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Nomenclature 

A = Linear dynamic matrix (contains the structural and aerodynamic model) 

AIC = Aerodynamic influence coefficient matrix 

AoA = angle of attack 

BNL = input distribution matrix 

C =damping matrix 

CLU =Matrix that connects modal displacements to outputs into the control loop 

D =Matrix that distributes the direct force effect on the outputs of the system 

DOE =Design of experiment 

DLM =Doublet lattice method 

EOM =Equation of motion 

F =Force vector 

Fa =Aerodynamic force vector 

FD =Frequency domain 

FE =Finite element 

FEM =Finite element model 

FFT =Fast Fourier transformation 

FRF =Frequency response function 

G =Spline matrix between structural and aerodynamic grids 

GC =Modal damping matrix 

GFa =Aerodynamic modal force vector 

GFext =External forces converted to modal coordinates 

GK =Modal stiffness matrix 

GM =Modal mass matrix 

GVT =Ground vibration test 

IFFT =Inverse Fast Fourier transformation 

IOM =Increased order model 

K =Stiffness matrix 

M =Mass matrix 

Mhinge =hinge moment 

Mhinge_max =Moment limit of the slider element 

M0 =hinge moment due to initial angle of attack 

NL =Non-linear 

q =Dynamic pressure 

uNL = Vector of inputs from the nonlinear block 

toff =time at which the fictitious stabilizing spring is turned on  

v =Airflow velocity 

XLU = FRF of the linear system to unit inputs from the non-linear block 

XL = Vector of linear contribution to displacements 

XNL = Vector of non-linear contribution to displacements 

xt = Vector of total modal displacements 

yL =outputs of the linear block (or inputs to the non-linear block) 

YLU(iω) =FRF outputs of to the NL block to inputs of the NL block 

YLU(t) =Impulse response of outputs of to the NL block to inputs of the NL block 

yNL =outputs of the non-linear block (or inputs to the linear block) 
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θfin =Fin angle 

θ0 =Initial fin angle (due to angle of attack)  

ξ =Modal displacement 

ϕ =Modal matrix in structural grids 

ϕa =Modal matrix in aerodynamic grids 

ω =Frequency [rad/sec] 

  

Keywords: aeroelasticity, flutter, hysteresis, structural dynamics, IOM method 

 

Abstract: This paper presents a computational and experimental study of the nonlinear 

aeroelastic response of a missile containing softening and hysteresis in the actuator of its fin. 

The aim of the work was to study the effect of the nonlinearity and the hysteresis on the 

dynamic stability of the configuration, and on the type of the obtained instability, mainly 

focusing on the question whether the oscillations would converge to a limit cycle oscillation 

(LCO) or diverge. 

The mathematical model is based on the Increased Order Model (IOM) method, implemented 

by the DYNRESP software, for the nonlinear solution. The structural model is a modal model 

calibrated vs GVT tests, and the aerodynamic model is based on an unsteady panel model. 

The nonlinearity is based on static measurements of the actuator stiffness, and is modeled in 

the study as an external non-linear feedback loop for the main linear block. 

The effect of the nonlinearity and softening and hysteresis on the onset velocity is studied 

along with the effect of the amplitude of initial conditions and an initial static angle of attack. 

Finally, some of the trends obtained in the simulations are shown in wind tunnel test results.  

 

1 INTRODUCTION 

 

In recent years, performance demands from aerospace structures grow increasingly.  This 

leads to lighter configurations with larger aspect ratio wings. Lower cost demands lead to the 

use of cheaper materials and production technologies; while on the other hand, the time to 

market shortens. These trends increase the need for more accurate simulations which can 

predict complicated phenomena, and can be used for DOE analysis, for optimization and 

decrease the amount of high cost flight tests performed.  

Numerous studies examine the effect of non-linear stiffness and damping (eg.[1],[2], [3], [4]), 

few of them deal with missile configurations and even fewer assess the effect of hysteresis on 

the aeroelastic response of structures. In many cases, the non-linearity is accompanied by a 

hysteresis in the structural response. These effects can result from preloaded joints with 

frictional connections, from non-linear material properties in polymers, from plastic strains in 

metallic structures etc. Reference.[5] analyzed a 2D airfoil with simplified hysteresis model 

and hardening effect, with qasy steady aerodynamics. Reference [6] analyzed the effects of 

hysteresis on aircraft aeroelastic response using linearization, based on the harmonic balance 

method. Reference [7] studies hysteresis in the context of flutter suppression using a tuned 

mass damper.. 

The current study presents a non-linear flutter analysis of a generic missile having nonlinear 

actuator-stiffness in of the control surface. The nonlinearity consists of structural softening 

and hysteresis. The goal of the study is to derive a computational method to model and 

analyze the effect of hysteresis on the aeroelastic response of the structure, and to study the 

effect of the hysteresis on the overall aeroelastic behavior of the system. A time marching 

analysis is conducted in modal coordinates, using the "Increased Order Model" (IOM) 

method, implemented in the Dynresp software. The IOM method has proven to be an efficient 

tool for modeling and analysis of aeroelastic systems with nonlinearities in its control 

systems, structure or aerodynamics ([8], [9], [10]). The IOM method is based on dividing the 
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model into a frequency-domain linear block and a time-domain nonlinear feedback block. The 

aerodynamic model, in this work, is based on the panel model utilized in the ZAERO code. 

The structural model consists of two parts: a linear FEM, built in Ansys and calibrated versus 

GVT results, and a nonlinear actuator model. The non-linear actuator stiffness is based on a 

static structural experiment and is modeled using Maxwell's slip model, which represents a 

softening-hysteresis system using a finite number of slider-spring elements. The basic-

linearized model and the aerodynamic model are imported into the Dynresp software, and the 

non-linear actuator model, is modeled inside the Dynresp code as a nonlinear feedback loop. 

 

2 MATHEMATICAL MODEL 

 

2.1 Studied configuration 

 

The studied configuration is a missile with four folding wings and four folding fins. The 

wings are deployed during ejection and are fixed via a locking mechanism. The fins are 

deployed in a similar way. The main difference between the wings and fins is their torsional 

rigidity. Unlike the wings that are fixed after deployment, the fins are connected to a servo 

unit. This connection is relatively soft in terms of torsion and bending of the actuator and the 

servo structure. These stiffness parameters were measured in a static test, and the actuator 

stiffness was found to be highly non-linear, containing a softening nonlinearity and a 

hysteresis. The visualizations in the paper are presented on a similar configuration to the one 

in the study. Results from the actuator stiffness test are presented in Figure 1. 
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Figure 1: Results from stiffness tests on actuators. The blue line is the result used for the simulations. 

 

2.2 The IOM method 

 

The IOM method is based on a main linear block with the nonlinear effects modeled as a NL 

feed-back loop [9]. The linear core model is represented in FD, and the NL system operates in 

time domain, where the data transfer between them is done using FFT and IFFT. The linear 

model is given in FD by 

           t NL NL extA i x B i u GF i           (1) 

Where {xt} is a vector of modal displacements, {uNL} is a vector of inputs from the nonlinear 

block, A is the dynamic matrix (contains the structural and aerodynamic models), [BNL] is the 

input distribution matrix. In case of direct force feedback, it is a matrix of the modal effect of 

the input forces. GFext are the external forces converted to modal coordinates and transferred 

to the FD via FFT. 
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The solution is based on separating the effect of the linear system and the response to the NL 

feedback loop; 

 

      t L NLx x x   (2) 

       
1

L extx A i GF i 


     (3) 

         
1

NL NL NLx A i B i u i  


         (4) 

The IOM is implemented in a five-stage procedure 

 

1. First the response of the linear baseline model to the external excitation is evaluated in 

frequency domain.  

       
1

L extx A i GF i 


     (4) 

The outputs (due to external excitation) of the linear block, which are the inputs of the 

NL block are evaluated  

            L LU L exty C i x i D i GF i              (4) 

C is a modal matrix that connects the modal displacements to outputs into the control 

loop, in physical coordinates.  D represents direct force effect (relevant only in case 

the of acceleration outputs) 

2. Then the FRF of the linear system to unit inputs from the non-linear block is 

evaluated. 

      
 

 
1

LU

NL NL NL

X

x A i B i u 


         (4) 

Therefore, the FRF outputs of to the NL block to inputs of the NL block are  

 

 

           

       

 

  
1

LU

L LU NL NL

LU NL NL

Y i

y C i x i D i u i

C i A i B i D i u i



   

    


  

          

                  
 (4) 

3. The third step is evaluation of the time domain response of the linear system to the 

external excitation, and the time domain response of the outputs to the NL blocks to 

unit inputs from the NL block by IFFT of the results of {yL} and {yLU}. 

 

4. The fourth step is evaluation of the outputs of the NL block using a time marching NL 

solution based on the inputs from the NL block and on a convolution of the outputs on 

the NL block and the time response of the linear system to them. 
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           
0

t

NL L LU NLy t y t Y t u       (4) 

5. Finally, the outputs of the NL block are converted to frequency domain by FFT, which 

enables a frequency domain calculation of the actual response of the system.  

 

 
        

       

1

NL NL NL

t L NL

x A i B i u i

x x i x i

  

 



       

 
 (4) 

The result vector is then transferred to time domain via IFFT. 

 

2.3 Structural model 

 

The linear, structural equation of motion is given by: 

 

           M X C X K X F    (4) 

where [K] and [M] are the structural stiffness and mass matrices, in our case evaluated using 

ANSYS finite element code. C is the damping matrix which is usually added in the modal 

system as modal damping. {F} is the forces vector. The solution is based on a modal 

decomposition, assuming the displacement vector in physical coordinates can be described as 

a linear superposition of the structures mode shapes. 

      X     (4) 

      1 2       (4) 

Where [ϕ] is the modes matrix, in which each column is a mode in physical coordinates, and 

{ξ} is a vector of modal displacements. 

After substitution and pre-multiplication by the modal matrix [ϕ], the EOM in modal 

coordinates is obtained: 

        [ ] [ ] [ ]GM GC GK GF      (4) 

where 

 

       
t

GM M   (50) 

       
t

GK k   (51) 

      
t

GF F  (52) 

An eigenvalue problem, neglecting the structural damping and the aerodynamic forcing term, 

is solved in the FE code. The solution yields generalized mass and stiffness matrices, the 
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Eigen frequencies, and the mode shapes. The solution is then conducted on the reduced modal 

system.  

The baseline structural model is a finite element model (FEM), created in Ansys. The body of 

the missile is represented by beam elements, representing its flexural stiffness. The fins are 

modeled with shell elements, with varying thickness. Two rotational springs represent 

connection regions in the body. The stiffness of the springs is calibrated based on a GVT test. 

In order to connect the fins at the location of the actuator, rigid beams are connected between 

the body and the location of the axis. The fins are connected to the tip of the rigid beams 

using spring elements, representing the bending and torsion stiffness of the actuator. A similar 

model is presented in Figure 2 for the sake of visualization. 

 
Figure 2: Structural model of a similar configuration 

 

 

The non-linear structural response is achieved by a fictitious, nonlinear control loop, that uses 

the fin rotations as an input and applies hinge moments as an output. The specifics on the 

nonlinear model are described in section 2.5. 

the nonlinearity in the model results from the actuator of the fins. This is also the main 

component responsible for the torsional mode of the fins. The stiffness of the fins is not 

identical, and for simplicity, only the fin with the softest actuator (which is the fin that 

flutters), is modeled nonlinearly. 

The bending stiffness of the fins and body are calibrated versus GVT tests. The body is 

calibrated by changing the stiffness of the connector-springs. The bending stiffness of the fins 

is calibrated through the spring element at the root of the fin. The torsional stiffness of the fins 

is calibrated versus the static stiffness tests conducted on the actuator. Since the actuator is 

nonlinear, the baseline model is linearized about the initial stiffness, near zero torsion.  

 

 

2.3.1 Structural model modifications using fictitious masses 

 

It has been shown (eg [11], [12]) that normal modes, obtained from a given model, can be 

used to sufficiently predict the response of a model with altered stiffness and mass 

parameters, and to predict the response of the structure to external and internal loads. 

However, if large local stiffness changes are to be made, or large local loads are to be applied 

(such as local fin stiffness or force), the model would require a large number of modes to 

catch the correct response.  Alternatively, large fictitious masses can be used to create modes 

that represent the local desired phenomena.  It has been shown in previous studies (eg. [12]), 

that modification of the model with large fictitious masses yields good accuracy of the model 

under a wide range of local structural changes and under local forces.  The fictitious masses 

are removed in the actual simulation but the mode shapes would now contain local modes that 

represent the desired effect. In addition to the fictitious mass, the stiffness of the fin is 

reduced. This spring is replaced by the non-linear element in the actual simulation 
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The accuracy of the model is examined by comparing the eigenfrequencies of the baseline 

model to those of the modified model, obtained after the fictitious masses are removed using 

the equations below, and conducting an external modal analysis using the modified and fixed 

modal model. 

  ,fixed fixed fixedeig GK GM   (50) 

        modified

T

fixedGK GK K       (51) 

        modified

T

fixedGM GM M       (52) 

∆K and ∆M are matrices containing the additional stiffness and mass in the degrees of 

freedom of the actuator. 

The comparison between the different models is presented in Table 1. It can be seen that the 

fictitious mass has only a local effect on the torsion mode of the fin and has little effect on the 

other structural modes. In addition, it is seen that adding back the stiffness and mass with the 

modified mode set, yields similar frequencies, thus indicating that the modified model is 

accurate. 

 
Table 1 modal model comparison between the modified models (the frequencies are normalized) 

 

Mode baseline Modified (fictitious 

mass + reduced 

stiffness) 

modified and 

fixed 

Fin 1 in plane bending 0.595 0.595 0.595 

Fin 2 in plane bending 0.596 0.596 0.596 

Fin 3 in plane bending 0.596 0.596 0.596 

Fin 4 in plane bending 0.600 0.600 0.600 

Wing 1 bending 0.737 0.737 0.737 

Wing 2 bending 0.748 0.748 0.748 

Wing 3 bending 0.753 0.753 0.753 

Wing 4 bending 0.767 0.767 0.767 

Fin 1 bending 0.782 0.782 0.782 

Fin 2 bending 0.816 0.817 0.816 

Fin 3 bending 0.863 0.865 0.864 

Fin 4 bending 0.912 0.934 0.919 

Body pitch bending 1.158 1.159 1.158 

Body yaw bending 1.261 1.261 1.261 

Fin 4 torsion 1.369 0.004 1.374 

Fin 2 torsion 1.642 1.635 1.635 

Fin 1 torsion 1.681 1.672 1.672 

Fin 3 torsion 1.691 1.683 1.683 
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2.4 Aerodynamic model 

 

The aerodynamic forces, in modal coordinates are given by  

 

      
t

a a aGF F  (52) 

Were [ϕa] is a matrix of the modal displacements in the aerodynamic grid and Fa is the 

aerodynamic force vector. 

The aerodynamic-force vector can be decomposed into a static, rigid component (resulting 

from the cross-section geometry and angles of attack) and an elastic component (resulting 

from the structural deflections and their time derivatives). The rigid forces have no effect on 

the stability analysis (in the linear region), and they can be ignored in the stability (flutter) 

solution. Their nonlinear effect is studied in chapter 0 and 3.5. 

    0a aF F         a a aF X F X F X    (52) 

The generalized aerodynamic forces are evaluated in frequency domain in the aeroelastic code 

(ZAERO), which uses an unsteady panel model (Zona-6). The generalized forces are given as 

a function of the modal displacements. They are evaluated per reduced-frequency as: 

         ( )
T

A a aGF i q AIC i          (52) 

The fins and body are modeled with CAERO7 and Pbody7 element, respectively. The data 

between the FEM and the aerodynamic model is transferred via spline routines, embedded in 

the Zaero software. The resultant model is expressed with frequency dependant, complex 

modal stiffness/damping matrixes 

            ( )
T T

HHQ i G q AIC i G          (52) 

Where [G] is the spline matrix, that converts the modes from the structural grfd to the 

aerodynamic grid. [AIC] is the aerodynamic influence coefficient matrix (product of ZONA 6 

method), and q is the dynamic pressure. 

For the sake of representation, a similar model to the model in the study is presented in Figure 

3. 

The linear system in frequency domain, can then be represented by  

      2

modal ( )fixed fixed d HHA i GM i GC GK q Q i                   (52) 
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Figure 3: Aerodynamic model of a similar configuration 

 

 

2.5 Non-linear block model 

 

Since the IOM method operates in the frequency domain and uses FFT to pass 

between time and frequency domain, all the structural response must decay at the end 

of the simulation (repeatability assumption of the FFT). Since the simulation is of a 

non-linear flutter, this is clearly not the case. Therefore, the simulation is divided into 

two time zones. the first one is the actual simulation whereas the second one is a time 

frame in which the model is stabilized using a fictitious spring element that causes the 

response to decay. In addition, the main linear block must be stable for the initial 

linear simulation to converge (part of the IOM algorithm). Therefore, the fictitious 

spring should be applied on the linear model.  

The following demands are achieved with the non-linear system presented in Figure 4. 

The linear core of the system is the plant model with reduction of the fictitious mass 

described in section 2.3.1 (using “conm” element), and addition of a fictitious spring 

(using “celas” element). The linear block is connected to a “control system” with the 

rotations as the output, and the fin moments as input. Besides the actual actuator 

nonlinearity, it contains a switch element that at a certain time “turns off” the whole 

non-linear block and lets the system decay to zero. It contains a NL gain element that 

applies an opposite force to the linear fictitious spring, thus canceling its effect in the 

first-time zone of the simulation. The result is a model that has the desired non-

linearity in the first time-zone, is stable in the second, and has a stable linear core. This 

system (without the actual physical non-linearity) is presented in Figure 4, and is 

referred to, in the upcoming chapters as the NL plant. 
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Figure 4: Block diagram of the NL plant system (dynamic system with necessary IOM method modifications) 

 

 

2.5.1 Softening Nonlinearity 

 

A softening nonlinearity (without hysteresis) was modeled using dynresp’s NLGAIN 

command, which reflects a nonlinear control gain. The input is the hinge rotation, and the 

output is the hinge moment, 

 

  fin finM Gain     (52) 

where, Gain(θ) is supplied in a tabular form and an interpulation is used between the given 

values. 

The implementation of the nonlinear softening-only model in the overall model is presented 

in the block diagram in Figure 5 

 

 
Figure 5: Block diagram of the softening NL model 
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2.5.2 Hysteresis 

 

A various number of modeling techniques can be found in the literature. Some of them are 

well summarized in [13]. In the current study, The hysteresis was modeled using a Maxwell’s 

slip model [13], where the hysteresis is modeled with a multitude on slider-spring elements 

connected parallelly. A single slider-spring element formulation yields a bi-linear hysteresis 

behavior. A multitude of slider-spring elements can be designed to yield a mode complex 

behavior. As the slider element is not implemented inside the Dynresp software, it was 

implemented using a user’s function. The mathematical formulation of the slider-spring 

element was formulated in incremental form 

 

   

   

   

 

 

_ max

_ max _ max

1

1 , 1

, 1

fin fin fin

hinge hinge fin hinge fin hinge

hinge fin hinge hinge fin hinge

d i i

M i M i k d M i k d M

M i sign d M M i k d M

  

 

 

  

        


     

 (52) 

visualizations of the slider-spring element and its behavior, for a case of a single element or 

multiple elements are presented in Figure 6.  

 

 
Figure 6: Visual representation of Maxwell's slip theory. Single slider- top, multiple sliders- bottom 

 

A comparison between measured data and the nonlinear models (softening and softening + 

hysteresis) is presented in Figure 7, showing good agreement between the structural test, the 

"nonlinearity-only" model and the "nonlinearity and hysteresis" model. 
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Figure 7: Comparison of obtained models to experimental results 

The implementation of the hysteresis model in the overall model is presented in the block 

diagram in Figure 8. 

 
Figure 8: Block diagram of the softening NL model 

 

 

2.5.3 Hysteresis + initial AoA 

 

Since the model is linear except for the actuator model, an initial AoA would have no 

aeroelastic effect on the oscillation other than the effect of an initial load on the nonlinear 

element. This effect would be a shift in the initial conditions on the stiffness behavior. This is 

modeled by adding an initial displacement to the signal, and subtracting the resultant force. 

the block diagram of this model is presented in Figure 9. 
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Figure 9: Block diagram of the softening NL model with initial AoA effect 

 

  

3 ANALYSIS AND RESULTS 

 

3.1 Flutter analysis to baseline model 

 

A flutter analysis for the baseline model, (assuming the initial, high stiffness) was conducted 

in ZARO software, using the g method. The v-g plot obtained from the analysis is presented 

in Figure 10. The flutter mechanism obtained is a typical bending-torsion flutter, of the fin, 

where the bending mode of the fin, and the torsion mode is a “rigid” movement of the fin 

about its axis due to the actuator stiffness. The fin that flutters first is the one with the highest 

bending and the lowest torsion frequencies. For the sake of simplicity, in the non-linear 

studies, it was assumed that only the fluttering fin is nonlinear. 
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Figure 10: Flutter analysis 

 

3.2 Response to Initial excitation 

 

Unlike the linear analysis, where a stability analysis is conducted using the g method, in the 

nonlinear case, a time marching solution is required. An initial perturbation is introduced into 

the system in the form of an external fin moment impulse with a 1-cosine profile (using the 

DFORCE command). One of the main effects studied is the dependency of the response on 

the amplitude of the initial excitation. Although this is not the exact load history of the fin 

(which is characterized mainly by control commands and atmospheric turbulence), This gives 

an insight on the effect of the initial conditions and the excitation levels on the response. The 

length of the impulse is half a period of the flutter frequency. The simulation was first 

conducted on a linearized model, above and below the flutter boundary obtained from the g-

method analysis. As expected, the solution converged below the flutter velocity and a 

divergent oscillation was obtained above it. 

 

3.3 Softening only results 

 

To “separate” the effect of the hysteresis from that of the non-linear softening the first set of 

simulations was conducted on a model with a nonlinear softening but without the hysteresis, 

based on the model described in section 2.5.1. To verify the nonlinear model, the output of the 

nonlinear system (i.e. the moment) is plotted as a function of the input of the nonlinear system 

(i.e. The fin rotation). This is presented in Figure 11,and as expected, the fits the stiffness plot 

of the actuator.  
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Figure 11: Hinge moment vs. fin rotation (stiffness plot obtained from analysis) softening only case 

 

The simulation was conducted with various amplitudes of initial excitation impulse, and at 

various velocities below the linear flutter velocity, the system may reach a divergent 

oscillation, given sufficiently large IC. Therefore, flutter may occur under the linear flutter 

velocity. The flutter velocity as a function of the initial excitation is presented in Figure 17 in 

section 3.6. Sample time history results at a certain velocity, under and above the critical load, 

are presented in Figure 12. Similar trends were obtained in previous studied, where the 

softening led to earlier onset ([2][3],[4]). 
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Figure 12: Time history of hinge rotations with IC below critical (left) and above critical (right), softening only 

case 

 

3.4 Softening and hysteresis 

 

Similarly, to the case of “softening only”, the simulation was conducted with various 

amplitudes of initial excitation impulse, and at different velocities. As in the case without the 

hysteresis, the results showed that at a given velocity, a threshold of initial load exists, 

beneath which the system would converge and above which it wouldn’t. The flutter velocity 

as a function of the initial excitation is presented in Figure 17 in section 3.6. Figure 13 

presents the response of the non-linear spring, during the two analyses, at the same velocity, 

but with different amplitudes of initial load (above and below the threshold). The non-linear 

model acts as expected. The stiffness is similar to the experimental stiffness plot, and 

hysteresis is obtained. Note that unlike the case of “softening only”, we now obtain additional 

dissipation due to the hysteresis. Integrating the work done over an oscillation cycle, would 

give us a non-zero result. Figure 14 shows the time history of the fin angle at the same two 
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simulations. In the converging case, several nonlinear cycles are obtained but the amplitude 

decreases until eventually, the system oscillates linearly, on the first branch of the stiffness 

plot. However, note that due to the hysteresis cycles the equilibrium point of the actuator is 

shifted by 0.6 degrees, which may influence the control system of the configuration. In the 

non-converging solution, the amplitude grows until the system is basically governed by the 

soft region of the stiffness plot. 
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Figure 13: Hinge moment vs. fin rotation (stiffness plot obtained from analysis) with IC below critical (left) and 

above critical (right), hysteresis case 
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Figure 14: Time history of hinge rotations with IC below critical (left) and above critical (right) , hysteresis case 

 

3.5 Effect of initial AoA 

 

This case was meant to examine the effect of initial “static” load on the behavior of the 

system, and thus the effect of maneuver, and trim conditions. The simulations were conducted 

under an initial moment of 0.16 M0 and 0.8 M0 (where M0 is the maximum designed static 

moment of the fin). The general trend obtained in the previously studied cases is obtained in 

this analysis as well. At a given velocity and initial load, a threshold of initial excitation 

exists, above which the system cannot converge. The flutter velocity as a function of the 

initial excitation is presented in Figure 17.  The response of the non-linear spring, during two 

analyses conducted at the same velocity, and initial moment, but with different initial 

excitation level (above and beneath stability threshold) is presented in Figure 15. Note that the 

results present only the addition in moment and rotation. i.e the initial moment is not seen. 

However, at the beginning of the analysis, the stiffness change occurs very early (at a small 

addition of moment) due to the initial load. Figure 16 shows the time history of the fin angle 
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at the same two simulations. Besides the non-symmetry of the stiffness (due to the initial 

load), the general behavior of the system is similar to those without initial moment.  
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Figure 15: Hinge moment vs. fin rotation (stiffness plot obtained from analysis) with IC below critical (left) and 

above critical (right), hysteresis + initial AoA case 
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Figure 16: Time history of hinge rotations with IC below critical (left) and above critical (right), hysteresis 

+initial AoA case 

 

3.6 Analysis summary 

 

Examining  Figure 17 which summarizes the results of the analyses, the following 

conclusions can be reached: 

1. In all examined cases, no LCO was obtained. 

2. The flutter velocity in all cases depends on the amplitude of the initial excitation.  

3. In general, hysteresis suppresses the flutter. For a given initial excitation, the flutter 

velocity of the simulations including the hysteresis, is higher. This probably results 

from the additional energy dissipation caused by the hysteresis. 

4. An initial static moment (non-symmetric initial conditions) decreases the flutter 

velocity. For a given initial excitation, the flutter velocity decreases with increase in 

the static moment. An intuitive explanation to this phenomenon can be given by the 

fact that under initial static moment, a smaller excitation has to be applied in order for 

the actuator to reach its soft region, in which the (linearized) system is unstable. 
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Figure 17: Flutter velocity vs. amplitude of initial perturbation in different analyses 

 

4 EXPERIMENTAL FINDINGS 

 

Wind tunnel tests have been conducted for the given configuration. The tests were not aimed 

at studying the non-linear response of the system, but rather the effects of different parameters 

on the systems. However, the results of a single experiment are presented here as the effect of 

the nonlinearity can be seen in them. 

The fins were instrumented with strain gauges on the root, connected in a full Wheatstone 

bridge, to measure the bending moments at the root of the fins. The experiment was 

conducted in a constant velocity, slightly beneath the flutter speed. Once the wind tunnel was 

stabilized on the desired velocity, a slow delta sweep (a sweep in the fin angles) was 

conducted. (0.3 Hz, saw tooth). In addition to the delta sweep, the AoA was changed in the 

middle of the experiment. The initial excitation is obtained by the wind tunnel turbulence.  

The measurements of the strain gauges are presented in Figure 18. The slow, triangle shape 

change in the strains indicates the change in the fin rotation (change in AoA leads to change 

in load on the fins and in increase in the strains). The high frequency vibrations are the elastic 

vibrations of the fin.  The wind tunnel is turned on, and the desired velocity is reached, 

without stability loss. However, when the delta sweep starts, and a certain fin load is reached, 

the system loses stability and starts oscillating in high amplitudes, until the actuator is 

severely damaged. The result validates the dependency of the dynamic stability on the on the 

initial moment as was obtained in section 3.5, showing that indeed, a system that was stable 

under a given velocity and excitation loses its stability when the fin moment is increased. 
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Figure 18: Strain gauge results from wind tunnel experiment 

 

5 SUMMARY AND CONCLUSIONS 

 

The study showed an analysis for a missile fin with nonlinearity and hysteresis in the actuator 

stiffness. The solution was conducted using the IOM method, implemented in the DYNRESP 

software. The implemented method offered a fast calculation scheme, that served for 

parametric studies, and multiple simulations with good accuracy and good representation of 

the main nonlinear effects, on one hand, and demanded little computational resources on the 

other hand. The nonlinearity was modeled using an incremental approach of Maxwell’s slip 

theory.  

The simulation showed that the softening nonlinearity creates a dependence of the flutter 

velocity on initial conditions, and high initial perturbation can lead to a lower flutter velocity 

than the linear flutter velocity. The hysteresis, on the other hand dampens the system, and 

lowers the flutter velocity, for a given initial perturbation. Finally, the effect of initial load on 

the fin was examined showing that an initial load on the fin decreases the flutter velocity for a 

given perturbation amplitude. 
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