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Abstract: This study describes the development of an efficient aerothermoelastic compu-
tational framework and its application to aerothermoelastic scaling law development. In the
framework, a novel approach is developed for the reduced order model of the fluid solver,
which accounts for non-uniform temperature distribution and geometrical scales using simple
analytical pointwise models. The framework also features the linearized stability analysis and
a tightly-coupled scheme, which are used for rapid aerothermoelastic simulation of extended
flight time, and efficient identification of stability boundary. Subsequently, a new, two-pronged
approach to aerothermoelastic scaling is presented. It combines the classical scaling approach
with augmentation from numerical simulations of the specific problem. This enables one to
obtain useful scaling information for important quantities that cannot be treated by the classical
approach. Finally, the framework is applied to the development of a scaling law for a simple
hypersonic skin panel configuration.

List of Symbols

Latin symbols

a, b Panel dimensions
a∞ Freestream sound speed
a,b Structural and thermal modal coordinates
C Damping matrix of the structure
CA Aerodynamic damping matrix
CT Heat capacity matrix
c Flight conditions
c Specific heat capacity
D Data sample set in the POD-kriging method
D = Eh3

12(1−ν2)
Bending stiffness of a plate

d Input vector of the ROM
E Young’s modulus
FI Internal force in the structure
FS Structural loading
f Regression functions in kriging model
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f corp , f corq The correction models for pressure and heat flux
H Transformation matrix of an interpolation scheme
H,Haw Enthalpy
h Panel thickness
K Tangent stiffness matrix
KA Aerodynamic stiffness matrix
KT Heat conduction matrix
L Characteristic length
Lf Upstream plate length
Ns Number of samples
Nd Input dimension of the ROM
Ny Output dimension of the ROM
nF Number of parameters for flight conditions
nS, nT Number of modes for structure and wall temperature
M Mass matrix
M Mach number
p, pi Vector of surface pressure and its ith entry
Pr = µ

ρα
Prandtl number

QT Heat loading
q̇, q̇i Vector of surface heat flux and its ith entry
q Dynamic pressure
r, ri Vector of correlation functions in kriging model and its ith entry
R Residue of a nonlinear equation
R Universal gas constant
Re = ρV x

µ
Reynolds number

T Temperature
Tcr =

π2h2

6α(1+ν)a2
Critical temperature for thermal buckling of a plate

∆T Temperature increment in structure
Tw, Twi Vector of wall Temperature and its ith entry
Tw Averaged wall Temperature
T Body Temperature
t Time
tI The time when the system becomes unstable, considered as the stability

boundary
u Structural displacement
uF , uFi Vector of surface deformation and its ith entry
∆u Perturbation in structural displacements
V Flow velocity
y Output vector of ROM

Greek symbols

α Thermal expansion coefficient
αf , αm, β̄, γ̄ Coefficients in the generalized-α scheme
β Regression coefficients in kriging model
γ Correlation coefficients in kriging model
γ Gas heat capacity ratio
δ Boundary layer thickness
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ζ Damping of an aeroelastic mode
η Heat transfer similarity parameter
θ Incidence angle
κg, κs Heat conductivity of gas and solid body
λ Eigenvalue
λ̃ = q∞a3

DM∞
Nondimensional dynamic pressure

µ Gas viscosity
µs =

ρ∞a
ρhM∞

Mass ratio
ν Poisson’s ratio
ξ Geometrical scale ratio
ρ Air density
τ Panel thickness to length ratio
Ψ A matrix with columns as modal vectors
ω Frequency of an aeroelastic mode

Acronyms

ADflow Automatic Differentiation flow solver
CFD Computational Fluid Dynamics
GEP Generalized Eigenvalue Problem
HYPATE HYPersonic AeroThermoElasticity simulation environment
LCO Limit Cycle Oscillation
LSA Linearized Stability Analysis
PEP Polynomial Eigenvalue Problem
POD Proper Orthogonal Decomposition
ROM Reduced Order Model

Subscripts / Superscripts

2EE Quantities related to Eckert’s reference enthalpy method2E Estimated quantity in the coupling scheme2krg Quantities related to kriging model2LF Quantities related to low-fidelity fluid solver2PT Quantities related to piston theory2pk Quantities related to POD-kriging model2std Quantities related to the steady quantity2uns Quantities related to the unsteady quantity2e Quantities at the edge of boundary layer2g Quantities associated with GEP2P Quantities related to POD modes2p Quantities associated with PEP2ref Quantities related to reference state2S Quantities related to structure2T Quantities related to thermal solution2∞ Quantities related to free stream state2∗ Element-wise product of two vectors2̇ = ∂2
∂t

Time derivative
conj(2) Complex conjugate
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1 INTRODUCTION, BACKGROUND AND OBJECTIVES

Driven by the interest in reusable launch vehicles for low-cost space exploration, as well as
military applications, hypersonic flight has been an active area of research for decades [1].
Airbreathing hypersonic vehicles are exposed to extreme aerothermodynamic environments that
involve high aerodynamic loading and heating, leading to degradation of material properties.
The thermal stress introduced by the temperature gradients and geometrical constraints can
dramatically affect structural integrity and cause structural instabilities, such as buckling, panel
flutter, and control surface flutter. Therefore, the determination of aerothermoelastic stability
boundary, i.e. the time elapsed before the onset of structural instability, is critical for the design
of hypersonic vehicles.

One approach for determining the aerothermoelastic stability boundary is aerothermoelastic
testing. Aerothermoelastic testing refers to the construction of a scaled version of the proto-
type vehicle and its direct insertion into a high-stagnation-temperature wind tunnel where the
aerothermoelastic model can be exposed to aerodynamic heating and loading simultaneously.
This approach is impractical for two reasons: (1) lack of appropriate wind tunnel facilities and
(2) lack of aerothermoelastic scaling laws for constructing scaled models and mapping the ex-
perimental results back to the full scale prototype. Therefore, it is not surprising that design
of airbreathing hypersonic vehicles has encountered numerous difficulties in the past, includ-
ing failures during flight as well as high temperature structural testing. Work conducted on
hypersonic vehicles in early 1960s has resulted in a landmark paper [2] where scaling laws for
aerothermoelastic testing were derived for the cases when M∞ < 3.5 and T < 1000◦F . How-
ever, modern hypersonic vehicles are expected to operate at much higher Mach numbers and in
wider range of temperature. Therefore, it is necessary to extend the validity of aerothermoelas-
tic scaling laws up to M∞ < 10 and T < 2500◦F . Once such scaling laws were available, some
of the flight tests on full-size vehicle could be replaced by experiments of scaled models, which
could reduce the cost of hypersonic vehicle development by one or two orders of magnitude,
and potentially shorten the design cycle of hypersonic vehicles.

In order to obtain new extended aerothermoelastic scaling laws, a two-pronged approach is
adopted, which combines the classical approach used in [2] with modern simulation based on
computational aerothermoelasticity. On one hand basic scaling requirements are established
using dimensional analysis, in a manner that resembles the classical procedure. On the other
hand, numerical simulations are used to generate “numerical similarity solutions” that can re-
place then analytical similarity solutions for refinement of the scaling laws [3]. The numerical
similarity solutions require an extensive parametric study of computational aerothermoelastic
solutions for different scales of geometric configurations and different combinations of flight
conditions.

In the previous work [4], a computational framework, HYPersonic AeroThermoElasticity simu-
lation environment (HYPATE), has been developed for numerical simulation of transient aerother-
moelastic responses based on computational fluid dynamics (CFD). The HYPATE framework
employs a partitioned approach with a loosely-coupled scheme. The fluid, thermal, and struc-
tural responses are computed by separate solvers and the coupling is achieved by exchanging
boundary data at the interfaces of the domains once during each time step. The loosely-coupled
scheme is shown to be numerically stable and second-order time accurate.

In a sequel to Ref. [4], reduced order modeling (ROM) techniques are applied to accelerate
the fluid solver in the HYPATE framework [5]. The ROM takes advantage of the quasi-steady
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nature of the hypersonic flow, i.e. the disparity of characteristic times of different physical
domains: The fluid characteristic time is several orders of magnitude smaller than the structural
characteristic time, and the structural characteristic time is several orders of magnitude smaller
than the thermal characteristic time [6]. Therefore, in the ROM, the aerodynamic loading is
modeled by combining a steady fluid solution with an unsteady contribution generated by piston
theory. The steady fluid solution is modeled using the kriging method and proper orthogonal
decomposition (POD), namely the POD-kriging method [7–9]. By using the ROM, the fluid
solver is accelerated by five orders of magnitude for 3D applications, while maintaining the
accuracy of a CFD solver [5].

In current study, three new features are introduced to the HYPATE framework to enable effi-
cient parametric study of the aerothermoelastic stability boundary, so as to develop numerical
similarity solutions.

The first feature is a novel methodology for the correction and scaling of a ROM. A POD-
kriging ROM is generated from a sample set of high-fidelity fluid solutions, representing the
aerodynamic loading and heating of a particular structural configuration. The ROM cannot be
used to predict the aerodynamic loading and heating of a different structural configuration. Due
to the intensive computational cost of generating the high-fidelity sample set, it is infeasible
to generate a ROM for every possible geometric scale in the parametric study. Therefore, the
new methodology for correction and scaling is introduced to improve the flexibility of the POD-
kriging ROM. The methodology allows the extrapolation of a ROM to different geometric scales
and flight conditions. So only one ROM is needed for the parametric study. It should be noted
that, the new methodology is general and can be applied to ROM based on methods other than
POD-kriging as well.

The second feature is an efficient tool for identifying the aerothermoelastic stability boundary.
In the regular approach [10], the stability boundary is determined after the time domain sim-
ulation. The simulation is performed for a sufficient time span, so that the solution includes
both the stable (quasi-steady) and unstable (oscillatory) structural response. The onset of the
oscillation is considered the bifurcation stability boundary. In the new approach, the linearized
stability analysis (LSA) is developed as an extension of the p-method in aeroelasticity [11].
The LSA is employed to examine the stability of the deformed structure at every time step.
The simulation is terminated upon the onset of instability, thus there is no need to continue the
simulation into the unstable region.

The last feature is introduced to overcome the limitations of the loosely-coupled scheme. The
previous scheme was developed for general transient responses. However, the structural re-
sponse before the onset of instability is quasi-steady, like the fluid solution. Therefore, a new
tightly-coupled scheme is developed to utilize the quasi-steadiness of the response. The new
scheme allows an order of magnitude larger time step than that in the previous scheme, and
reduces the computational cost by an order of magnitude.

The objectives of the paper are:

1. To describe in detail three novel features that have been introduced in the HYPATE frame-
work. These are:

(a) A novel approach for correction and scaling of a ROM based on the POD-kriging
method to determine aerodynamic loading and heating on a particular configuration
including a provision for modifying its geometrical scale.
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(b) A new approach for determining the time required for the onset of instability in
hypersonic flight using a linearized approach that requires computing the system
response only until the onset of instability and avoid the need for calculating system
response beyond this point.

(c) A new approach that allows extremely efficient implementation of the tightly-coupled
scheme due to an order of magnitude increase in the time step size.

2. The second objective of the paper is to illustrate a novel two-pronged approach for de-
veloping aerothermoelastic scaling laws by its application to a simple three-dimensional
panel in hypersonic flow.

2 REDUCED ORDER MODELING FOR THE FLUID SOLVER

The fluid solver produces the pressure p and heat-flux q̇ on the structural surface given the
surface deformation uF , surface velocity u̇F , wall temperature Tw, and the flight condition c,

c = [M∞, p∞, T∞]T (1)

The ROM for the fluid solver employs the assumption that the flow is quasi-steady, which leads
to two approximations. First, the pressure is weakly coupled with structural velocity, indicating
that it can be decomposed into steady and unsteady components and modeled separately.

p(c,uF , u̇F ,Tw) = pstd(c,uF ,Tw) + puns(c,uF , u̇F ) (2)

Secondly, the surface heat-flux is independent of any terms associated with time derivatives,
including structural velocity.

q̇(c,uF , u̇F ,Tw) = q̇(c,uF ,Tw) (3)

The quantities pstd and q̇ are modeled using the POD-kriging method combined with the cor-
rection and scaling methodology. The quantity puns is the unsteady correction and is modeled
using piston theory.

In the following, the building blocks of the fluid ROM are presented. First, the basic modeling
tools, which are the POD-kriging method and the analytical models for hypersonic aerodynam-
ics, are described. Then, the strategy for utilizing these tools for an efficient fluid ROM is
presented.

2.1 The Basic Modeling Tools

2.1.1 The POD-kriging method

In the POD-kriging method, a nonlinear interpolation model for the problem is constructed
from a set of data sample points D = {di,yi}Ns

i=1, where input vector d ∈ RNd and output
vector y ∈ RNy .

In the context of a fluid ROM, the input vector typically contains Nd = 10 ∼ 20 parameters
characterizing c, uF , and Tw. The Optimal Latin Hypercube (OLH) sampling method is used to
generate uniformly and randomly distributed sample inputs in the parameter space of interest.
The output vector can be the steady component of the pressure pstd or the heat-flux q̇. Its
dimension depends on the discretization of the wall boundary of the fluid domain, which is
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typically of the order of Ny = 103 ∼ 104. Direct interpolation between the input and output
vectors can be computationally intensive.

Therefore, in the POD-kriging method, proper orthogonal decomposition is used to generate a
low-dimensional yet accurate approximation of the output vector. The snapshot method [12]
is applied to the output vectors to extract the POD modes ΨP , which represent the dominating
patterns in the output vectors. Then the output vector y and its POD component yP ∈ RNP are
related by POD transformation,

yP = ΨT
Py, y ≈ ΨPyP (4)

The number of POD modes NP , that are required for an accurate representation, is typically
less than 20, much smaller than Ny.

Then, the kriging method [13] is used to construct a nonlinear interpolation model between d
and yP . The model is characterized by two terms,

ykrg(d) = βT f(d) + γT r(d) (5)

The first term in Eqn. (5) is a regression function representing the global trend of the unknown
function. In current study, the regression function employs polynomials up to second order,

f(d) = [1, d1, · · · , dNd
, d21, · · · , d1dNd

, d22, · · · , d2dNd
, · · · , d2Nd

] (6)

The second term in Eqn. (5) is a correlation function representing the local deviation of the
regression function to the actual sample data. Typically a Gaussian kernel is used as the corre-
lation function.

ri(d) = exp
[
−(di − d)TΘ(di − d)

]
, i = 1, · · · , Ns (7)

where Θ is a diagonal coefficient matrix. The coefficients β and γ in Eqn. (5) are determined
from the sample data set using standard algorithms [13].

Combining Eqns. (4) and (5), the POD-kriging model for the data set D is,

ypk(d) = ΨPy
krg(d) (8)

and its Jacobian w.r.t. the input is,

∂ypk

∂d
= ΨP

∂ykrg

∂d
= ΨPβ

T ∂f

∂d
+ΨPγ

T ∂r

∂d
(9)

where the Jacobians ∂f
∂d

and ∂r
∂d

can be computed analytically from Eqns. (6) and (7).

A noteworthy issue of the POD-kriging method, or any other interpolation methods, is the curse
of dimensionality. The sample data for generating the model should cover the parameter space
of interest. Using OLH sampling method, the requirement of coverage causes the number of
samples to grow exponentially with the number of input Nd, which would dramatically increase
the computational cost for ROM generation. Sometimes a large number of input causes the
failure of the convergence of the ROM. Therefore, Nd should be small enough for computational
efficiency, yet large enough for flexibility of the ROM.
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2.1.2 The analytical models

Analytical models provide pointwise models for the pressure and the heat-flux. That means the
fluid solution at a point only depends on the properties of the wall boundary and the freestream
at the same point.

In the inviscid limit, the aerodynamic pressure over a panel is well approximated by the third-
order piston theory [14],

pPT (uF , u̇F ) = p∞

[
γMn +

γ(γ + 1)

4
M2

n +
γ(γ + 1)

12
M3

n

]
(10)

where,

Mn = M∞uF,x +
u̇F

a∞
(11)

The piston theory has been used to formulate the unsteady component of the pressure in Eqn.
(2) [15],

punsi (uFi, u̇Fi) = pPT (uFi, u̇Fi)− pPT (uFi, u̇Fi = 0) (12)

The formulation is applicable to any flight conditions and geometric scales, and is independent
of the wall temperature.

Assuming that the boundary layer is fully turbulent, the aerodynamic heat flux is computed
using Eckert’s reference enthalpy method [16],

q̇EE(uF , Tw) = St(Tr)ρ(Tr)Ve[Haw(Tr)−H(Tw)] (13)

where the enthalpy H , air density ρ, and Stanton number St are temperature dependent,

St(T ) =
0.185

Pr(T )2/3

[
log10

ρ(T )Vex

µ(T )

]−2.584

(14)

Haw(T ) = H(Te) + Pr(T )1/3
V 2
e

2
(15)

and the reference temperature Tr satisfies,

H(Tr) = H(Te) + 0.50[H(Tw)−H(Te)] + 0.22[Haw(Tr)−H(Te)] (16)

At the edge of the boundary layer, the pressure pe = pPT (uF , 0), and the other flow properties
Te and Ve satisfy,

Te

T∞
=

(
pe
p∞

) γ−1
γ

=
1 + γ−1

2
M2

∞

1 + γ−1
2
M2

e

, Ve = Me

√
γRTe (17)

2.2 The Modeling Strategy

2.2.1 The limitations in the conventional ROM

In previous studies [7–9], the steady component of the pressure pstd, and the-heat flux q̇ are
modeled using the POD-kriging method directly. An extensive list of input parameters has to
be included in the POD-kriging models to account for a range of flight conditions of interest,
structural deformation, and non-uniform wall temperature distribution. The flight conditions
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include nF parameters, such as M∞ and T∞. The structural deformation and the wall tempera-
ture are represented using a linear combination of nS structural modes and nT thermal modes,
respectively,

uF = ΨSa (18)
Tw = ΨTb (19)

Then, the conventional POD-kriging models are

pstd(c,uF ,Tw) = ppk(d) (20)

q̇(c,uF ,Tw) = q̇pk(d) (21)

where the input vector for this approach has (nF + nS + nT ) entries,

dT = [cT , aT ,bT ] = [cT ,uT
FΨS,T

T
wΨT ] (22)

The conventional POD-kriging model has three limitations. First, it is only suitable for a fixed
geometrical configuration, which is a direct result of the sample data set that is generated for
a particular geometrical configuration. The second limitation is the curse of dimensionality,
caused by the numerous parameters needed for the flight conditions and the wall temperature.
The third limitation is due to the a priori assumption on the form of the wall temperature, which
usually proves to be too simplistic for the actual distribution [17].

An alternative approach, which relieves the curse of dimensionality, is to generate a POD-
kriging model where the wall temperature distribution is characterized by the average tem-
perature Tw [17]. Then, the POD-kriging model for the heat-flux has to be augmented by a
correction model,

q̇(c,uF ,Tw) = f corq (c,Tw) ∗ q̇pk(d) (23)

where now the input vector now has only (nF + nS + 1) entries,

dT = [cT , aT , Tw] (24)

The correction model accounts for the discrepancy between the average temperature and the
actual non-uniform temperature distribution. Previous studies [17] have suggested a pointwise
correction based on Chapman–Rubesin [18] solution of laminar flow over a flat surface, with
generalization for turbulent flow. However, this approach relies on the tuning of empirical
coefficients that depends on flight conditions and geometrical configurations.

2.2.2 The methodology for ROM correction and scaling

A novel methodology for correction and scaling is developed in order to overcome the three
limitations of the conventional POD-kriging method discussed in the previous section. In par-
ticular, the novel approach corrects the ROM for different geometrical scales, so that the ROM
can be applied to the development of aerothermoelastic scaling laws.

First, the POD-kriging models for aerodynamic pressure and heat-flux are generated for fixed
reference flight conditions cref , uniform wall temperature Tw, and a fixed geometrical config-
uration with a characteristic length Lref . Then, the models are corrected to account for both
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non-uniform temperature distribution and for extrapolation to different flow conditions or ge-
ometrical scale. The correction for a scaled configuration with a characteristic length L, at
arbitrary flight condition c, and with an arbitrary non-uniform wall temperature distribution Tw

has the following form,

pstd(c,uF ,Tw;L) = f corp (c,uF ,Tw, ξ) ∗ ppk(d) (25)

q̇(c,uF ,Tw;L) = f corq (c,uF ,Tw, ξ) ∗ q̇pk(d) (26)

where ξ = Lref/L is the geometrical scale ratio. The input vector for this approach is reduced
to (nS + 1) entries:

dT = [ξaT , Tw] (27)

The correction is based on recognizing that, while the analytical models do not provide as
accurate absolute results as the high-fidelity CFD, they capture the trends with respect to the
input parameters with sufficient accuracy. Therefore, the ratio of two analytical solutions, at
two different states, can be used as a correction factor. Utilizing this concept with piston theory
and Eckert’s reference enthalpy, for pressure and heat-flux respectively, yields the following
pointwise correction:

f cor
pi (c, uFi, Twi, ξ) =

pstdi (c, uFi, Twi;L)

ppki (d)
≈ pPT (c, uFi)

pPT (cref , ξuFi)
≈

q∞
√
M2

ref − 1

qref
√

M2
∞ − 1

(28)

f cor
qi (c, uFi, Twi, ξ) =

q̇(c, uFi, Twi;L)

qpki (d)
≈ q̇EE(c, uFi, Twi)

q̇EE(cref , ξuFi, Tw)
(29)

where f cor
pi and f cor

qi stands for pressure and heat-flux corrections for the ith node.

The correction takes care of the discrepancy in the wall temperature and flight conditions with-
out introducing any empirical coefficients. Moreover, the models takes into account of the
geometrical scaling with the new parameter ξ. Such a correction is beneficial, as it (1) expands
the applicability of a certain ROM to a wider range of applications, and (2) dramatically re-
duces the cost for ROM generation, by reducing the required number of input parameters and
subsequently the number of samples.

2.2.3 Final form of the fluid ROM

The final form of the fluid ROM is,

p(c,uF , u̇F ,Tw) = f corp (c,uF , ξ) ∗ ppk(d) + puns(c,uF , u̇F ) (30)

q̇(c,uF , u̇F ,Tw) = f corq (c,uF , ξ) ∗ q̇pk(d) (31)

where d is defined by Eqn. (27).

The Jacobians of the pressure w.r.t. to the displacement and the velocity are,

∂p

∂uF

=
q∞

√
M2

ref − 1

qref
√
M2

∞ − 1

∂ppk(d)

∂d

∂d

∂uF

(32)

∂p

∂u̇F

=
∂puns(c,uF , u̇F )

∂u̇F

(33)
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3 THE COMPUTATIONAL FRAMEWORK

3.1 The Governing Equations

Aerothermoelastic simulation involves in the numerical solutions in the solid and the fluid do-
mains, with an interface at the fluid-solid boundary for information exchange.

3.1.1 The fluid solver

Three fluid solvers are developed for different levels of fidelity. The low-fidelity fluid solver
is based on analytical models, i.e. the piston theory from Eqn. (10) and Eckert’s reference
enthalpy method from Eqn. (13).

pLFi (uF , u̇F ,Tw) = pPT (uFi, u̇Fi) (34)

q̇LFi (uF , u̇F ,Tw) = q̇EE(uFi, Twi) (35)

The next level up is a ROM-based fluid solver that has higher fidelity. The ROM-based fluid
solver is the primary means for the reduction of computational cost in the hypersonic aerother-
moelastic simulation. The formulation is given by Eqns. (30) and (31).

The high-fidelity fluid solver is the CFD solver, which is based on ADflow (Automatic Differ-
entiation flow solver) [19]. The ADflow code is a highly-parallelized, multiblock, finite volume
solver. The Arbitrary Lagrangian-Eulerian formulation is implemented in ADflow for problems
with moving boundary [4]. The Spalart-Allmaras turbulence model and perfect gas model are
employed for hypersonic aerodynamics. The usage of the CFD solver is limited due to its high
computational cost. In current study, the CFD solver is used to generate data samples for the
ROM solver.

3.1.2 The structural solver

The structural solver is based on a finite element model for anisotropic doubly curved shallow
shells, with shear, thermal stress, geometric and material nonlinearities [4]. The governing
equation is,

Mü+Cu̇+ FI(u,T) = FS (36)

where FS is the aerodynamic loading passed from the fluid domain to the solid domain.

Equation (36) is discretized in time using the generalized-α scheme [20],

RDyn
S (un+1) = Mün+1 +Cu̇n+1 + FI(u

n+1,Tn+1) = Fn+1
S (37)

where,

un+1 = (1− αf )[u
n +∆tu̇n + (1− 2β̄)

∆t2

2
ün + β̄∆t2ün+1] + αf ü

n

u̇n+1 = (1− αf )[u̇
n + (1− γ̄)∆tün + γ̄∆tün+1] + αf u̇

n

ün+1 = (1− αm)ü
n+1 + αmü

n

The generalized-α scheme is an extension of the Newmark-β scheme [21] and the HHT-α
scheme [22]. The generalized-α scheme provides controllable numerical dissipation that damps
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out spurious high-frequency response due to the finite element formulation [20]. For second-
order time accuracy and unconditional stability (in the linear sense), the parameters are chosen
as,

αf = 0.05, αm = 0, γ̄ =
1

2
− αm + αf , β̄ =

1

4
(1− αm + αf )

2

When the structural response is quasi-steady, the velocity and the acceleration are assumed to
be negligible, and the governing equation Eqn. (36) simplifies to,

RSta
S (un+1) = FI(u

n+1,Tn+1) = Fn+1
S (38)

In Eqns. (37) and (38), the governing equations for the structural solver are expressed in the
residue form,

RS(u) = Fn+1
S (39)

Equation (39) is solved using the Newton-Raphson method.{ (
∂RS

∂ui − ∂Fn+1
S

∂ui − ∂Fn+1
S

∂u̇i
∂u̇i

∂ui

)
∆u = −(RS(u

i)− Fn+1
S )

ui+1 = ui +∆u
(40)

where i ≥ 0 is the iteration step and u0 is the initial guess for the n+ 1 time step. The iteration
procedure converges when the norm of the residue ||RS(u

i+1)|| is smaller than a prescribed
tolerance.

3.1.3 The thermal solver

The heat transfer in the solid domain is based on a finite element model using a layer-wise
thermal lamination theory for composite shells. The governing equation is,

CT (T)Ṫ+KT (T)T = QT (41)

where CT and KT are temperature-dependent due to material nonlinearity, and QT is the aero-
dynamic heating passed from the fluid domain to the solid domain.

Equation (36) is temporally discretized using the Crank-Nicolson scheme [23],

RT (T
n+1) = CT (T

n+ 1
2 )Ṫn+ 1

2 +KT (T
n+ 1

2 )Tn+ 1
2 = Q

n+ 1
2

T (42)

where,

Tn+ 1
2 =

1

2
(Tn +Tn+1)

Ṫn+ 1
2 =

1

∆t
(Tn+1 −Tn)

Similar to the structural solver, Eqn. (42) is solved using Newton-Raphson method,{
∂RT

∂Ti ∆T = −(RT (T
i)−Qn+1

T )
Ti+1 = Ti +∆T

(43)
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3.1.4 The fluid-solid boundary

At the fluid-solid boundary, the discretizations of the solid and the fluid surfaces do not match.
Usually, the nodes of fluid mesh are denser than those of the solid mesh. Therefore, interpo-
lation schemes are needed for information exchange between the solid and the fluid domains.
The displacements u and the temperature T are interpolated from the solid mesh to the fluid
mesh using the finite element scheme [24]. The aerodynamic loading p and heat flux q̇ are
interpolated from the fluid mesh to the solid mesh using the quadrature-projection scheme [25].
The mathematical forms of the interpolation schemes are expressed as linear transformations,

FS = HSFp (44)
QT = HTF q̇ (45)
uF = HFSu (46)
Tw = HFTT (47)

The transformation matrices are fixed once the spatial discretizations of the solid and the fluid
domains are provided.

3.2 The Coupling Schemes

Two coupling schemes, loosely-coupled and tightly-coupled, are developed for the aerother-
moelastic simulation in the HYPATE framework. In the loosely-coupled scheme, the solvers
exchange information at the solid-fluid boundary only once at every time step. The loosely-
coupled scheme is computationally efficient and maintains accuracy and stability of solution
when carefully designed. In the tightly-coupled scheme, at every time step, the solvers ex-
changes information repeatedly until all the solvers are converged. The tightly-coupled scheme
has higher computational cost than the loosely-coupled scheme for each time step. However, it
retains the stability of solution at larger time step.

3.2.1 Loosely-coupled scheme

The procedure for the loosely-coupled scheme is illustrated in Fig. 1(a). The steps are as
follows,

1. The thermal step:
(a) Heat flux from the fluid solver is extrapolated,

q̇n+ 1
2
,E =

3

2
q̇n − 1

2
q̇n−1 (48)

(b) The thermal solution T is updated to step n+1, with heat flux Q
n+ 1

2
T = HTF q̇

n+ 1
2
,E

2. The aeroelastic step:
(a) The thermal solution is passed to the fluid solver and the structural solver, with

Tn+1
w = HFTT

n+1.
(b) The displacement from the structural solver is extrapolated,

un+1,E = un +∆t

(
3

2
u̇n − 1

2
u̇n−1

)
(49)

(c) The fluid solutions p and q̇ are updated to step n + 1, with displacement un+1
F =

HFSu
n+1,E

13
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(d) The fluid solution p is passed to the structural solver.
(e) The structural solution u is updated to step n+1, with aerodynamic loading Fn+1

S =
HSFp

n+1

3. Above steps are repeated until end of the simulation.

In step 2e, the aerodynamic loading is fixed, so in the Newton-Raphson procedure for the struc-
tural solver, Eqn. (40), the Jacobians of aerodynamic force w.r.t. displacement and velocity are
zero.

(a) The loosely-coupled scheme. (b) The tightly-coupled scheme.

Figure 1: The schemes for aerothermoelastic simulation.

3.2.2 Tightly-coupled scheme

The procedure for the tightly-coupled scheme is illustrated in Fig. 1(b). The tightly-coupled
and the loosely-coupled schemes are the same, except that the aeroelastic step is modified,

(2a) The thermal solution is passed to the fluid solver using Eqn. (45) and the structural solver.
(2b) The fluid and the structural solutions are simultaneously updated to step n+1 by solving

Eqns. (2), (40), (44), and (46).

Combining Eqns. (2), (40), (44), and (46),

RS(u) = Fn+1
S = HSFp(HFSu,HFSu̇) (50)

In the Newton-Raphson procedure for the structural solver, the Jacobians of aerodynamic force
w.r.t. the structural displacement and velocity are,

∂Fn+1
S

∂u
= HSF

∂p

∂uF

HFS (51)

∂Fn+1
S

∂u̇
= HSF

∂p

∂u̇F

HFS (52)

In the ROM-based fluid solver, the Jacobians ∂p
∂uF

and ∂p
∂u̇F

can be computed using Eqns. (32)
and (33).

3.3 Linearized Stability Analysis

The motivation behind the linearized stability analysis is the disparity of the characteristic times
in the thermal and structural solutions in the hypersonic aerothermoelasticity [6]. During a ther-
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mal time step, the aerothermoelastic response of a structure can be approximated by the aeroe-
lastic response of a structure with fixed temperature distribution [10]. Therefore, the aerother-
moelastic stability is represented well by the aeroelastic stability of the heated structure.

The procedure for aeroelastic stability analysis is an extension from the p-method. The stability
is determined by solving an eigenvalue problem resulting from the linearization of the structural
equation. Based on the assumptions employed, two types of eigenvalue problems, i.e. the
polynomial eigenvalue problem (PEP) and the generalized eigenvalue problem (GEP), can be
formulated for the linearized stability analysis.

3.3.1 The polynomial eigenvalue problem

To linearize the governing equation for the structural dynamics, Eqn. (36) is perturbed using,

u = uref +∆u, u̇ = u̇ref +∆u̇ (53)

where uref , u̇ref , and Tref are reference states, typically the solution at a given time step. The
linearized equation is

M∆ü+C∆u̇+K∆u = CA∆u̇+KA∆u (54)

where,

K =
∂FI(uref ,Tref )uref

∂uref

, KA =
∂FS(uref , u̇ref ,Tref )

∂uref

, CA =
∂FS(uref , u̇ref ,Tref )

∂u̇ref

(55)

Assume the perturbation is
∆u = ũ expλpt (56)

Combine Eqns. (54) and (56),

[λ2
pM+ λpC̃+ K̃]ũ = 0 (57)

where symbols C̃ = C −CA and K̃ = K −KA are introduced for convenience. The aerody-
namic matrices CA and KA are usually asymmetric, so C̃ and K̃ are asymmetric as well.

Equation (57) is a polynomial eigenvalue problem, because it contains both the quadratic and
linear terms of the eigenvalue λp. The eigenvalues always appear as a complex conjugate pair
λp1,2,

[λ2
p1M+ λp1C̃+ K̃]ũ1 = 0, [λ2

p2M+ λp2C̃+ K̃]ũ2 = 0 (58)

which satisfies,
λp1 = conj(λp2), ũ1 = conj(ũ2) (59)

3.3.2 The generalized eigenvalue problem

The GEP is an approximation of PEP with the following two assumptions,

1. There is no viscous damping, i.e. C = 0.
2. The aerodynamic damping is negligible, i.e. CA = 0, due to the quasi-steadiness of the

aerodynamic loading.
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The two assumptions imply that C̃ = 0, and Eqn. (58) simplifies to,

[λ2
p1M+ K̃]ũ1 = 0, [λ2

p2M+ K̃]ũ2 = 0 (60)

Define
λg = −λ2

p1 = −conj(λp2)
2 (61)

and rearrange terms in Eqn. (60),
K̃ũ = λgMũ (62)

Equation (62) takes the form of the generalized eigenvalue problem in a conventional structural
dynamics sense. The difference is that K̃ is asymmetric, which would result in complex-valued
eigenvalues. The eigenvalues of GEP are converted to eigenvalues of PEP by,

λp1 =
√
−λg, λp2 = conj(

√
−λg) (63)

Approximating PEP by GEP is beneficial from a computational aspect. The computational cost
of a GEP solution is usually one-tenth of that of a PEP solution.

3.3.3 The stability criteria

The real and imaginary parts of the eigenvalue represent the damping and frequency of the
corresponding aeroelastic mode.

ζ = Re(λp) (64)
ω = Im(λp) (65)

The properties of eigenvalues determines the stability of the structure, as provided in Table
1. Two types of instability are identified. When the eigenvalue has a positive real part and a
nonzero imaginary part, the corresponding aeroelastic mode represents flutter instability, which
is driven by the aerodynamic loading. When the eigenvalue is a positive real, the corresponding
aeroelastic mode represents divergence, which is driven by the thermal force in the structure.

ζ < 0, ω ̸= 0 Stable
ζ = 0, ω ̸= 0 Neutrally stable
ζ > 0, ω ̸= 0 Unstable (flutter)

ω = 0 Unstable (divergence)

Table 1: Stability criteria for the linearized stability analysis

4 VERIFICATION OF THE FRAMEWORK

4.1 The ROM-based Fluid Solver

4.1.1 Aerothermoelastic response of a 2D panel

The configuration for the 2D panel is shown in Fig. 2. The panel is simply supported at the
leading and trailing edges. The geometrical parameters are h = 2.5mm and a = 1m. The
flight conditions are M∞ = 4.0, p∞ = 2087.2Pa, and T∞ = 266.7K. The material properties
are temperature dependent [26]. At initial temperature (T = 300K), ρ = 2768.1kg/m3, E =
72.86GPa, ν = 0.325, α = 2.236 × 10−5/K, κs = 132.05W/mK, and c = 850.99J/kgK.
Three cases are considered. In case I, the low-fidelity fluid solver is used. In cases II and III, the
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ROM-based fluid solver is used. The data for generating the ROM is from the analytical models,
so the results from the two cases should be identical. In cases I and II, the loosely-coupled
scheme is used to compute the transient aerothermoelastic response with a time step of 5ms.
In case III, the tightly-coupled scheme is used to compute the quasi-steady aerothermoelastic
response with a time step of 50ms.

The transient solutions, i.e. those from cases I and II and Ref. [27], and the quasi-steady so-
lution from case III are compared in Figs. 3(a)-3(d). Figure 3(a) illustrates the mid-panel dis-
placement nondimensionalized by thickness. The panel undergoes a thermally-driven response,
which causes the panel to buckle into the flow. At the stability boundary near t = 2.1s, snap-
through occurs, and the panel buckles out of the flow. The transient solutions are identical up to
the stability boundary. The quasi-steady solution is able to capture the trend of the transient re-
sponses and predicts the identical stability boundary. The average pressure on the panel surface
is shown in Fig. 3(b). The loadings in the transient solutions agree well with each other. The
quasi-steady loading is lower than the transient counterparts, because the structural velocity,
and hence the unsteady component of the aerodynamic force, are neglected in the quasi-steady
solution. The average panel temperature is shown in Fig. 3(c). The transient and quasi-steady
solutions are identical. The average heat flux on the panel surface is shown in Fig. 3(d). The
transient and quasi-steady solutions agree well with each other, except the ROM-based heat flux
is slightly higher than the heat flux from analytical model (less than 1%).

The comparisons verifies,

1. The correctness of the transient aerothermoelastic responses using the HYPATE frame-
work.

2. The correctness of the ROM-based fluid solver.
3. The feasibility of the quasi-steady approximation of the structural response.

Figure 2: The configuration of a 2D panel.

4.1.2 ROM corrections and scaling

To verify and demonstrate the capability of the novel method for ROM correction and scaling
(Eqn. 28), a CFD-based ROM was generated for the panel configuration from the previous sec-
tion. The baseline case has a uniform wall temperature Tref = 300K, and a typical deformation
described by 3 sinusoidal modes with modal amplitudes [a1, a2, a3] = [1,−0.35,−0.1]h. The
ROM correction and scaling method is tested for three cases ordered in increasing complexity,
and compared against CFD results:

1. Case I: correction for non-uniform wall temperature,

Tw(x) = Tref (1.25− 0.5x/a+ 0.1 sin(3πx/a)) (66)
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2. Case II: case I plus correction for change in flight conditions, M∞ = 4.5, p∞ = 2500Pa
3. Case III: case II plus correction for change in geometrical scale, ξ = 5

The corrected and scaled ROM results, in the form of dimensional pressure and heat flux, are
shown in Figure 4 as a function of panel streamwise axis. Each case is compared to a cor-
responding CFD result appearing in a dashed line, and the relative L2 error is indicated in the
legend. Small errors, between 0.4% and 6.7% are obtained, although the conditions for the cases
considered here are quite different than the conditions of the original ROM. This highlights and
verifies the effectiveness of the novel correction developed in the current study.

4.2 The Linearized Stability Analysis

4.2.1 Aeroelastic response of a 3D panel

The first example is the aeroelastic response of a 3D panel, shown in Fig. 5(a), simply supported
along its edges. The geometrical parameters are a/h = 500 and a/b = 1. The material proper-
ties are ν = 0.3 and α = 1.2× 10−6/K. The mass ratio µs = 5.355× 10−4. The aerodynamic
loads are obtained using the piston theory. Two cases with different temperature increments are
considered: (1) ∆T = Tcr, (2) ∆T = 2Tcr.

(a) Center deflection. (b) Average pressure.

(c) Average temperature. (d) Average heat flux.

Figure 3: The aerothermoelastic response of the 2D panel.
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The first set of results are obtained directly from temporal responses of the panel, as shown in
Fig. 5(b). The amplitudes of limit cycle oscillation (LCO) are computed at a series of dynamic
pressures. At each dynamic pressure, the aeroelastic simulation is run for 5000 time steps so
that the time response enters a stable state or a LCO state. The results are compared with those
from the literature (Nydick et al. [28] and Dowell [29]).

In general, the results from current study agree well with those from literature. The flutter points
predicted by HYPATE are λ̃ = 344.0 for ∆T = Tcr and λ̃ = 191.1 for ∆T = 2Tcr. Compared
with the literature results, the errors are less than 1%. Moreover, the case ∆T = 2Tcr provides
an illustration of three typical types of panel response [30]. The panel response is controlled by
two types of forces, i.e. the thermally-induced inplane compressive force and the aerodynamic
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Figure 4: Verification of ROM correction and scaling

(a) The geometrical configuration. (b) The LCO curves.

Figure 5: Aeroelastic response of a 3D panel
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force. When the dynamic pressure is low (λ̃ < 183.5), the aerodynamic force is weaker than the
compressive force and type I response occurs: The panel is thermally buckled but dynamically
stable, as illustrated in Fig. 6(a). As the dynamic pressure increases (183.5 < λ̃ < 191.1), The
two forces are both moderate and type II response occurs: The panel is stabilized and has zero
LCO amplitude, as illustrated in Fig. 6(b). After the flutter point (λ̃ > 191.1), the aerodynamic
force becomes stronger than the compressive force and the panel enters the LCO state.

The second set of results are obtained from the LSA using the PEP and GEP formulations. The
frequencies ω and dampings ζ of the first six aeroelastic modes are computed at a series of
dynamic pressures. The first two modes are found to be the source of instability and the higher
modes are stable. In this section, the frequencies and dampings are nondimensionalized by

ω̄ =
ω

ωo

, ζ̄ =
ζ

ωo

(67)

where ωo is the natural frequency of the first structural mode of the unheated panel.

Figure 7(a) illustrates the LSA results for the first case (∆T = Tcr). The frequencies of the
two modes coalesce as the dynamic pressure increases. When the frequencies coalesce, the
damping of one of the modes becomes positive, and the other becomes negative, indicating a
flutter-type instability. The flutter point is λ̃ = 343.3, within 1% error compared with results
from time-domain analysis.

Figure 7(b) illustrates the LSA results for the second case (∆T = 2Tcr). The flutter point
is λ̃ = 190.9, where the damping becomes positive. Furthermore, the LSA results capture
the two types of panel response before the flutter point. When λ̃ < 183.4, mode 1 has zero
frequency and positive damping, indicating that the panel has divergence-type instability, which
corresponds to the type I response in the time-domain analysis. When 183.4 < λ̃ < 190.9, the
modes have negative damping and the panel is stable, which corresponds to the type II response.

In Figs. 7(a) and 7(b), the PEP and GEP formulations produce almost identical results. The
maximum error in the frequencies is less than 0.1%. Compared with PEP results, the damp-
ing computed by GEP is “shifted” upward by a small amount, typically 1% of the reference
frequency. The shift in damping is caused by neglecting the aerodynamic damping matrix due

(a) Type I response at λ̃ = 172.0. (b) Type II response at λ̃ = 187.3.

Figure 6: Typical panel responses before flutter when ∆T = 2Tcr.
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to the quasi-steady assumption. The changes in the flutter points due to the shift are negligi-
ble. The comparison between PEP and GEP results justifies the quasi-steady assumption in
the hypersonic flow regime. Also, the results indicate that the positive damping in flutter-type
instablity is mainly introduced by the aerodynamic stiffness matrix.

(a) Case 1: ∆T = Tcr. (b) Case 2: ∆T = 2Tcr.

Figure 7: The linearized stability analysis results (PEP v.s. GEP).

4.2.2 Aerothermoelastic response of a 2D panel

The second verification is a continuation from the 2D panel case from Section 4.1.1. The LSA
using the PEP and GEP formulations are applied to aerothermoelastic responses with the ROM-
based fluid solver. In the first case, the transient response with a time step of 5ms is considered,
and in the second case, a quasi-steady response with a time step of 50ms is examined.

The PEP and GEP results from the first case are compared in Fig. 8(a), where the first aeroelas-
tic mode is examined. The frequency is decreasing with intermittent fluctuation. The frequency
gradually reaches zero as the system approaches the stability boundary. The identified stability
boundary is 1.985s, which agrees with the time-domain analysis. After the stability bound-
ary, the frequency becomes zero and the damping becomes positive, indicating a divergence
type of instability. That means the instability of the panel is driven by the thermally-induced
inplane force. The frequencies computed from PEP are identical to those from GEP. The damp-
ings computed from PEP and GEP differ by a small quantity (1% of the reference frequency),
due to the neglected aerodynamic damping matrix. Like the flutter-type instablity, the positive
damping in divergence-type instablity is mainly due to the aerodynamic stiffness matrix.

The GEP results from the first and the second cases are compared in Fig. 8(b). The frequency
extracted from the quasi-steady solution varies smoothly with time, and follows the decreasing
trend of the transient solution well. The predicted stability boundary is 2.1s, which agrees with
the corresponding time-domain solution. The difference with the prediction from the transient
results is attributed to the differences in the time step. Therefore, the quasi-steady aerothermoe-
lastic response is shown to be a fast and acceptable approximation of its transient counterpart.
The quasi-steady solution takes only one-tenth of the time steps required by the transient solu-
tion.

21



IFASD-2017-069

5 APPLICATION TO AEROTHERMOELASTIC SCALING LAWS

5.1 Background on Classical Aerothermoelastic Scaling

During the last five decades aeroelastically scaled wind tunnel models have been widely used
and played an important role in aeroelasticity, since aeroelastic scaling laws allowed one to
relate small-scale wind tunnel test results to the behavior of a full-scale system. Such scaling
laws are based on dimensional analysis of the governing equations to establish scaling param-
eters used for designing aeroelastically scaled models [31]. This approach is integrated in the
Transonic Dynamic Tunnel at NASA Langley Research Center, which is a dedicated facility
for testing aeroelastically scaled models [32]. However, the effect of kinetic heating is not gen-
erally simulated by current wind tunnel testing technologies. The presence of kinetic heating
can influence the aeroelastic behavior primarily by reduction in stiffness due to degradation of
material properties with temperature combined with a reduction due to an unfavorable stress
distribution associated with thermal expansion. A few attempts have been made in the past
to incorporate thermal effects into the aeroelastic scaling laws, resulting in aerothermoelastic
scaling laws [2,33]. These conlcuded that complete similarity is impossible to achieve for scale
ratios that differ from unity. The similarity parameters that need to be satisfied are derived from
a proper non-dimensionalization of the general equations for stress, displacement and tempera-
ture distribution of a body immersed in a hot, flowing gas. The parameters for the general case
of complete aerothermoelastic similarity, as derived in Ref. [2] Eqn. (52), are given in Table 2.

(I) M∞, Re∞, ρV 2
∞

Eref
, κg

∞
κs
ref

, αrefTref ,
ρs
ρ

(II) Tref

T∞
,

κg
ref tref

L2 ,
V∞tref

L
,
uref

L
,

σref

Eref
, T init

w

Tref

(III)
ϵσBT 3

refL

κs
ref

, ρsgL
ρV 2

∞
, pext

Eref

(IV) Pr, γ, ν, κ̂g, ĉgp, µ̂, κ̂
s, ĉsp, Ê, α̂, ϵ̂w

Table 2: Scaling parameters for complete aerothermoelastic similarity

(a) The PEP and GEP formulations. (b) The transient and quasi-steady responses.

Figure 8: The damping and frequency in the aerothermoelastic response.
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The primary similarity parameters are given in the top line, and satisfying all of them presents
a major conflict. The ratio of densities ρs

ρ
is only required for dynamic aerothermoelastic prob-

lems, and may be ignored for large ratios [2]. The parameters in line (II) define a reference
state for temperature Tref , time tref , deflection uref , stress σref , and the initial wall tempera-
ture T init

w . The first two parameters of line (III) are required for cases where significant surface
radiation and gravity effects are present, and the third parameter represents the scaling of non-
aerodynamic loadings. Finally, the parameters in line (IV) relate to similarity of gas and material
properties. The parameters with 2̂ are temperature dependent.

One approach to deal with this basic conflict is by examining more restricted situations, instead
of the general problem, such that simplifying assumptions can be made and some of the param-
eters can be relaxed. Considering the restricted case of thin and flat panels in supersonic flow,
there is no longer a separate Mach number requirement as long as the Mach number is super-
sonic (M∞ > 1.7), and the effect of the thickness ratio τ = h/L may be neglected since only
the deformation affects the loading [2]. This allows a variation of Mach and τ in the scaling
process. In addition, the heat flux may be approximated by boundary layer analytical solu-
tions for flat plates, which facilitates the grouping of some parameters. Furthermore, a uniform
through-thickness temperature rise can be assumed, and the heat conduction in the plane of the
panel may be neglected. These assumptions allow more flexibility in the scaling, reducing the
similarity parameters listed in Table 3, as derived in Ref. [2], Eqn. (70).

(I) ρV 2
∞

ErefM∞τ3
, ρsM∞τ

ρ
,

αref (Tref−T init
w )

τ2
, η =

κgRe0.8∞ Pr1/3tref
ρscspL

2τ

(II) Tref−T init
w

TAW−T init
w

,
V∞tref

L
,

uref

Lτ
,

σref

Eref τ2

(III) ϵσBLT 4

κgRe0.8∞ Pr1/3(Tref−T init
w )

, ρsgLM∞
ρV 2

∞
, pext

Eref τ4

(IV) ν, κ̂g, ĉgp, µ̂, κ̂
s, ĉsp, Ê, α̂, ϵ̂w

Table 3: Reduced set of scaling parameters for aerothermoelastic similarity of thin panels in supersonic flow

The first parameter in the top line of Table 3 is the non-dimensional dynamic pressure λ̃, the
basic panel flutter parameter. The second parameter is the mass ratio µs, and can be usually
ignored if it is large enough. The third parameter relates to thermal stresses similarity, and
defines the initial wall temperature T init

w . The fourth parameter η is a grouping of several pa-
rameters related to heat transfer and defines the thermal time tref . While a more flexible scaling
requirement is provided by the set reduced parameters in Table 3, it is still difficult to satisfy
them, particularly when the Mach number increases. The challenges associated with scaled
aerothermoelastic testing have resulted in the use of “incomplete” aerothermoelastic testing and
“restricted purpose” testing approaches. “Incomplete” aerothermoelastic testing refers to the
usage of additional means other than aerodynamics to provide loading or heating. This requires
a priori knowledge of the loading and heating on the full-scale vehicle, as well as the ability to
accurately apply these loads at the appropriate locations as a function of time, which is difficult
to achieve in practice. “Restricted purpose” testing implies a study of the aerothermoelastic
problem assuming that the coupling between the aerodynamic pressure, aerodynamic heating,
heat conduction and stress-deflection phenomena is weak. However, the fluid-thermal-structural
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interactions cannot be decoupled in modern hypersonic vehicles since they are based on an in-
tegrated airframe-propulsion concept, which strengthens the interactions between the various
components [10].

5.2 Refined Aerothermoelastic Scaling Procedure

As indicated in the previous section, the classical approach to aerothermoelastic scaling is inad-
equate for modern applications and leads to the conclusion that scaled aerothermoelastic testing
appears to be intractable [2]. An alternative approach to aerothermoelastic scaling is explored
in this study. The approach is based on a combination of the classical approach and a numerical
simulation of the specific problem being considered. This two-pronged approach for gener-
ating aerothermoelastic scaling laws is illustrated in Fig. 9. The left hand branch depicts the
classical approach used in [2]. The innovative approach developed here combines the classical
approach with aerothermoelastic numerical simulation as represented by the right hand branch.
Using such aerothermoelastic numerical simulations, one can obtain a complete solution, such
that the aerothermoelastic stability boundary, for the prototype (i.e. full scale) as well as the
scaled model. From the comparison and adjustment of these two stability boundaries the scal-
ing laws for the specialized cases can be obtained without recourse to the ad-hoc assumptions
used the classical approach. For more complex configurations, such as a complete hypersonic
vehicle, this adjustment process can formulated as a constrained optimization problem, where
the design variables can be selected to correspond to the most important parameters needed for
the refined simulation that differ from those employed when generating the model based on
classical similarity. This approach was used in [3], and was found to be effective.

Figure 9: Schematic description of two-pronged approach for developing aerothermoelastic similarity laws

5.3 Refined Aerothermoelastic Scaling Test Case

A “realistic” 3D panel configuration in hypersonic flight was chosen for the demonstration of
the scaling approach developed together with the efficient capability to simulate and identify
instabilities for extended flight times. The parameters for the test case are provided in Table 4.
Although hypersonic vehicles typically flies at high altitudes, a rather low altitude of 20km was
chosen. This is for reducing the computational effort by decreasing the time when instability
occurs from hours to minutes.

For a simplified demonstration, an “ideal” case is considered where: (1) the wind tunnel is ca-
pable of simulating the same gas properties as in flight, and (2) the model is built from the same
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a, b 0.5m
h 8mm

Front plate length, Lf/a 1.0
Material Aluminum-7075-T651 [26]
M∞ 6.0

Altitude 20km
Incidence angle, θ 2.5o

Table 4: Refined aerothermoelastic scaling test case parameters

material as the prototype. As indicated earlier, the first step in the new approach is to consider
the classical parameters on the left-hand branch in Fig. 9. For this case, when neglecting radi-
ation and gravity effects, all the similarity parameters in Table 3 are satisfied, except the heat
transfer parameter η.

In the next step, the refined approach represented by the right-hand branch in Fig. 9 is imple-
mented by performing numerical simulations for the prototype and scaled models. Aerother-
moelastic numerical simulations were performed for different geometrical scaling between
ξ = 1 (full-scale) and ξ = 10 to identify the variation of the time tI , when the system becomes
unstable, as a function of the geometrical scale. The scaling results from both the classical and
the refined approaches are shown in Fig. 10.

In the classical approach, the time when the instability occurs tI and the characteristic length
are related by,

tIV∞

L
= const (68)

where V∞ is assumed to be constant for the case considered here. The relation between tI and
the geometrical scale ξ is determined from Eqn. (68),

tI
tI,ref

=
L

Lref

=
1

ξ
(69)

which implies that the time for onset of instability tI is inversely proportional to the geometrical
scale ξ.

In the refined approach, as the geometrical scale increases, the time tI of the scaled model is
lower than the value predicted by the classical approach. The discrepancy is due to the mismatch
of the heat transfer similarity parameter η, which increases as the characteristic length decreases.
The increase of η leads to the increase in the heat flux, resulting in a faster degradation of
material properties and earlier onset of instability.

The final step of the new approach is adjustment of the parameters to obtain matching between
the full-scale and scaled stability boundaries. This is a complicated task that requires solving
a constrained optimization problem with model and gas properties as design variables. For
the particular case considered here, where the material properties for the model and the gas
properties are identical, one can identify a single design variable that can be adjusted to permit
matching the stability boundaries. By recognizing that the heat flux reduction required can be
obtained by scaling the upstream plate length Lf/a independently from the geometrical scale;
allows one to select a larger upstream plate length thus reducing the heat flux acting on the
panel. This modification also changes boundary layer thickness ratio δ/a for the approaching
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flow. However, at the high Reynolds numbers are considered, δ/a has only a secondary effect
on loading. The scaled time tI as a function of upstream plate length is shown in Fig. 11(a) for
different geometrical scales. It is evident that a longer upstream plate length extends the time
tI , and thus a given geometrical scale can be adjusted for similarity with the prototype. The
required upstream plate length for similarity was interpolated and is presented as function of
geometrical scale in Fig. 11(b). The required plate length was expected to increase monotoni-
cally with geometrical scale, as greater heat flux reduction is required for models of a smaller
scale. However, the required plate length reaches a maximum of ∼ 2.3 at ξ = 7 and then de-
creases for larger geometrical scales. This effect is due to the fact that heat conduction, which
was neglected in the analytical approach, becomes more pronounced at smaller scales. This
demonstrates how numerical simulation may be used to augment the scaling requirements.

6 CONCLUDING REMARKS

This study examines the issue of aerothermoelastic scaling employing an advanced and ef-
ficient framework for aerothermoelastic simulation. The principal findings of the study are
summarized below.

1. A new ROM correction and scaling method was developed. It is able to account for both
non-uniform temperature distribution and extrapolation to different flow conditions or
geometrical scales. Thus, it expands the applicability of a certain ROM to a wider range
of applications and dramatically reduces the cost for ROM generation.

2. A new computational approach combining the linearized stability analysis and a tightly-
coupled scheme were developed for efficient and automatic identification of aerothermoe-
lastic stability boundary. This new approach allows one to use a large time step size in
the aerothermoelastic simulation, and it is suitable for simulation of extended flight time
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Figure 10: Panel instability time vs. geometrical scaling
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along the trajectory of a hypersonic vehicle.
3. A new, two-pronged approach to aerothermoelastic scaling is implemented. It combines

the classical scaling approach with augmentation from numerical simulations of the spe-
cific problem. The new approach was applied for scaling a 3D panel configuration in
hypersonic flow for an “ideal” case where the model and the prototype are built of the
same material and tested in a gas with identical properties. Similarity between the pro-
totype and a range of small-scale models was successfully obtained by adjusting a single
variable consisting of the upstream plate length.

The aerothermoelastic scaling approach described in this study can be eventually applied to
testing components of a hypersonic vehicle. Furthermore, the approach can be also used to map
aerothermoelastic results obtained in a full scale test on an actual vehicle to a vehicle having
different geometric size. Therefore, it has the potential for saving considerable funds in the
process of developing a hypersonic vehicle.
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