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Abstract: Within a narrow band of the transonic flight regime, shock-wave/boundary layer
interactions yield large amplitude, self-sustained shock oscillations. When this transonic buf-
fet instability interacts with a forced or freely oscillating structure, frequency lock-in between
the aerodynamic and structural modes can occur, resulting in large amplitude limit cycle os-
cillations of the structure. In this study, the lock-in phenomenon is investigated by means of
Reynolds-Averaged Navier-Stokes simulations. Harmonically driven pitching simulations are
performed for a range of driving frequencies and amplitudes for the supercritical OAT15A aero-
foil section. The results show that for a band of driving frequencies near the buffet, frequency
synchronisation develops for sufficient driving amplitudes. The flow topology within the lock-
in regions differs for driving frequencies above and below the buffet. This is attributed to a
phase reversal of the aerodynamic coefficients as the excitation frequency passes through the
fundamental flow frequency. Analysis of the gain and phase relationships of the aerodynamic
coefficients supports the findings of prior studies, where the lock-in phenomenon is related to
bounded single degree-of-freedom flutter.

1 INTRODUCTION

For a limited set of flight conditions in the transonic flight regime, the interactions between
shock-waves and thin, separated shear layers give rise to large amplitude, autonomous shock
oscillations. This transonic buffet instability is a limiting factor in aircraft performance. The
reduced frequency of shock oscillation is typically on the order of the low-frequency structural
modes, resulting in an aircraft that is susceptible to limit cycle oscillations (LCO), and as a
consequence, diminished handling quality and fatigue life [1, 2].

Hilton & Fowler [3] first observed transonic shock-induced oscillations over six decades ago,
yet the physics governing this complex phenomenon remains elusive. In the early work by
Pearcey [4], shock buffet onset was linked to the bursting of a shock-induced separation bubble,
a condition that has since been determined insufficient for the emergence of shock-induced os-
cillations [5,6]. Lee [7] proposed an underlying mechanism based on acoustic wave-propagation
feedback, which has resulted in excellent predictions of the buffet frequency for a subset of aero-
foils [8, 9] and poorer estimates for others [10, 11]. A promising theory governing the onset of
shock buffet has been posited by Crouch et. al. [6, 12], where linear stability analysis of the
flowfield has related autonomous shock oscillations to the appearance of a globally unstable
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aerodynamic mode. Significant support of this modal instability interpretation has been offered
by subsequent experimental [10, 13] and computational [5, 14] investigations. For a complete
review of recent developments in the understanding of transonic shock buffet, the reader is
directed to Giannelis et. al. [15].

The complex shock-wave/boundary layer interactions and the intermittently separated flowfield
inherent to the transonic buffet phenomenon pose significant challenges to numerical simula-
tion. In particular, the fundamental role of the separated flow region within these interactions
implies the necessity of computationally taxing scale-resolving simulations to model the in-
stability. Nonetheless, a plethora of computational investigations have successfully captured
the inherent flow features of shock-induced oscillations through Unsteady Reynolds-Averaged
Navier-Stokes (URANS) methods, albeit with an appreciable sensitivity to various simulation
parameters [14, 16–21]. In particular, the selection of a suitable turbulence closure [19, 22–24],
sufficient grid refinement in the shock region [20, 25, 26] and the use of Dual Time Stepping
(DTS) with an acoustic temporal resolution [25, 27] have been shown to be critical in URANS
modelling of transonic shock buffet. Ultimately, the efficacy of URANS simulations in the pre-
diction of transonic buffet is attributed to the low frequencies characteristic of shock motion,
which exhibit significantly longer timescales than those of the shear layer eddies [14]. Such a
success for a computationally efficient means of simulating intricate aerodynamic phenomena
holds promise for the numerical investigation of the complex interaction mechanisms between
a buffeting flowfield and a deforming structure.

A number of experimental studies have considered the influence of forced harmonic motions on
an aerofoil at transonic conditions [28–31]. Additionally, for harmonic excitation in the pres-
ence of shock-induced separation, a number of authors have reported aerodynamic resonance
for driving frequencies near to the fundamental frequency of shock oscillation [32–34]. The
nature of this resonance has been formalised by Raveh [35–37] as a frequency lock-in phe-
nomenon, whereby for sufficient amplitudes of motion at excitation frequencies in the vicinity
of the buffet frequency, the buffet flow response synchronises with the aerofoil motion. Raveh &
Dowell [38] extended the work on shock buffet lock-in to spring-suspended aeroelastic systems,
finding synchronisation of the aerodynamic and structural eigenfrequencies in pitch, heave and
coupled simulations. As a significant implication of these findings, the authors propose shock
buffet lock-in as a possible mechanism governing transonic LCO instabilities. Through linear
stability analysis, Gao et. al. [39] have proposed the emergence of lock-in is not a consequence
of a pure resonance phenomenon. Rather, frequency synchronisation arises due to a form of
single degree-of-freedom flutter, stemming from the coupling between a structural system and
an unstable fluid mode. Recent literature in the field has continued the exploration of aeroelastic
systems in the presence of shock buffet, concentrating on classifying the influence of various
structural parameters, particularly the ratio of structural and shock oscillation eigenfrequencies,
on the lock-in phenomenon [40–44].

In the work of Giannelis & Vio [40], lock-in was observed for an elastically suspended OAT15A
supercritical aerofoil in pitch and heave at structural eigenfrequencies above and below the rigid
aerofoil fundamental shock frequency, respectively. The purpose of this study is to investi-
gate the origins of this frequency synchronisation phenomenon, and to ascertain whether the
simplified gain-phase model for lock-in of a harmonically excited NACA 0012 proposed by
Raveh [35] is valid for supercritical wing sections. The article proceeds in Section 2 with a
description of the test case and the numerical solution employed in the static aerofoil simula-
tions. Section 3 then presents the main results for the static aerofoil, including validation of the
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turbulence models against experimental data and the nature of the buffeting flowfield at the ex-
perimental condition. In Section 4, the methodology used in the dynamic simulations is briefly
presented, followed by time and frequency domain analysis of the aerodynamic coefficients,
investigation of the flow topology and the validity of the gain-phase lock-in relationship for a
supercritical aerofoil. Section 5 then concludes the paper with a summary of the major findings.

2 NUMERICAL METHOD

2.1 Test case

This study investigates the flowfield around the OAT15A supercritical aerofoil at transonic buf-
fet conditions. Experiments on this section have been performed in the S3Ch Continuous Re-
search Wind Tunnel at the ONERA Chalais-Meudon Center and are detailed by Jacquin et.
al. [10, 45]. A wind tunnel model of 12.3% relative thickness, 230 mm chord, 780 mm span
and a 1.15 mm thick trailing edge was constructed for the experiment. The model ensured a
fixed boundary layer transition at 7% chord through the installation of a carborundum strip on
the upper and lower surfaces.

The experiments conducted at ONERA sought to develop an extensive experimental database
for the validation of numerical buffet simulations. The model was fitted with 68 static pressure
orifices and 36 unsteady Kulite pressure transducers through the central span to mitigate three-
dimensional effects from sidewall boundary layers. Adaptable upper and lower wind tunnel
walls further alleviated wall interference, allowing for a test section Mach number uncertainty of
10−4. The investigation applied a sublimating product to the model surface, permitting oil flow
visualizations for characterisation of turbulent regions and shock motion. The authors employed
Schlieren cinematography and Laser Doppler Velocimetry (LDV) to observe qualitative flow
features during the buffet cycle. Further, steady and unsteady pressure measurements yield
mean and RMS pressure data, along with spectral content for the pressure fluctuations.

The test programme undertaken by Jacquin et. al. [10] consisted of an angle of attack sweep
at M = 0.73 to obtain data for buffet onset, as well as Mach number sweeps at αm = 3◦ and
αm = 3.5◦. In this study, the data at M = 0.73 and αm = 3.5◦ are employed to validate
the numerical method. This case is used as a baseline from which dynamic simulations of a
harmonically excited OAT15A aerofoil are developed.

2.2 Flow solver

Simulations are performed using the commercial, cell-centred finite volume code ANSYS Flu-
ent. The two-dimensional density-based implicit solver is used to formulate the coupled set of
continuity, momentum and energy equations. The inviscid fluxes are resolved by an upwind
Roe flux difference splitting scheme with the blended central-difference/second-order upwind
MUSCL scheme for extrapolation of the convective quantities. All diffusive fluxes are treated
with a second-order accurate central-difference scheme. Gradients for the convection and dif-
fusion terms are constructed through a cell based Least Squares method and solved by Gram-
Schmidt decomposition of the cells coefficient matrix.

Three turbulence models are considered for closure of the Navier-Stokes equations; the Spalart-
Allmaras model (SA) [46], Menter’s k − ω SST [47] and the Stress-Omega Reynolds Stress
Model (SORSM), a stress-transport model derived from the omega equations and the Launder-
Reece-Rodi (LRR) model [48]. The SA and SST models have been used extensively in URANS
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buffeting simulations, successfully capturing the bulk flow buffeting features. Reynolds Stress
Models (RSM) have been less widely applied in the available shock buffet literature, however
Illi et. al. [26] observed excellent correlations to the OAT15A experimental data set using a εh

RSM model. The SORSM is derived by taking the second-moments of the exact momentum
equations, yielding an additional four transport equations for the Reynolds stresses, together
with an equation for the dissipation rate. All turbulent transport equations are solved segregated
from the coupled set of continuity, momentum and energy equations, with second-order accurate
upwind discretisation of the turbulent quantities.

2.3 Spatial & temporal discretisation

Calculations in this study are performed on a two-dimensional CH-type structured grid (Fig-
ure 1(b)) with far-field boundaries located 80 chord lengths from the profile, as shown in Fig-
ure 1(a). The domain is divided into two zones; a laminar region upstream and along 7% of
the aerofoil chord forward section and a turbulent region in the remainder of the domain to
represent the experimentally imposed boundary layer transition.

(a) Far-field grid topology (b) Near wall grid topology - Grid C
Figure 1: Computational grid.

Three grids have been generated to assess mesh independence, with the grid parameters pro-
vided in Table 1. Refinement levels are primarily dictated by shock resolution across the aerofoil
surface, with minor refinement adopted in the wall normal direction. A wall y+ ≈ 1 is achieved
at each level of refinement. Grid convergence is assessed based upon steady flow pressure dis-
tributions at M = 0.73 and αm = 2.5◦ using the SA turbulence model. Mesh independent
solutions are achieved with Grid B and thus, this grid is employed for all subsequent simula-
tions. Grid B is comprised of 285 nodes along each surface of the aerofoil profile, 96 nodes in
the wake and 92 nodes in the wall normal direction.

Grid Size (i× j) Shock Resolution (c)
A 288 × 86 0.005
B 381 × 92 0.0035
C 472 × 98 0.0025

Table 1: Computational grid properties.
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For time-accurate solutions, an implicit second-order accurate backward Euler DTS scheme is
used. A maximum Courant-Friedrichs-Lewy (CFL) number of five is imposed for the pseudo-
time stepping at each physical time step. During the developed buffet cycle, a minimum of 10
Newton sub-iterations are required to reduce the L1 norm of the residuals to 10−5. In order
to resolve the propagating pressure waves inherent to the shock oscillation phenomenon, near
acoustic temporal resolution is required. As such, a fixed nondimensional time step of ∆t̄ =
0.01 is used in all time-accurate solutions.

3 STATIC AEROFOIL COMPUTATIONS

3.1 Turbulence modelling

The choice of the turbulence model used to explore the buffeting flow of the OAT15A aerofoil
is made based on correlations to the experimental mean and RMS pressure data, in addition
to the predicted buffet frequency and lift differential. In Figure 2 the mean and RMS pressure
coefficients for each of the turbulence models are given. Each of the closures results in shock
unsteadiness at the experimental conditions, albeit with varying degrees of accuracy. The SA
model severely under-predicts the degree of pressure fluctuation due to shock oscillation, as
evident in the abrupt pressure recovery in Figure 2(a) and small amplitude RMS pressure in
Figure 2(b). Conversely, the RSM model overestimates the magnitude of pressure fluctuations
due to shock motion, along with the range of shock travel, which covers approximately 30% of
the chord. The mean pressure distribution and trailing edge pressure fluctuations are, however,
in fair agreement with experiment. Nonetheless, of the three closures considered the SST model
exhibits the best correlation to the experiment. The mean pressure distribution is in excellent
agreement, and whilst the amplitude of pressure fluctuations due to shock motion and trailing
edge separation are slightly underestimated, the range of shock travel and mean shock location
is well captured.
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Figure 2: Pressure correlations for various turbulence models.

In addition to the pressure data, the various turbulent closures are also assessed for accuracy
of the predicted buffet frequency and lift differential. The resultant buffet characteristics are
given in Table 2. Each of the models yields a higher buffet frequency relative to the experiment;
however, with a maximum deviation of approximately 10%, the buffet frequency is generally
predicted well. The best agreement to the experimental frequency is achieved with the SST
closure, exhibiting a deviation of 5%. The SST model also produces fair agreement in the
peak-to-peak lift differential during the buffet cycle. This model is deemed to best represent
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the experimental buffet conditions, capturing both the shock oscillation and alternating trailing
edge separation inherent to transonic buffet. As such, the remainder of this study proceeds with
the SST closure.

fsb (Hz) ∆CL

SA 74.18 0.01
SST 72.55 0.15

SORSM 74.07 0.33
Exp 69 0.11

Table 2: Computed buffet characteristics.

3.2 Buffet response at experimental conditions

The lift coefficient time and frequency responses at M = 0.73 and αm = 3.5◦ are provided
in Figure 3. The time history in Figure 3(a) shows the lift oscillations of the fully developed
buffeting flow. Lift is seen to oscillate in a Period-1 LCO of constant amplitude, with no pro-
nounced nonlinear effects. This is further evident in Figure 3(b), where the frequency content is
concentrated at the buffet frequency for the fully developed buffeting flow. Minor peaks are also
observed at the second and third harmonic of the buffet frequency; however, they exhibit insuf-
ficient power to influence the time history. The periodic nature of the buffet observed at these
conditions is characteristic of Type A shock buffet as described by Tijdeman & Seebass [49].
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Figure 3: Lift coefficient time & frequency responses at M = 0.73 & αm = 3.5◦.

4 DYNAMIC AEROFOIL COMPUTATIONS

To investigate the lock-in behaviour of the OAT15A aerofoil, the aerofoil is excited harmon-
ically in pitch for a range of amplitudes in the frequency band 0.5fsb < f < 2fsb, where f
represents the pitch driving frequency and fsb is the rigid aerofoil buffet frequency. The simu-
lations are performed at the nominal buffet condition, namely M = 0.73, Re = 3 × 106 and
a mean angle of attack αm = 3.5◦. In Figure 4, typical time history and frequency responses
of the lift coefficient for different driving amplitudes are shown. At low amplitudes, the aero-
dynamic response is aperiodic. Observing the frequency response in Figure 4(b), substantial
frequency content is evident at both the buffet and driving frequencies (in addition to several
sub- and super-harmonics). As the excitation amplitude grows, frequency content shifts away
from the buffet frequency as the aerodynamic response begins to synchronise with the aerofoil
motion. From both the time histories in Figure 4(a) and frequency responses in Figure 4(b), the
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lift coefficient shows an increasingly harmonic character as the driving amplitude increases. At
an excitation amplitude of α = 2◦, lock-in of the aerodynamic response to the driving frequency
is clearly evident, with frequency content only present at the excitation frequency.
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Figure 4: Time and frequency responses: f = 1.65fsb.

In the analysis of frequency lock-in during forced oscillation of the NACA 0012 aerofoil, Raveh
& Dowell [36] found that although synchronisation occurs at driving frequencies both above and
below the buffet, the topology of the flowfield varies significantly between the two cases. Sim-
ilar findings are presented here for the OAT15A aerofoil. In Figure 5, Mach number contours
and flow streamtraces are shown at various time instances over a pitching cycle with frequency
f = 1.15fsb and amplitude α = 2◦. At these conditions, the aerodynamic response has synchro-
nised with the aerofoil motion and frequency responses indicate frequency content concentrated
at the pitch fundamental frequency.

(a) (b) (c)

(d) (e) (f)

Figure 5: Mach contours and streamtraces for pitching aerofoil motion of f = 1.15fsb and α = 2◦. (a) Beginning
of pitch cycle; (b) 17% of pitch cycle; (c) 33% of pitch cycle; (d) 50% of pitch cycle; (e) 66% of pitch
cycle; (f) 83% of pitch cycle.
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The shock cycle shown in Figure 5 is indicative of Tijdeman [49] Type A shock motion. The
shock traverses the suction surface of the aerofoil in a sinusoidal motion, diminishing in strength
during upstream excursions. The increase in shock strength during downstream convection pro-
duces a shock-induced separation bubble (Figure 5(d)), with the extent of the separated recircu-
lation zone growing as the shock moves upstream. The qualitative flow features are analogous
to the buffet cycle of the rigid aerofoil. This differs somewhat from the findings of Raveh &
Dowell [36], where the pronounced vortex shedding of the rigid aerofoil at nominal buffet con-
ditions was quenched by imposed aerofoil motions at frequencies exceeding the buffet. It is
important to note, however, that the nominal buffet condition considered here is at an incidence
marginally above onset, where the rigid aerofoil does not exhibit vortex shedding. This indi-
cates a likely dependence between the topological flow effects of shock buffet lock-in and the
mean flow conditions. Further analysis with a nominal condition deep within the buffet region
is required to classify this dependence.

At excitation frequencies below the buffet, the shock cycle is consistent with findings for the
NACA 0012 [36]. The Mach contours and corresponding streamtraces at various instances over
the oscillation cycle with frequency f = 0.8fsb and amplitude α = 2◦ are shown in Figure 6.
The shock motion at these conditions is no longer harmonic, with the emergence of a secondary
shock evident during the downstream excursion in Figure 6(b). This is accompanied by an
increase in shock travel and larger variations in shock strength, in addition to a more pronounced
thickening of the separated recirculation zone relative to Figure 5. Although lock-in is present
for both f = 0.8fsb and f = 1.15fsb, there is an apparent shift in the mechanism governing
shock dynamics between these two cases. This mechanism appears to be consistent between
the supercritical geometry studied in the present work and the symmetrical NACA 0012 studied
by Raveh & Dowell [36].

(a) (b) (c)

(d) (e) (f)

Figure 6: Mach contours and streamtraces for pitching aerofoil motion of f = 0.8fsb. (a) Beginning of pitch cycle;
(b) 12% of pitch cycle; (c) 46% of pitch cycle; (d) 58% of pitch cycle; (e) 69% of pitch cycle; (f) 81% of
pitch cycle.
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In Figure 7, a map of the lock-in region across different excitation amplitudes and frequencies is
shown. At conditions marked with response at motion frequency, the aerodynamic coefficients
exhibit frequency content primarily at the driving frequency, although both sub- and superhar-
monics of this excitation frequency are also present. The general trends are again consistent with
prior findings for the NACA 0012 [35,36], where the extent of the lock-in frequency band grows
as the excitation amplitude increases. As noted by several authors [34–36], such behaviour is
similar to the synchronisation of vortex shedding frequency for an oscillating cylinder in low
Reynolds number flows [50, 51]. For these flows, the onset of lock-in is attributed to classical
resonance, where peak amplitude oscillations occur for excitations near the fundamental flow
frequency. Additionally, the lock-in region is predominantly symmetric about this natural fre-
quency. As shown in Figure 7, this symmetric character does not extend to oscillating aerofoils
in the presence of transonic shock buffet. Frequency synchronisation appears to favour higher
frequency excitations, with an apparent minimum frequency ratio of f = 0.62fsb necessary for
the onset of lock-in for all amplitudes considered.

0.5 1 1.5 2
Frequency Ratio (f/f

sb
)

0

0.5

1

1.5

2

2.5

3

,
 (
°)

Response at motion frequency
Response at motion & shock frequency

Figure 7: Map of lock-in region.

Raveh [35] proposed a simplified gain-phase relationship to represent the lock-in behaviour
of an oscillating NACA 0012 aerofoil at developed buffet conditions. The applicability of this
model to the supercritical OAT15A aerofoil is examined in the present work. The gain and phase
relationships of the lift and pitching-moment coefficients are extracted from the aerodynamic
time histories, assuming that the responses contain a single harmonic at the excitation frequency.
This is a fair assumption within the lock-in region, and although higher harmonics of the driving
frequency are evident in the frequency responses, their frequency content is typically below an
order of magnitude of the fundamental. Under this assumption, the gain and phase of the lift
and pitching-moment slope at various frequencies within the lock-in region is computed from
the Lissajous curves of the aerodynamic coefficients.

In Figures 8 and 9, the resultant gain and phase relations between excitation frequency and
lift and pitching-moment slope, respectively, are shown for various excitation amplitudes. The
trends are consistent with the findings of Raveh [35], and indicative that the frequency syn-
chronisation observed on the NACA 0012 is not limited to symmetric sections, extending at the
least to supercritical aerofoils. The gain plots show that an increase in excitation amplitude is

9



IFASD-2017-074

accompanied by a reduction in amplification factor, in addition to a narrowing of the amplifica-
tion peak. In this sense, the aerodynamic response approaches the expected resonant behaviour
of a single degree-of-freedom oscillator as the perturbation amplitudes are reduced, reflecting
similar characteristics to those identified by Nitzsche [5] at pre-buffet flow conditions.
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Figure 8: Lift-curve slopes against frequency ratio.

The phase plots of the aerodynamic coefficients provide some insight into the mechanism of
shock buffet lock-in for elastically suspended aerofoils. Giannelis & Vio [40] identified that
for an aeroelastic OAT15A aerofoil free to rotate in pitch, frequency synchronisation (and cor-
respondingly, large amplitude LCOs) occurred when the pitch natural frequency exceeded the
buffet. For the same aerofoil free to oscillate in heave, lock-in ensued only for heave eigen-
frequencies below the buffet. In reference to Figures 8(b) and 9(b), this corresponds to the
frequency band in which the driving aerodynamic coefficient (pitching-moment for pitch and
lift for heave) leads the structural motion. The large amplitude LCOs observed therein are thus
likely a form of single degree-of-freedom flutter, where the interaction between the structural
mode and an unstable fluid mode yields bounded oscillations. The linear stability analysis per-
formed by Gao et. al. [39] confirmed this to be the mechanism governing lock-in of the NACA
0012. Additionally, the phase reversal of both pitching-moment and lift coefficient as the exci-
tation frequency passes through the fundamental buffet frequency offers an explanation for the
shift in shock dynamics with driving frequencies above and below the buffet.
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Figure 9: Moment-curve slopes against frequency ratio.

10



IFASD-2017-074

5 CONCLUSIONS

In this paper, the transonic buffeting flow over the OAT15A supercritical aerofoil has been
analysed through URANS simulation. Grid independence is assessed relative to a steady flow
pre-buffet condition and is achieved with a medium density grid. Following spatial conver-
gence, various turbulence models are considered for the time-accurate solutions. It is found that
Menter’s SST model yields unsteady solutions that correlate well with the experimental results.
The buffeting flowfield at the experimental condition has been analysed, and is shown to be
characteristic of Type A shock motion, with periodic shock excursions along the upper surface.

Dynamic simulations at the experimental flow conditions have also been performed, with har-
monic excitations of the OAT15A aerofoil across a range of driving frequencies and amplitudes.
Frequency synchronisation of the aerodynamic coefficients with the structural motion has been
observed for sufficiently large amplitude pitching motions at frequencies near the fundamental
flow frequency. The frequency band for which lock-in occurs is found to be asymmetric about
the rigid aerofoil buffet frequency, with synchronisation extending farther into the higher fre-
quency range. Distinct topological flow features have also been identified, which depend on the
ratio of excitation to buffet frequencies. At higher frequencies, the shock cycle resembles that
of the rigid aerofoil, with sinusoidal shock motion across the suction surface. The buffet cycle
at lower excitation frequencies no longer exhibits a harmonic character. A secondary shock is
observed during downstream excursions, with the extent of shock motion and separated flow
regions exacerbated.

The shift in character of the buffet cycle is related to the phase reversal of the aerodynamic
coefficients as the driving frequency passes through the buffet. A simplified gain-phase model
analogous to that proposed by Raveh [35] is fit to the simulation data and reveals qualitatively
similar behaviour of the lock-in mechanism for the supercritical aerofoil studied herein. The
findings support the mechanism governing transonic limit cycles of aircraft structures proposed
in previous studies. For pitch natural frequencies in excess of the buffet, the pitching-moment
coefficient leads the structural motion and drives the development of large-scale bounded os-
cillations. For systems free to oscillate in heave, the lock-in phenomenon occurs at structural
frequencies below the buffet, where the lift coefficient leads the structure. To further exam-
ine this behaviour, a future study will investigate the linearised eigenspace of an elastically
suspended OAT15A aerofoil, in a similar light to the stability analysis performed by Gao et.
al. [39].
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