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Abstract: This study details the development of a computational full aircraft model (FAM)

to assess the non-linear response of an aircraft during an aerodynamic gust. A FAM comprises

numerous components viz., the structure, aerodynamics and inertial loads. The focus of this

study is to implement a geometrically non-linear reduced-order model (ROM) for the wing and

assess its aeroelastic response against standard linear approaches. The NASA common research

model (CRM) wing is modeled by three-dimensional Timoshenko beam elements in both the

linear and non-linear regime. Linear responses are derived from standard linear modal analysis

procedures. The geometrically non-linear beam element ROM is solved via quadratic mode

shape components in the modal domain. These components are extracted from linear mode

shapes in a novel approach for elastic beam elements. A representative gust load is applied to

the structure and the responses are compared to the linear approach. It was found that QMS

modal methodology offers improved accuracy by retaining the overall wing length even when

loading produces a vertical displacement of 35% with respect to wing span. The extension

caused by linear modeling exceeds 14%, while the QMS approach reduces it to less than 3%.

INTRODUCTION

Commercial aircraft travel is one of the safest forms of transport. This may be attributed to

the enforcement of strict safety regulations required during each phase of its construction, es-

pecially the design phase [1]. Computational analysis of all the possible design variables i.e.
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numerous altitudes, flight velocities and load conditions, is prohibitively costly. This computa-

tional cost is exacerbated when high-resolution models for the structure and aerodynamics are

adopted. To minimise calculation time, design engineers employ a full aircraft model compris-

ing a reduced-order model (ROM) of the structure that is coupled to calibrated aerodynamic

forces and conservative inertial load approximations. The development of ROMs aim to repro-

duce the dominant characteristics of the phenomena being modeled at a substantially reduced

cost.

With regards to the structural ROM, wing structures have historically been designed as ex-

tremely stiff, thus a linear model has sufficed. Even though only linear kinematics is encom-

passed, it performed relatively well when aerodynamic loading induces small wing deflections.

However, due to an increase in light-weight, high aspect ratio wing designs with higher flexibil-

ity, linear structural responses the linear model is inaccurate. For this purpose, a geometrically

non-linear structural model is undergoing large deformations is warranted.

Full-order non-linear finite element and intrinsic models have demonstrated success in mimick-

ing extreme structural deformations and capturing the higher-order kinematics accurately [2,3].

However, it requires solution of stiffness matrices at each time step, thus increasing the compu-

tational cost and implementation complexity. A key consideration during the design phase of the

wing and ROM construction is the trade-off between accuracy and computational cost. There-

fore, a pragmatic methodology is opted for by extending on current modal analysis techniques.

This enables coupling to current aircraft manufacturer procedures via a seamless implementa-

tion.

The structural governing equations are derived using Timoshenko beam assumptions in con-

junction with elasticity principles. Discretisation is effected via the finite element method

(FEM) and transformed to the modal domain utilising linear mode shapes. Extension to the

non-linear regime is performed by including the quadratic mode shape (QMS) components as a

higher-order term to the linear modal domain response. This QMS inclusion resolves structural

non-linearities by compensating for the artificial stretching of beam elements that occur in lin-

ear analyses. Typically, quadratic mode shapes are computed via multiple non-linear structural

calculations; however, the new strategy employs linear modal analysis to retrieve the QMS com-

ponents [4]. Extraction of the QMS components was initially derived for truss elements and has

been extended to elastic Timoshenko beam elements. It has demonstrated improved accuracy

to linear models and comparable results to commercial non-linear software with a negligible

effect on computational effort [5].

The main objective of this paper thus aims to demonstrate the impact of extending the structural

ROM to compensate for large deformations in a computationally efficient manner. This en-

tails computing the quadratic mode shape components for an elastic beam element and solving

the dynamic finite element governing equations in the modal domain. Accurate calculation of

the QMS components is verified against an analytical solution. The dynamic methodology is

evaluated on a simple cantilever beam which behaves analogously to a wing that experiences

highly non-linear behaviour. The procedure will be assessed on an industrial wing undergoing

deformation caused by a representative gust. The NASA common research model wing is in-

vestigated with effective loads applied onto the beam. Various beam models are implemented

enabling comparison of the responses. Novelty in this work is attained via the accurate inclusion

of quadratic mode shape components to solve the non-linear response of a structure.
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STRUCTURAL MODEL

Structural reduced-order models (ROMs) typically used in aeroelastic analysis, constitute se-

quential finite element beam elements. These are commonly known as a beam-stick models and

provide a three-dimensional representation of a passenger aircraft wing, as seen in Fig. 1(a).

It is a modeling tool that offers a reduction in computational effort compared to a full-order

aircraft wing. The structural stiffness and mass properties are derived from a high-fidelity finite

element (FE) mesh of the aircraft wing (Fig. 1(b)) via static condensation. Each beam element

comprises two nodes with 6 degrees-of-freedom per node, describing 3 translations and 3 ro-

tations, while lumped masses account for the inertial properties of the structure. Resultantly,

the beam ROM exhibits analogous responses to the higher-fidelity structure in terms of axial,

bending and torsional behaviour.

z′

x′

y′

z

x

y

(a) Beam element wing ROM (b) Full-order FEM structure [6]

Figure 1: Common research model wing structure: full-order FEM (left) and beam ROM (right)

Governing equations

The beam element response is governed by Timoshenko beam assumptions which incorporate

shear effects and rotary inertia. The governing equations are derived by computing the sum-

mation of forces and moments on an infinitesimal Timoshenko beam element, as per Fig. 2.

Additionally, elasticity principles, which states that the stresses on an element face should be

statically equivalent to the components of the moment and shear force acting upon it, enable

completion of the governing equations.

z

x

θ

γ duz

dx

duz

∂x

Deformed beam plane

Figure 2: Infinitesimal Timoshenko beam element kinematics during bending

The transient governing equations may thus be stated as follows:

∂

∂x

(

EI
∂θ

∂x

)

+ κAG

(

∂uz(x, t)

∂x
− θ

)

− ρI
∂2θ

∂t2
= 0 (1)

∂

∂x

[

κAG

(

∂uz(x, t)

∂x
− θ

)]

+ q(x, t)− ρA
∂2uz(x, t)

∂t2
= 0 (2)
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where E, I , A and G represents the elastic modulus, area moment of inertia, area and shear

modulus of the beam, respectively. The density and shear correction factor is denoted by ρ and

κ. The unknown variables under investigation include the vertical displacement, uz, and the

rotation of a beam plane, θ. Additionally, the translation and torsional balance reads:

∂

∂x

[

AE

(

∂ux(x, t)

∂x

)]

+ b(x, t) = 0 (3)

∂

∂x

[

GJ

(

∂ψ(x, t)

∂x

)]

+ T (x, t) = 0 (4)

Here ux(x, t) is the axial displacement and ψ(x, t) the angular displacement while the axial and

torsional forces are defined as b(x, t) and T (x, t). These governing equations are discretised

via the finite element method by deploying appropriate shape functions to interpolate the dis-

placement within each element. Accordingly, cubic, hermitian shape functions offer accurate

representation of the transverse displacement and rotation at the beam nodes. These variables

are interpolated in terms of so-called natural coordinates, ξ, which run along the beam length

as:

Nw1 =
1

4
(1− ξ)2 (2 + ξ) Nw2 =

1

4
(1 + ξ)2 (2− ξ)

Nθ1 =
l

8
(1− ξ)2 (1 + ξ) Nθ2 =

l

8
(1 + ξ)2 (1− ξ)

(5)

Linear shape functions are selected to map the axial and torsional variables along the beam with

sufficient accuracy, as:

Na = Nt =

[

1

2
(1− ξ)

1

2
(1 + ξ)

]

(6)

Upon construction of the global governing equations, by summing the individual element con-

tributions, the discrete governing equations is stated as:

MÜ+CU̇+KU = F (7)

Here M, K and C is the mass, stiffness and damping matrix respectively. The nodal displace-

ment, velocity and acceleration vectors are represented by U, U̇ and Ü. To enable rapid solu-

tion, the time-domain system of equations (Eq. (7)) may be transcribed to the modal form. An

eigen-analysis procedure is executed to extract the primary eigen-vectors (mode shapes) that

enables the shift to the alternate reference frame. Subsequently, the governing equations are

multiplied by a smaller set of linear eigen-vectors, as demonstrated in Eq. (8). This produces a

set of decoupled equations of motion in terms of the generalised coordinate, q.

ΦTMÜΦ+ ΦTCU̇Φ + ΦTKUΦ = ΦTF (8)

q̈ + 2ζq̇+ ω2q = f (9)

Here, Φ denotes the matrix of primary eigen-vectors while ω and ζ is the natural frequency

of vibration and damping ratio, respectively. The subsequent transient analysis is solved via

the implicit Newmark method due to its second-order accuracy and stability characteristics [7].

However, prior to dynamic analysis the damping matrix, C, is required. For this purpose,

Rayleigh proportional damping is utilised due to its ability to preserve the orthogonality of the

modes of vibration. The damping matrix is therefore represented as a linear combination of the

mass and stiffness matrix, as seen in Eq. (10). Additionally, proportional damping assumes that

the eigen-vectors, φi, are orthogonal to the damping matrix, as shown in Eq. (11).

C = αM+ βK (10)
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φT
i Cφj = 2ωiζiδij (11)

The scalar coefficients α and β are derived from the orthogonality of the damping matrix, by

substituting Eq. (10) into Eq. (11). The coefficients are thus determined from the specified

modal damping ratios ζ1 and ζ2, which correspond to the first and second modes respectively.

Damping is a phenomenon which should be applied so as to describe the physics specific to a

particular structure. Taking cognisance of this, a minimum damping of 2% is required, which

translates to ζ1 = ζ2 = 0.02. Subsequent to solution of generalised coordinates, the linear

time-domain response is computed by multiplication with linear mode shapes, as follows:

U(x, t) =
∑

i

qiφi (12)

Extending it to the geometrically non-linear regime is enacted by including the quadratic mode

shape components, Gij , into the transformation to the time-domain, as per Eq. (13) [8]. The

quadratic mode shape components are generally calculated from multiple non-linear static anal-

yses. However, due to the computational cost implications of such an endeavour, a methodology

was proposed that employs the linear eigen-vectors to produce accurate quadratic mode shape

components for truss elements [9]. The authors of this paper have extended on this approach,

thus enabling extraction of QMS components for elastic beam elements. This novel work of-

fers marked improvements in accuracy of the structural transient response when compared to

existing linear models. Moreover, minimal additional complexity or computational overhead is

generated during the analysis.

U(x, t) =
∑

i

qiφi +
∑

i

∑

j

qiqjGij (13)

Quadratic mode shape components

Applying linear modal methods to dynamic analysis cause the endpoints of a beam element to

translate in a straight line during deformation. The limitation of linear kinematics produces a

linear trajectory of the endpoints under rotation, as demonstrated by the red line in Fig. 3. This

results in a non-physical extension of the element. The derivation of the quadratic beam mode

shape thus aims to compensate for the artificial stretching. This would result in a trajectory

closer to the green, curved line in the figure.

Figure 3: Beam tip trajectory due to rotation via linear (red) and non-linear analysis (green)
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The process to compute the QMS components of an elastic beam element may be summarised

as follows:

• Account for the stretching of a node relative to a reference point in each mode by ap-

pending a quadratic term containing the quadratic mode shape components. This may be

computed accordingly as:

sn = qi
(

u
e,2
i − u

e,1
i

)

.le/l
2

e +
1

2
q2iR

2

ele + q2i
(

G
e,2
ij −G

e,1
ij

)

.le/l
2

e (14)

where le denotes the element length vector and Re is the element rotation matrix in a

mode shape. Moreover, u
e,n
i symbolises the displacement of node n in element e for a

specific mode, i.
1. Place a reference point, Pr, at the midpoint of the beam element in a specific de-

formed modal orientation.

2. Determine the higher-order rotation of an element due to each mode shape

Ri
e = le ×

(

u
e,2
i − u

e,1
i

)

/l2e (15)

3. Calculate the artificial stretching at each node due to the element’s rotation

sn =
1

2

[

Ri
×

(

Rj
× dn

)

+Rj
×
(

Ri
× dn

)]

(16)

Here, dn denotes the vector from the reference point, Pr, to the beam element end-

node.

• Multiply the higher-order stretching for that mode contribution by the element’s local

stiffness matrix, Kl, to compute an associated force.

fn = unKl (17)

Performing a summation of forces over the nodes results in a linear static problem. Ad-

ditionally, a Lagrange multiplier, λ, is included into the force summation because the

system of equations may be solved via partial inversion as follows:

F = KGij + λKφi (18)

• Ensure orthogonality is conserved between the linear and quadratic mode shapes with

respect to the stiffness matrix as follows:

φT
i [K]Gij = 0 (19)

Solving Eq. (18) and Eq. (19) simultaneously for each mode combination yields the quadratic

mode shape vector.
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EVALUATION AND VERIFICATION

Analytical solution

Employing the aforementioned algorithm produces a QMS vector, Gij , due to a combination

of 2 linear mode shape pairs, φi and φj . This vector contains components that compensate for

the stretching of the element in each mode. Therefore, it contains the QMS component that

represents the horizontal deflection, △x, induced during non-linear deformations, as seen in

Fig. 4. These components are verified against an analytical expression for the lateral deflection,

as illustrated in Eq. (20) [8]. The axial displacement, △x, preserves the length of the structure

ensuring a geometrically non-linear response is produced. The complex cantilever mode shape

(Eq. (21)) and its spatial derivative is denoted by φi and φ
′

i, respectively. The product of λl
refers to the first 4 characteristic natural frequencies of the beam.

△x

uz

Figure 4: Undeformed and non-linear deformed beam configurations under tip loading

Gij = −
1

2

∫ l

0

(

φ
′

iφ
′

j

)

dx = −△x (20)

φi = sin (λx)− sinh (λx) + αn (cosh (λx)− cos (λx)) (21)

αn =
sin (λl) + sinh (λl)

cos (λl) + cosh (λl)
(22)

λl = 1.875; 4.694; 7.8548; 10.9955 (23)

The beam element properties are listed as follows: elastic modulus of 200 GPa, density of

7800 kg/m3
, length of 20 m and a cross-sectional area of 7.854× 10−5 m2. The beam structure

is compared against a cantilever truss network (Fig. 5(a)) with the same properties, yet the beam

consists of 66 degrees-of-freedom (dofs) while the truss network comprises of 164 dofs.

z

x

(a) Cantilever truss network configuration
(b) Beam cantilever configuration

Figure 5: Cantilever configurations for comparison: truss network (left) and beam structure (right)

The first 3 linear mode combinations are utilised to compare the QMS components for the

beam and truss cantilever configurations against the analytical results, as shown in Table 1.

Even though the beam structure contains over 50% fewer dofs, the beam configuration provides

greater accuracy compared to the truss network. This result proves that the extension of the

methodology to beam elements is accurate. Consequently, the aim is to ascertain the validity of

QMS components in non-linear transient analysis.
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Mode contributions
Analytical

Truss Structure Beam Structure

i j Numerical % error Numerical % error

1 1 -0.02905 -0.02887 0.62 -0.02904 0.01

1 2 -0.04612 -0.04683 1.53 -0.04612 0.00

1 3 -0.02463 -0.02242 9.01 -0.02463 0.00

2 2 -0.20261 -0.21217 4.72 -0.20246 0.07

2 3 -0.13970 -0.14268 2.13 -0.13970 0.00

3 3 -0.48312 -0.54488 12.78 -0.48193 0.25

Table 1: Comparison of QMS components of truss and beam structures to analytical

Non-linear transient analysis

The non-linear modal methodology is assessed against a geometrically non-linear time-domain

model computed by the commercial code, MSC Nastran. The beam is excited by a constant

vertical tip force that is large enough to invoke non-linear deformations viz., F = 10kN . This

corresponds to a normalised load factor of κ = FL3

EI
= 1.0 as illustrated in Fig. 6(b) (red cross).

The figure plots the normalised load factors vs. deflection ratio for geometrically linear and

non-linear cantilever beams (Fig. 6(a)) due to dynamic loading conditions. A deflection ratio

of uz

l
≈ 0.4 is found to be sufficient for valid non-linear comparisons. Structural damping is

neglected and out-of-plane displacements (z-displacements) remain unaffected.

z
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F

(a) Transient analysis beam configuration
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(b) Graph of load parameter vs deflection ratio

Figure 6: Boundary conditions for transient analysis (left) and extent of load applied onto beam structure (right)

The dynamic response of the beam is computed via the proposed modal procedure by including

the linear and quadratic mode shape components, as per Eq. (13). It was found that extend-

ing the linear modal analysis to include quadratic mode shapes in elastic elements requires

minimal additional computational effort. In contrast, Nastran currently employs a high-fidelity

approach for non-linear dynamic analysis which computes the structural response via the New-

ton Raphson method [10]. This procedure is costly due to it calculating the stiffness matrix

at each iteration. Comparison of the beam tip displacement computed via linear modes, QMS

components and non-linear time-domain is illustrated in Fig. 7.
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Figure 7: Comparison of non-linear dynamic response of beam tip via various analysis methods

As can be seen in Fig. 7, the QMS analysis provides an accurate approximation to the non-

linear Nastran solution in both x− and y−directions. The difference between the linear and

non-linear case is seen in the movement of the beam tip toward the fixed constraint. Existence

of x−displacements as the beam deflection increases proves that a spatial non-linear transient

response is present. The amplitude provides good correspondence nonetheless with the maxi-

mum peak-to-peak error being 7% for a time-independent solution.

(a) Linear beam at maximum displacement (b) Non-linear beam at maximum displacement

Figure 8: Linear (left) and non-linear (right) dynamic response at t = 3sec (unscaled displacement)

Animation snapshots of the linear and non-linear overall beam response is shown in Figs. 8(a)

and 8(b). The linear structure beam tip moves in a straight vertical line (red line), resulting in

element stretching. In contrast, the QMS non-linear analysis allows the beam tip to move in

a parabolic locus (as shown by the green curve) which preserves the beam length to a much

greater degree. A comparison between the change in length of the linear and the non-linear

analysis is shown in Fig. 9. The QMS non-linear solution, with an extension error of only

0.4%, provides a significant improvement to the linear analysis, which bears an error of 6.3%.
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Figure 9: Comparison of change in cantilever beam length between linear and QMS non-linear analyses

Industrial application

The developed non-linear modeling technology is next applied to a structural ROM of an actual

aircraft wing for further verification. For this purpose, the NASA (CRM) [6] wing is employed.

The full order FE model is depicted in Fig. 1(b). Standard static-condensation produces a

complex structure, thus a manual condensation process is performed to extract an analogous

beam element with properties at span-wise sections1. Similarly, point masses were placed at the

beam nodes to mimic the full-order model. The resulting beam ROM (Fig. 1(a)) was subjected

to a modal analysis to determine the precision of the eigen-values in comparison to the full scale

model. The values were found to be within 10% which is deemed sufficient for the purposes of

this investigation.
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Figure 10: CRM wing ROM tip force (z-direction)

Boundary conditions are applied by fully constraining the wing ROM at the wing root-fuselage

connection i.e., kink in Fig. 1(a). A vertical tip load (z-direction) is applied to the beam tip

and represents half a sinusoidal gust peaking after 1 second (Fig. 10). The load is given an

amplitude of 5× 106N to elicit large displacements. Structural damping is set to 2% of the first

two modes via Rayleigh damping (Eq. (10)). The non-linear transient response of the wing is

determined through a systematic analysis process, where the QMS components are computed

and included in the dynamic analysis (Eq. (13)).

1This was performed by Dr. R. Cook from the University of Bristol
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Figure 11: CRM wing tip displacement in local coordinates due to linear and QMS non-linear (NL) analyses

As can be seen in Fig. 11, the linear beam tip exhibits no displacements in the direction along

the beam, x
′

-direction, while the non-linear QMS result displays axial deflection. Due to the

load inducing a vertical displacement larger than 35% of the wing length, axial displacements

are expected. The out-of-plane displacements (y′-axis) arise due to the CRM wing not being

exactly on the x′-axis. These offset values, albeit slight, cause the relatively small out-of-plane

oscillation. Although it is difficult to glean the accuracy of the results via a sole comparison

to the linear solution, the length preservation of the wing is used to illustrate the improvement

in accuracy. The beam extension error resulting from linear analysis is 13.05% while the non-

linear QMS only exhibits a 2.89% error.
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Figure 12: Linear and QMS beam length change during the simulation

CONCLUSION

A robust and efficient geometrically non-linear finite element beam structure is constructed

by including quadratic mode shape components. These components, initially derived for truss

elements via linear modal analysis, are extended to and assessed on elastic beam elements.

Comparison of various element structures to the analytical non-linear eigen-vector proves that

beam elements are superior with an 11% increase in accuracy. With regards to the transient

analysis, the quadratic modal analysis of a cantilever beam ROM exhibits accurate approx-

imations to commercial software with a tip displacement amplitude error of only 7%. The

higher-order kinematics are also captured appropriately with points vibrating along a curved

path. Resultantly, the structural length is conserved up to 3 times better than the linear regime.

The methodology was successfully applied to an industrially relevant 3-dimensional wing ROM

viz., the NASA common research model wing. Overall, this methodology demonstrates drastic

improvements to current methods at a fraction of the computational effort required of high-

fidelity solvers.
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