees of freedom.
The element shape functions are given by:

ue (xe, ye, ze) = a0 + a1xe −
∂we
∂xe

xe −
∂ve
∂xe

xe, (50)

ve (xe, ye, ze) = b0 + b1xe + b2x
2
e + b3x

3
e −Θe (xe, ye, ze) ze, (51)

we (xe, ye, ze) = c0 + c1xe + c2x
2
e + c3x

3
e + Θe (xe, ye, ze) ye, (52)

where ue (xe, ye, ze) is the axial displacement shape function and ve (xe, ye, ze) andwe (xe, ye, ze)
are the edgewise and flatwise displacements’ shape functions, respectively. The set of shape
functions becomes complete with the twist angle shape function:
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Θe (xe, ye, ze) = d0 + d1xe. (53)

yielding, at last:

ue (xe, ye, ze) = a0 + a1xe −
(
c1 + 2c2xe + 3c3x

2
e − d1ze

)
xe (54)

−
(
b1 + 2b2xe + 3b3x

2
e + d1ye

)
xe,

ve (xe, ye, ze) = b0 + b1xe + b2x
2
e + b3x

3
e − d0ze − d1xeze, (55)

we (xe, ye, ze) = c0 + c1xe + c2x
2
e + c3x

3
e + d0ye + d1xeye. (56)

The twelve degrees of freedom of the beam finite element are whence considered to be given by:
ue1 = ue (0, 0, 0), ve1 = ve (0, 0, 0), we1 = we (0, 0, 0), φe1 = Θe (0, 0, 0), θe1 = −∂we

∂xe
(0, 0, 0),

ψe1 = ∂ve
∂xe

(0, 0, 0), ue2 = ue (Le, 0, 0), ve2 = ve (Le, 0, 0), we2 = we (Le, 0, 0), φe2 =

Θe (Le, 0, 0), θe2 = −∂we
∂xe

(Le, 0, 0), and ψe2 = ∂ve
∂xe

(Le, 0, 0), where Le is the element length.

The element elastic strains are given by:

εx =
∂ue
xe

, (57)

εy = −νεx, (58)
εz = −νεx, (59)

γxy =
∂ve
xe

+
∂ue
ye

, (60)

γxz =
∂we
xe

+
∂ue
ze
, (61)

γyz =
∂we
ye

+
∂ve
ze
, (62)

where ν is Poisson’s ratio for the beam material and Eqs. (54-56) shall be considered. Using
Voigt’s notation, the element strains may be collected in a six-dimensional column matrix, ε ={
εx εy εz γxy γxz γyz

}T , which is itself a linear function of the element twelve degrees
of freedom. The element stresses can be calculated with the consideration of the isotropic linear
elastic material stiffness matrix, C:

C =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 , (63)
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so that:

σ = Cε. (64)

In Eq. (63), λ = Eν
(1+ν)(1−2ν) and µ = G = E

2(1+ν)
, where E and G are the material Young’s

and shear moduli, respectively. The element stiffness matrix Kee is such that the element strain
energy satisfies:

Ue =
1

2

∫∫∫
element

σTεdV =
1

2
ue

TKeeue, (65)

with ue =
{
ue1 ve1 we1 φe1 θe1 ψe1 ue2 ve2 we2 φe2 θe2 ψe2

}T . It can be demon-
strated that:

Kee = (66)

E



A
Le

0 0 0 Az
Le

−Ay
Le

− A
Le

0 0 0 −Az
Le

Ay
Le

12Iz
Le3

12Iyz
Le3

0 −6Iyz
Le2

6Iz
Le2

0 −12Iz
Le3

−12Iyz
Le3

0 −6Iyz
Le2

6Iz
Le2

12Iy
Le3

0 − 6Iy
Le2

6Iyz
Le2

0 −12Iyz
Le3

−12Iy
Le3

0 − 6Iy
Le2

6Iyz
Le2

GJ
ELe

0 0 0 0 0 − GJ
ELe

0 0
4Iy
Le

−4Iyz
Le

−Az
Le

6Iyz
Le2

6Iy
Le2

0 2Iy
Le

−2Iyz
Le

4Iz
Le

Ay
Le

− 6Iz
Le2

−6Iyz
Le2

0 −2Iyz
Le

2Iz
Le

A
Le

0 0 0 Az
Le

−Ay
Le

12Iz
Le3

12Iyz
Le3

0 6Iyz
Le2

− 6Iz
Le2

symmetric
12Iy
Le3

0 6Iy
Le2

−6Iyz
Le2

GJ
ELe

0 0
4Iy
Le

−4Iyz
Le

4Iz
Le



,

where A is the cross-sectional area, Iy and Iz are the cross-sectional area moments of inertia,
J is the torsion constant, Iyz is the cross-sectional area product of inertia, and y and z are
coordinates accounting for the possible eccentricity between the beam axis and the shear center.

Although a consistent mass matrix can also be obtained for the beam element based on the
material density and the element shape functions, the flight-dynamic formulation is not prepared
to deal with consistent masses, due to resulting inertial coupling between the two beam element
nodes. Rather, a lumped mass matrix is generated by transferring to each node half of the mass
of the element, as well as the first and second moments of inertia and the products of inertia due
to each half of the element.

2.2 Strain-based geometrically-nonlinear beam formulation

The main goal of this section is to provide a brief review of the strain-based geometrically-
nonlinear beam model. The reader is referred, for instance, to Refs. [29], [30], [31], and
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[32] for a complete description and derivation of these equations. We developed a toolbox
(ITA/AeroFlex) that implements this formulation [33].

The key idea here is to use the following kinematic relationship, which relates the displacements
h(s, t) at a point along the beam to the strains ε(s, t):

∂h

∂s
(s, t) = K(s, t)h(s, t) , (67)

where:

K(s) =


0 1 + εx(s, t) 0 0
0 0 κz(s, t) −κy(s, t)
0 −κz(s, t) 0 κx(s, t)
0 −κy(s, t) −κx(s, t) 0

 , (68)

where εx(s, t) is the extensional strain, and κx(s, t), κy(s, t) and κz(s, t) are the curvatures at
point s and time t.

The flexible structure is split into elements and the strains are assumed to be constant along
each element (but time-dependent), so that Eq. 67 has an analytical solution:

h(s, t) = eK(s−s0)h0(t) , (69)

where h0(t) is the displacement of a fixed node at x = s0. The matrix exponential eK(s−s0)

exhibts a closed-form expression as presented in Ref [30].

In the ITA/AeroFlex computer program, as in previous work, flexible elements with three nodes
were implemented. Furthermore, we introduced rigid elements, with time-independent null
strain. These rigid elements are used to model rigid components and do not introduce new
states to the model.

Using Eq. 69, it is possible to compute the displacement vector for each structural node as a
function of the strains:

h(t) = h (ε(t)) . (70)

The time-derivative of the displacement vector taking into account only the motion of the struc-
ture is obtained as:

ḣ(t) =
∂h

∂ε︸︷︷︸
Jhε

ε̇(t) , (71)

where Jhε(ε(t)) is a Jacobian that relates the element strains to nodal displacements.
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The rigid body motion can also be introduced by using the term Jhbβ, where Jhb relates the rigid
body motions to nodal displacements. Thus, the time-derivative due to both the strain rates ε̇
and the rigid body motion β (linear and angular velocity components) is given by:

ḣ(t) = Jhεε̇(t) + Jhbβ(t) . (72)

The kinetic energy is computed as:

T =
1

2
ḣTMḣ , (73)

whereM is the structure mass matrix, computed assuming a linear variation of the nodal speeds
between the nodes. The kinetic energy can be rewritten as a function of the strain rates and rigid
body velocities using Eq. 72:

T =
1

2

[
ε̇ β

] [MFF MFB

MBF MBB

] [
ε̇
β

]
, (74)

where:

MFF = JThεMJhε , MFB = JThεMJhb ,

MBF = JThbMJhε , MBB = JThbMJhb .
(75)

The potential (elastic) energy is given by:

U =
1

2
ε̇TKε̇ , (76)

where K is a block-diagonal matrix, composed of the stiffness matrices of each element Ke:

Ke =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

 . (77)

The off-diagonal terms allow coupling between the strains (for instance, k12 represents the
coupling between extension and torsion).

From the Euler-Lagrange equations, the equations of motion are computed as:

[
MFF MFB

MBF MBB

] [
ε̈

β̇

]
+

[
CFF CFB
CBF CBB

] [
ε̇
β

]
+

[
K 0
0 0

] [
ε
b

]
=

[
RF

RB

]
(78)
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The matrices CFF , CBF , CFB and CBB include the gyroscopic terms (due to the rotation of the
rigid body and structural elements) and the structural damping term. In this work, we assume
that the structural damping is proportional to the stiffness matrix: C = αK.

RF and RB are the generalized forces that are applied to the airplane. They are obtained from
the aerodynamic, gravitational and propulsive forces applied to each node of the structure:

[
RF

RB

]
=

[
JTpε
JTpb

]
F pt +

[
JTθε
JTθb

]
Mpt +

[
JTpε
JTpb

]
BFF dist +

[
JTθε
JTθb

]
BFMdist +

[
JTpε
JTpb

]
N~g (79)

The Jacobian matrices Jpε and Jθε represent the relationship between structural deformations
(ε) and nodal displacements and rotations. Jpb and Jθb represent the relationship between rigid
body degrees of freedom and nodal displacements and rotations. The Jacobian matrices are
nonlinear functions of the displacement vector ε. Closed-form expressions for these Jacobians
are presented in [30].

2.3 Correspondence between the element stiffness matrices for small and large deforma-
tions

It is fundamental for the purpose of the present paper that the same physical properties can be
used indistinctly in the formulation for small deformations and in the geometrically-nonlinear
formulation. The correct correspondence between the element stiffness matrices in Eq. (66) and
in Eq. (77), if equal element directions and cross-section orientations are used in both elements,
is given by the following equations:

k11 = EA, (80)
k13 = EAz, (81)
k14 = −EAy, (82)
k22 = GJ, (83)
k33 = EIy, (84)
k34 = −EIyz, (85)
k44 = EIz. (86)

The remaining stiffness terms in Eq. (77) that couple beam torsion with the other strains are
not predicted in the formulation for small deformations, but are also less commonly employed
in structural-dynamic models.
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3 NUMERICAL MODELS

The X-HALE aircraft in its four-meter-span (“4m”), six-meter-span (“6m”) and eight-meter-
span (“8m”) configurations is the aircraft analyzed in the present paper. The four-meter-span
configuration contains four wing sections with span of 1.0 m and chord of 0.2 m each, as well as
three pods at the connections between the wing panels. At the pods, the aircraft engines, landing
gears, electronics and sensors are installed. Booms are connected to the pods and, at the tip of
each boom, a horizontal tail is mounted. The two side tails are all-moving control surfaces that
can be used for both longitudinal and lateral-directional control, and are then named as elevons.
The central tail has a flipping-up capability, in order to modify the aircraft longitudinal and
lateral-directional flying qualities as desired in operation. For ground clearance during take-
off, the central tail has approximately 33% less span in its right (bottom) part than in the left
(top) part. Anyway, all the configurations are analyzed in this paper with the central tail in the
horizontal position. In all the configurations, the wing-tip sections have a dihedral angle of 10◦.
The wing is built with an incidence of 5◦.

The 6m configuration has two more wing sections, two more pods, two more booms and two
more tails than the 4m configuration. The 8m configuration has only two wing sections added
with respect to the 6m configuration, without additional pods, booms or tails.

The numerical models consider the following stiffness properties for all the wing sections:
k11 = 2.14 × 106 N, k13 = 1.54 × 103 N·m, k14 = −4.91 × 104 N·m, k22 = 55.8 N·m2,
k33 = 1.04× 102 N·m2, k34 = −46.34 N·m2, and k44 = 6.35× 103 N·m2. All the other aircraft
components are assumed rigid.

The distributed mass properties of the aircraft components are shown in Table 1. The concen-
trated inertias match those listed in Table 7 of Ref. [2]. The three configurations’ masses, CG
locations, moments and products of inertia are shown in Table 2, in which the origin of the axes
is located at the wing symmetry plane and at 28.8% of the wing chord. For the properties in
Table 2, the x axis is directed rearward, y to the right semi-wing and z upward.

Wing Booms Tails Units
Elastic axis location (from L.E.) 28.8 - 32.35 % chord
CG location (from L.E.) 25.0 - 25.0 % chord
Mass per unit length 0.438 0.100 0.200 kg/m
Ixx per unit length 6.54× 10−4 2.91× 10−5 3.00× 10−4 kg·m2/m
Iyy per unit length 1.34× 10−2 1.46× 10−5 1.50× 10−4 kg·m2/m
Izz per unit length 2.07× 10−2 1.46× 10−5 2.00× 10−4 kg·m2/m

Table 1: Distributed mass properties of the aircraft components.

3.1 Verification of the models

Aircraft free-free or constrained modes of vibration (MOVs) can be calculated in both the for-
mulation for small deformations and the geometrically-nonlinear formulation. In order to en-
sure that a fair basis for comparison of results between the formulations does indeed exist, it
is fundamental that the modal frequencies predicted by both models satisfy some maximum
difference tolerance.

First, then, for the 4m configuration, refined linear and nonlinear structural-dynamic models
with 200 elements per wing section were generated. The first 40 constrained MOVs (with the
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4m 6m 8m Units
xCG 0.014 0.011 0.010 m
yCG -0.001 -0.001 -0.001 m
zCG -0.046 -0.052 -0.048 m
m 7.90 12.9 13.8 kg
ICGxx 6.51 28.5 39.3 kg·m2

ICGyy 0.343 0.521 0.525 kg·m2

ICGzz 6.79 29.0 39.8 kg·m2

ICGxy -0.0105 -0.0150 -0.0150 kg·m2

ICGxz 0.0117 0.0209 0.0188 kg·m2

ICGyz −3.27× 10−4 −5.13× 10−4 −4.68× 10−4 kg·m2

Table 2: Calculated mass properties for the three aircraft configurations.

clamp at the wing symmetry) were then calculated, and the maximum observed difference in
frequency was 0.79% in a MOV above 200 Hz. The mesh with 800 elements in total was then
held as the reference with which coarser meshes should be compared. Then, both structural-
dynamic models were divided in much less elements per wing section.

The procedure showed that using only 10 elements per wing section in the geometrically-
nonlinear formulation leads to errors in the constrained MOVs’ frequencies of less than 4%,
for modes up to 100 Hz, and less than 7.4%, for modes up to 200 Hz. In the model assuming
small deformations, 20 elements result in errors less than 1.4%, for modes up to 100 Hz, and
less than 2.6%, for modes up to 200 Hz. With such choices, the wing has the same quantity of
nodes in both models.

The same discretization for each wing section was then adopted in the 6m and the 8m config-
urations. Free-free modes of vibration were then calculated for all the configurations. In all
of them, the maximum difference in modal frequency predicted by the geometrically-nonlinear
formulation when compared with the small-deformation one is less than 3.7% for modes up
to 75 Hz. The natural frequencies of the free-free MOVs calculated with both formulations
for all the configurations are shown in Fig. 1. From this point on, the implementation of the
formulation for small deformations will have the acronym SDI, and the implementation of the
geometrically-nonlinear formulation will have the acronym GNI.

The VLM mesh is the same for both formulations, and was, for simplicity, built to match the
spanwise divisions of the wing sections in the nonlinear structural-dynamic model, that is, it
comprises 10 uniformly distributed boxes spanwise per wing section. Chordwise, 8 boxes are
used in the wing, also uniformly distributed. The tails are divided into 5 boxes chordwise and
6 boxes spanwise, except for the central tail, which has 33% less span in its right side and is
divided in 3 boxes to the left side and 2 boxes to the right side. No effective vertical surface
representing each pod is included in the aerodynamic model, also for simplicity.

The wing incidence of 5◦ and the wing reflexed EMX07 airfoil [2] camber are approximately
represented by invariant normalwash vectors, given by the local effective camber line inclination
at 75% of each box chord.

The VLM mesh is prepared to be updated in the formulation for large deformations, and its
update is such that the boxes’ side edges are displaced both laterally and vertically by exactly
the same amount as the structural node with which they coincide spanwise (also valid for the
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tails). Hence, the mesh update makes the aerodynamic forces consistently behave as follower
forces in the geometrically-nonlinear formulation. The update can be easily disabled whenever
desired.

The displacements and displacement rates of the beam elements’ central nodes in the nonlin-
ear formulation are directly used to calculate the normalwashes due to both the structural and
the rigid-body motion. No camber deformation is considered, and hence the transferal of dis-
placements and rates of displacements from the structural nodes to the boxes’ control points is
straightforward, assuming rigid arms. The aerodynamic loading is considered as distributed,
and appropriate matrices transfer the distributed loads to nodal loads at each element.

On the other hand, the VLM mesh in the formulation for small deformations is never updated.
Linear spline interpolation matrices, as derived in Ref. [15], are calculated and used. Differ-
ently from the geometrically-nonlinear implementation, the rigid-body aerodynamic contribu-
tions are previously calculated and summarized in classical coefficients and stability and control
derivatives.

Both implementations allow the aircraft to be trimmed as if it were rigid. The results obtained
for all configurations in steady turning flight with rate ψ̇ = 30◦/s at 14 m/s are shown in Table
3. The coincidence of the trimmed states and controls with two or three significant figures
demonstrate that the aerodynamic model implemented in the GNI adequately recovers the forces
and moments due to rigid-body motion and control surface deflection and, since exactly the
same equations are used to calculate forces and moments due to elastic motion, the aerodynamic
implementation can be considered validated.

The structural-dynamic models for small deformations and the VLM meshes are plotted in Figs.
2-4 for the three X-HALE configurations under analysis.
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Figure 1: Natural frequencies of the free-free modes of vibration calculated with both the small-deformation and
the geometrically-nonlinear implementation, for all three aircraft configurations.
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4m 6m 8m
SDI GNI SDI GNI SDI GNI Units

Angle of attack (α) 6.748 6.750 7.315 7.317 4.669 4.671 deg
Pitch rate (q) 17.93 17.93 17.92 17.92 17.93 17.93 deg/s
Bank angle (φ) 36.89 36.89 36.91 36.91 36.79 36.79 deg
Roll rate (p) -2.827 -2.828 -3.063 -3.064 -1.958 -1.959 deg/s
Yaw rate (r) 23.89 23.89 23.86 23.86 23.97 23.97 deg/s
Left elevon(s) deflection -7.446 -7.461 -8.016 -8.027 -6.297 -6.302 deg
Right elevon(s) deflection -4.515 -4.530 -4.646 -4.656 -1.002 -1.007 deg
Left engine(s) thrust 1.628 1.629 1.408 1.408 1.498 1.499 N
Central engine thrust 1.517 1.517 1.268 1.269 1.371 1.371 N
Right engine(s) thrust 1.405 1.406 1.129 1.129 1.243 1.244 N

Table 3: Steady turning flight trimmed condition of the rigid aircraft with ψ̇ = 30◦/s at 14 m/s, calculated with
both implementations for verification purpose.

Figure 2: Four-meter-span configuration SDI structural-dynamic model (left) and VLM mesh (right), as output
from ITA/AeroFlex. Legend entries: GRIDs are the structural nodes; CBARNs are the beam ele-
ments; RBARs are rigid bar elements; CONM2 CGs are the CG locations of lumped-mass elements;
and CONM2 Offsets are the offsets between such CG locations and the structural node the lumped-mass
element is attached to. In the VLM model, control surfaces are plotted in orange.
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Figure 3: Six-meter-span configuration SDI structural-dynamic model (left) and VLM mesh (right), as output from
ITA/AeroFlex.

Figure 4: Eight-meter-span configuration SDI structural-dynamic model (left) and VLM mesh (right), as output
from ITA/AeroFlex.
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4 NUMERICAL RESULTS

In the results presented in this section, three different support locations (the support is the name
of the point with null elastic displacements) are used in the formulation for small deformations.
One is at a central location at the wing structural node in the wing symmetry plane, and is
denoted by the acronym CTR. The two others are at the structural nodes at the wing tips, named
LWT for the left one and RWT for the right one. Therefore, the plots that will be presented
hereinafter will contain three data sets for the small-deformation implementation: SDI-CTR,
SDI-LWT, and SDI-RWT. These shall be compared with the single data set obtained with the
geometrically-nonlinear implementation, GNI.

In the determination of linearized dynamics about equilibrium conditions, stiffness-proportional
structural damping is considered, with a constant of proportionality such that the first free-free
mode of vibration presents 3% damping ratio.

4.1 Four-meter-span configuration

The four-meter-span configuration was trimmed in a variety of flight conditions at 14 m/s, 17
m/s and 20 m/s: level flight; steady turning flight with turn rates of 10◦/s, 20◦/s, and 30◦/s; and
longitudinal maneuver with nonzero pitch rate and vertical load factor of 2.0.

Figure 5 shows results for the trimmed level-flight condition. The difference between the dif-
ferent SDI support locations is very small, being more significant for the elevon deflections at
14 m/s. Thus, the proposed methodology predicts that the 4m configuration satisfies the as-
sumption of small deformations. Indeed, comparison with the GNI results confirm that: the
wing tip displacements are different between the linear and the nonlinear formulations only by
millimeters.

The most critical of the flight conditions analyzed is that for a load factor of 2.0, the results
of which are shown in Fig. 6. It is very interesting to see that dispersion exists between the
SDI-CTR, SDI-LWT and SDI-RWT solutions, mainly in the control variables. This fact would
imply that geometrical nonlinearities do potentially occur in this flight condition. Indeed, the
results obtained with the GNI show greater wing tip displacements than the ones obtained with
the SDI. The fact that the wing tip geometrically-nonlinear vertical displacements are around
only 10% of the wing semi-span can be misleading as to whether the geometrical nonlinearity
does in fact play an important role in the case.

It cannot be forgotten that the GNI considers not only a geometrically-nonlinear beam, but also
a VLM mesh that has its panels’ dihedral angles updated with the lifting surfaces’ bending.
With this, effective lift is lost due to the aerodynamic normal forces at the panels being follower
forces, and the aircraft needs to be trimmed with higher angle of attack. Hence, the aerody-
namic formulation plays a significant role in the nonlinearity of the flight-dynamic model. The
deformation of the structure with load factor of 2.0 at 14 m/s is presented in Fig. 7.

The dynamics of the aircraft, represented by its equations of motion, can be linearized around
an equilibrium condition, and the eigenvalues of the Jacobian matrix then provide information
on the stability characteristics of the aircraft. Such linearization was then done around the
level-flight condition, and Fig. 8 shows the obtained eigenvalues. An excellent correlation
exists between the four different implementations, indicating that small disturbances around the
level-flight condition are adequately captured with the formulation for small deformations.
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Figure 5: Trimmed level-flight condition of the four-meter-span configuration at different flight speeds.
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4.2 Six-meter-span configuration

The six-meter-span configuration was trimmed in level flight and in steady turning flight with
turn rate of 30◦/s, at 14 m/s, 17 m/s and 20 m/s. Figure 9 shows results for the trimmed level-
flight condition. The difference between the different SDI support locations is greater than in
the 4m configuration, indicating a higher potential for nonlinearity, mainly at 14 m/s, where
more significant dispersion in the control variables occurs. Indeed, comparison with the GNI
results show that the wing tip displacements are different between the linear and the nonlinear
formulations by up to 6 centimeters. The maximum wing tip displacement is about 11% of the
wing semi-span, at 14 m/s.

In the steady turning flight condition, shown in Fig. 10, the dispersion between the SDI-CTR,
SDI-LWT and SDI-RWT solutions is greater. The results obtained with the GNI show greater
wing tip displacements than the ones obtained with the SDI. Vertical wing tip deflection of
near 20% the wing semi-span is observed at 20 m/s. Once more, the aerodynamic mesh update
is strongly related with the nonlinearity of the flight-dynamic model. The deformation of the
structure in the steady turning flight at 20 m/s is presented in Fig. 11.

The linearized dynamics of the aircraft around the trimmed level-flight condition has a clear
dispersion of the eigenvalues of the Jacobian matrix between the SDI-CTR and the SDI-LWT
and SDI-RWT solutions, as seen in Fig. 12. It can be seen that mainly the damping is affected.
The overall dynamic behavior is not expected to be accurately captured by the formulation for
small deformations. If the structural damping had not be considered, several SDI-LWT and
SDI-RWT would have become unstable.

The 6m configuration shall then be modeled preferably using the GNI, without which the risk
of inaccuracies in the results increases.

4.3 Eight-meter-span configuration

Several test cases were planned for the eight-meter-span configuration, as for the other two
configurations. However, a single case proved to be sufficient for a conclusion in this case.
When trimming the 8m configuration in level flight at 14 m/s, the SDI-LWT and SDI-RWT
failed to converge to a solution. Only the SDI-CTR (small-deformation implementation with a
central support) was able to provide a valid trim condition.

On the other hand, the GNI (geometrically-nonlinear implementation) resulted in a valid trim
condition with significant nonlinearities, as can be seen in Fig. 13. The wing tip vertical dis-
placement is near 58% of the wing semi-span, and the magnitude of the displacement in y is
about 1.2 m.

The failure of the wing tip supports in providing valid converged solutions to the trimming prob-
lem is therefore an irrefutable sign that strong geometrical nonlinearities occur, as confirmed by
the U shape of the aircraft wing in this flight condition, a shape that cannot be achieved at all
by a geometrically-linear formulation.
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Figure 6: Maneuver of the four-meter-span configuration in the vertical plane with vertical load factor of 2.0, at
different flight speeds.
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Figure 7: Deformation of the four-meter-span configuration with vertical load factor of 2.0, at 14 m/s.
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Figure 8: Low-frequency eigenvalues of the linearized dynamics of the four-meter-span configuration in level flight
at 14 m/s.
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Figure 9: Trimmed level-flight condition of the six-meter-span configuration at different flight speeds.
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Figure 10: Steady turning flight condition with turn rate of 30◦/s, for the six-meter-span configuration at different
flight speeds.
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Figure 11: Deformation of the six-meter-span configuration in the steady turning flight condition with turn rate of
30◦/s, at 20 m/s.
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Figure 12: Low-frequency eigenvalues of the linearized dynamics of the six-meter-span configuration in level flight
at 14 m/s.
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Figure 13: Deformation of the eight-meter-span configuration in the trimmed level flight condition at 14 m/s.
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5 CONCLUDING REMARKS

A recently-proposed simple and self-contained methodology to assess the validity of the as-
sumption of small deformations in structural-dynamic models was applied to aircraft with dif-
ferent levels of structural flexibility. The methodology does not depend on the availability of
higher-fidelity, geometrically-nonlinear models, since it is based on the selection of two differ-
ent structural nodes where the structural motion is to be, one at a time, completely constrained.

In order to validate the methodology, however, a geometrically-nonlinear model was necessary
in this paper. Both the geometrically-linear and -nonlinear models were generated using the
ITA/AeroFlex program, and several rigorous verifications were performed to ensure that both
models satisfied the conditions to establish a fair basis for comparison of results, that is, the
linearized structural dynamics of the geometrically-nonlinear model had to be close enough
to the linear structural dynamics of the geometrically-linear implementation. Moreover, the
same aerodynamic model should be employed. A quasisteady VLM was then used for both the
linear and nonlinear implementations, with the difference that, in the latter, the VLM mesh was
consistently updated with the structural deformation.

Results obtained for the free-free modes of vibration of the three different configurations of the
X-HALE aircraft analyzed in this paper, as well as results for the rigid-body steady turning flight
condition, showed that the small-deformation implementation and the geometrically-nonlinear
implementation established a fair basis for comparison of results.

In the sequence, different steady-state flight conditions were analyzed. The four-meter-span
configuration of the aircraft was seen to be accurately modeled using a geometrically-linear
formulation, though less accurately at higher load factors. The dynamic modes of the linearized
equations of motion did not alter significantly with different formulations.

For the six-meter-span configuration, greater differences were found in the control variables
that trim the aircraft, mainly in a steady turning flight condition. A dispersion of the control
variables by more than 10% can be taken as a criterion for establishing if a geometrically-
nonlinear formulation would be beneficial.

The VLM mesh update was confirmed to be a source of nonlinearity that adds to the pure geo-
metrical nonlinearity. Even with wing tip displacements less than 15% of the wing semi-span,
significant differences occur between the small-deformation and the geometrically-nonlinear
implementations. This nonlinearity comes from the fact that the aerodynamic normal forces
at the VLM boxes become follower forces with the mesh update, and, as the deformation in-
creases, less lift is generated by the geometrically-nonlinear formulation, implying the need for
higher angles of attack.

Since there is a physical reason for the mesh update, this is clearly a disadvantage of the small-
deformation implementation. It is also questionable whether including the aerodynamic mesh
update in the geometrically-linear formulation would be worth the increased computing cost, as
it seems that it would be wiser to exchange the whole formulation directly by the geometrically-
nonlinear formulation.

For the eight-meter-span configuration of the X-HALE, the methodology proved its value in that
it was not possible to obtain valid converged equilibrium solutions with the structural supports
at the wing tips, only with the central support. A comparison with the geometrically-nonlinear
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solution showed why this happened: the wing assumes a U shape in the trimmed level-flight
condition, which is unachievable with a geometrically-linear formulation. Not being able to ob-
tain equilibrium conditions with the wing tip supports in small deformations is then a definitive
criterion for the use of geometrically-nonlinear formulations.

As seen, only steady-state flight conditions and linearized flight dynamics were analyzed in
this paper. This work shall be extended to include general dynamic maneuvering conditions, in
order to search for further limitations of the assumption of small deformations that are not yet
transparent.

6 REFERENCES
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