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Abstract: Three-dimensional aeroelastic effects in the transonic flight regime can be analyzed
by combining high-fidelity 3D CFD solutions with structural finite element models containing
a large number of degrees of freedom. This combination is computationally expensive and is
impractical in the preliminary design phase. Here, a non-linear vortex-lattice method that cou-
ples 2.5D transonic CFD solutions is examined. As such, it provides adequate precision for
the study of three-dimensional aeroelastic effects at the computational cost of a VLM solu-
tion. This paper presents the combination of this method with a finite element beam model and
demonstrates that this inexpensive method is suitable for the prediction of wing behavior in the
transonic regime.

1 INTRODUCTION

The steady and unsteady vortex-lattice method coupled with a beam model has previously been
investigated, and its suitability for subsonic aeroelasticity demonstrated [1]. In the case of
transonic flight, however, it is inadequate and three-dimensional CFD methods coupled with
large finite-element models have been used in order to capture the variation in the aerodynamic
coefficients that is due to the appearance of supersonic flow regions [2] [3].

The addition of viscous coupling to the vortex-lattice method to form the 2.5D non-linear
vortex-lattice method (2.5D NL-VLM) has been demonstrated to extend its range of appli-
cability to transonic flight conditions [4] [5]. Furthermore, through interpolation along the
span, it can provide a three-dimensional flow field with a more accurate force distribution to
the structure than the potential flow alone can. This further encourages the use of a segregated
coupling algorithm, as it delivers the possibility of going beyond beam models to fully exploit
the capabilities of medium-fidelity modeling.
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2 OBJECTIVES

The objective is to investigate the capability of the 2.5D NL-VLM method for static aeroelas-
ticity in the subsonic and transonic flight regime, for both attached and separated flows. In
particular, the 2.5D NL-VLM method is augmented with a finite element beam model via effi-
cient coupling strategies. The applicability of this new medium fidelity approach is investigated
in the context of preliminary design of aircraft.

3 WORK DESCRIPTION

This framework’s inviscid aeroelastic coupling is validated by finding the static trim character-
istics of the High-Altitude Long-Endurance (HALE) aircraft studied by Murua et al.[2012].

The addition of the viscous coupling is assessed by replicating the wind-tunnel correction
performed by Keye for the Common Research Model [2]. The capability of the method to
predict the transonic flow-field of transonic wings is further investigated for the HIRENASD
wing [6] [7] [3].

4 METHODOLOGY

Because of the relevance of the method for preliminary and perhaps conceptual design, a seg-
regated approach is chosen to facilitate the integration of the method into an industrial context,
where monolithic integration is unlikely. [8] [9].

4.1 Aerodynamics

The 2.5D NL-VLM aerodynamic model combines the traditional vortex-lattice method [10]
with a 2D CFD solver, both in steady and unsteady formulations. The extension of the method
into the transonic regime is provided by a viscous coupling as described by Gallay et al.[2015],
having both loose and strong viscous coupling capabilities. In particular, the use of the infinite
swept wing (2.5D) assumption into the 2D RANS solver enables the capture of stagnation lines,
oblique shock waves and cross-flow separation. [11]

The viscous database is generated with in-house codes NSGRID [12] and NSCODE [13] [14],
the former provides the RANS meshes and the later computes the 2.5D RANS solution using
standard algorithms.

For the CRM wing, the viscous database computations were done at a Mach number of 0.85,
Reynolds number of 5e6 and a Spalart-Allmaras turbulence model. For the Hirenasd wing, the
computations were done at a Mach Number of 0.70, with a Reynolds number of 7e6 and a
Spalart-Allmaras turbulence model. For both wings, the quarter-chord sweep at each respective
station was used for the infinite swept wing computation, 2D RANS computations having been
done on 9 individual spanwise stations for the CRM wing and 10 individual spanwise stations
for the Hirenasd Wing.

4.2 Structure

An in-house, dedicated object-oriented finite-element solver (OFEM) is used that provides com-
binations of linear, geometrically nonlinear, steady and unsteady beams for structural model-
ing [15]. It is assumed that the structure’s dominant modes are adequately represented by two-
noded beams having bending, torsion and traction degree of freedoms [16]. Due to the low
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number of elements that this approach requires, the wing deformations are obtained at a similar
computational cost as the loads provided by the 2.5D NL-VLM method.

To ensure that the dimensions of the aerodynamic surfaces are not modified with increasing
deflection, all finite element computations are geometrically nonlinear. Multiple loading steps
are applied onto the modified Newton method to accurately converge on the tip displacements
and prevent unphysical elongation of the beams, which would artificially increase the area of
the lifting surface and thus have an undesirable effect on the loads.

Furthermore, the beams are positioned at the elastic axis of the wings with appropriate section
properties [17] which are computed by taking spanwise cuts of the wing’s structure perpendic-
ular to the elastic axis. The polygons that are thus produced are fed into the following equations
to obtain the area and first moments of inertia, with material being added counter-clockwise and
voids being added clockwise to produce the correct signs

A =
1

2

npts−1∑
i=0

(yi + yi+1)(zi+1 − zi) (1)

Qy =
1

2

npts−1∑
i=0

(yi − yi+1)(zizi+1 +
1

3
(zi − zi+1)

2) (2)

Qz =
1

2

npts−1∑
i=0

(zi+1 − zi)(yiyi+1 +
1

3
(yi − yi+1)

2) (3)

The first moments and the area are used to obtain the position of the section’s centroid, which
is thereafter the origin from which the second moments of inertia are computed, and serves as
the position of the beam’s elastic axis at the corresponding spanwise station.

ycentroid =
Qz

A
(4)

zcentroid =
Qy

A
(5)

Izz =
1

12

npts−1∑
i=0

(y2i+1 + yi+1yi + y2i )(yizi+1 − yi+1zi) (6)

Iyy =
1

12

npts−1∑
i=0

(z2i+1 + zi+1zi + z2i )(yizi+1 − yi+1zi) (7)

This procedure automates the computation of section properties at as many span-stations as is
desired and is therefore used to progressively increase the number of beam elements until the
deformations have been converged upon.

In the case of the common research model wind tunnel model (CRM-WT), it was chosen to
neglect cable routes, as they were positioned near the neutral axis and would have a small
effect on the section properties. However, in the case of the Hirenasd wing, the four cable
routes were included in the computation, as these are large and their absence would significantly
overestimate the stiffness of the wing.
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Figure 1: CRM-WT wing, beam section at η = 0.53 perpendicular to the elastic axis
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Figure 2: CRM-WT wing, Iyy of beam elements along the span (left) and nearing the tip (right)
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Figure 3: CRM-WT wing, Izz of beam elements along the span (left) and nearing the tip (right)
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Figure 4: Hirenasd wing, beam section at η = 0.41 perpendicular to the elastic axis
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Figure 5: Hirenasd wing, Iyy of beam elements along the span (left) and nearing the tip (right)
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Figure 6: Hirenasd wing, Izz of beam elements along the span (left) and nearing the tip (right)
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4.3 Coupling

The staggered methodology requires that the individual models converge to a solution and that
the boundary conditions they share converge as well. This is achieved by inter-iterations at a
given time step, the forces being provided by the aerodynamic model, while the displacements
and velocities are provided by the structure’s finite element model. [16] This procedure is inter-
rupted when either the relative error on the lift coefficient or the relative error on the potential
energy has met a predetermined tolerance criterion.

VLM FEM

interpolation

until

ΔE < tol
and

ΔCL < tol

displacements u
velocities v

vlm

vlm

to find

interpolation
forces f fem

to find

iterations

Figure 7: Segregated aeroelastic coupling procedure

With the addition of viscous coupling, there are two coupling procedures that alternate, the vis-
cous coupling and the aeroelastic coupling, each iterating until the tolerance that was specified
is met.

viscous
database 2.5D NL-VLM FEM

interpolation

until

ΔE < tol
or/and

ΔCL < tol
Δα < tol

until

displacements u
velocities v

vlm

vlm

to find

interpolation
forces f fem

to find

iterations

iterations

Cl,inviscid , α effective

Cl,viscous , Cm,viscous Cd,viscous,

Figure 8: Segregated aeroelastic with viscous coupling procedure
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This segregated coupling procedure requires two interpolation matrices to transfer loads and de-
formations, the first matrixH1 assigns to each FEM node an interpolation weight for the aerody-
namic forces and the second matrixH2 assigns to every point in the VLM mesh an interpolation
weight for the displacements and rotations. The rotations further have to be transformed into
displacements at the VLM mesh points [16].

In the present paper, the consistent method proposed by Farhat et al.[1998] is used to compute
interpolation weights by projecting either the origin of the aerodynamic loads or the destination
of the displacements onto the FEM beams and using the FEM element’s own interpolation
functions to generate the aforementioned weights [18] [19] [20].

nk

nk+1

M
i,j

vlm

Fvlm i,j

ξ

ri,j

Figure 9: Projection onto nearest beam element

nk

nk+1

M
k+1

fem

Ffem k+1

M
k

fem

Ffem k

Figure 10: Loads applied onto the finite element model

For the two-noded beams used in the present paper, this equates to distributing the force and
moment onto the two neighboring nodes based on the parametric fraction ξ that corresponds to
the orthogonal projection of the load origin onto the beam

To couple the FEM beam model with a linear VLM, the forces from the individual vortex-rings
are transfered to the FEM nodes using the interpolation weights, remembering that the vortex-
ring lift forces’ points of origin are between the frontal nodes of the vortex-rings [16].
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Figure 11: Forces to be applied onto the FEM for each column of vortex rings

To couple the FEM beam model with the 2.5D NL-VLM, the panel forces are disregarded and
the normal and tangential aerodynamic forces from the RANS solution are instead expressed as
vectors at the quarter chord point of every column of vortex rings along the span. The force-
moment pair is then transfered to the neighboring nodes using the same interpolation weighing
procedure as in the linear case, while ensuring to maintain the equivalence of the force-moment
pair. This viscous coupling extends the method to the transonic regime where the pitching
moment differs from the inviscid prediction, as well as separated flows.

chorwise
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Fvisc j
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Figure 12: Viscous loads to be applied onto the FEM for each column of vortex rings
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5 RESULTS

5.1 Trimming the HALE aircraft

To validate the static deflections produced by the segregated coupling algorithm, the HALE
aircraft [1] is subjected to steady flight at V t = 25m/s and its stiffness varied according to the
stiffness parameter σ. The aircraft is then trimmed for angle of attack and elevator deflection
by coupling the inviscid VLM with the FEM beam model and then solving for geometrically-
nonlinear deflections.
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Figure 13: Trimmed tip deflection vs stiffness
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Figure 14: Deflections for σ = 0.6 and α = 7.5deg

This has the benefit of simultaneously validating the inviscid aeroelastic coupling and the air-
craft trimming procedure. The wing tip deflection is found to compare well with the results that
were found by Murua et al[2012].

For every angle of attack that was studied, the aeroelastic coupling procedure has to converge to
a potential energy and it can be observed in figure 15 that the potential energy of the structure
and the work done by the aerodynamic converge towards a stable state under these conditions.
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Figure 15: Convergence of the coupling (left) and energy conservation of the coupling (right) for σ = 0.2
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5.2 CRM Wind Tunnel Correction

To validate the inclusion of the viscous coupling, a comparison of the CL vs α curve for the
wind tunnel model of the Common Research Model is presented [2]. It demonstrates that the
deflection and twist experienced by the wing in the transonic flight regime reduce the overall
lift that is generated for a given angle of attack.

It can be observed in figure 16, that the deviation of the lift coefficient provided by the NL-
VLM is in good agreement with the more computationally expensive 3D CFD method used by
Keye et al.[2014] for angles of attack lower than three degrees. We note the capability of the
NL-VLM procedure to capture near-CLmax effects via the 2.5D CFD solutions. As anticipated,
the CLmax is still heavily influenced by turbulence modeling [21], and several other factors,
including transitional effects can account for the discrepancies observes in this region of the
curve.
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Figure 16: Lift coefficient vs angle of attack for the CRM-WT wing

At an angle of attack of 3.5 degrees, it can be observed that the rigid NL-VLM has attained
its CLmax , while the flexible NL-VLM hasn’t yet, which suggests that the wing’s flexibility has
delayed the onset of stall to a higher angle of attack due to the negative twist that is incurred.
This is corroborated by figures 18 and 19 where it can be observed that the flexibility of the
wing causes significant washout. As a result, the wing loading is reduced and shifted inboard.

Figures 17 and 18 show good agreement with the higher fidelity methods used by Keye et
al.[2014] for up to 80% of the span, whereas there is a significant discrepancy for the twist at
the tip of the wing, which is indicative of differences with the wing loading experienced by the
two methods near the wing tip. It is interesting to note that while both rigid methods experience
a dip in CL when nearing 3 degrees, the 2.5D NL-VLM does not experience any stall in the
flexible case, which can be potentially explained by differences in turbulence modeling.

Figures 23 and 24 present the pressure distribution at three spanwise stations and compares
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them with the results obtained by Keye et al.[2014], as well as experimental data. It can be
observed that the difference in amplitude between rigid and flexible 2.5D NL-VLM is similar to
the difference in amplitude observed by Keye et al.[2014]. However, the presence and position
of the shock differs, a discrepancy that was observed by Gallay et al.[2017] for the CRM [5].
This is potentially due to the use of a constant sweep angle for the 2.5D solutions along the span
( the quarter chord sweep in this case), whereas in reality the shock angle varies significantly
along the span for the CRM wing. Furthermore, at span station η = 0.727, where the loading
is roughly maximum according to figure 19 , the pressure distribution obtained by the present
method is in good agreement with the experimental data.
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Figure 18: Twist deformation vs span for the CRM-WT
wing at α = 3.0 ◦

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2

C
l

η

CRM Wind Tunnel Model Correction, Flexible 2.5D NL−VLM Wing Loading

Flexible α = 0.5 °
Flexible α = 1.5 °
Flexible α = 2.5 °
Flexible α = 3.5 °
Flexible α = 4.0 °

Rigid α = 0.5 °
Rigid α = 1.5 °
Rigid α = 2.5 °
Rigid α = 3.5 °
Rigid α = 4.0 °
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Figure 20: 44x4 VLM mesh for the CRM-WT wing overlayed with the γ distribution at α = 3.0 ◦
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Figure 21: FEM model consisting of 50 beams with ‘ sections overlayed mid-beam
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Figure 22: Deflections of the CRM-WT wing at α = 3.0 ◦, z-axis scaled 10x
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Figure 23: CRM-WT, Pressure distribution at η = 0.502 (left) and η = 0.727 (right) at α = 3.0 ◦
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Figure 24: CRM-WT, Pressure distribution at η = 0.950 at α = 3.0 ◦

5.3 Hirenasd Static Aeroelasticity

In the case of the Hirenasd wing, the pressure distributions obtained at an angle of attack of 1.5
degrees and a Mach number of 0.70 are compared in figures 28 through 34.

It can be observed that near the wing-fuselage junction, there is an important discrepancy be-
tween the flow predicted by the present method and the experimental data, which is to be ex-
pected for this method, since fuselage interference effects are neglected. However, as the span
station increases, the agreement is seen to improve and offer a good approximation of the flow
field for the purpose of aeroelastic deflection.

It should be noted that due to the high stiffness of the wing, the deflections are small and the
magnitude of their impact on the pressure distribution is small.
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Figure 25: 44x4 VLM mesh for the HIRENASD wing overlayed with the γ distribution at α = 1.5 ◦
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Figure 26: FEM model consisting of 20 beams for the HIRENASD wing with beam sections overlayed mid-beam
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Figure 27: Deflections of the HIRENASD wing at α = 1.5 ◦, z-axis scaled 33x
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Figure 28: Hirenasd, Pressure distribution at η = 0.14
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Figure 29: Hirenasd, Pressure distribution at η = 0.32
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Figure 30: Hirenasd, Pressure distribution at η = 0.46
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Figure 31: Hirenasd, Pressure distribution at η = 0.59
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Figure 32: Hirenasd, Pressure distribution at η = 0.66
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Figure 33: Hirenasd, Pressure distribution at η = 0.80
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Figure 34: Hirenasd, Pressure distribution at η = 0.95

6 CONCLUDING REMARKS

A static aeroelastic formulation using the 2.5D Non-Linear Vortex-Lattice method was devel-
oped by coupling it with a finite-element beam model of similar computational cost and in a
staggered fashion. This approach was verified on cases taken from the literature in both sub-
sonic and transonic flight regimes. The results obtained demonstrate that the 2.5D NL-VLM
method offers a medium-fidelity approximation of the three-dimensional flow and is capable of
providing adequate pressure distributions for aeroelastic coupling. The computational cost of
this method is significantly lower than high-fidelity methods and therefore offers potential with
regards to aero-structural planform optimization.
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