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Abstract: This contribution deals with Limit Cycle Oscillations (LCO), which are sustained periodic 

oscillations due to nonlinearities. The study has been carried out in close collaboration between DLR 

and ONERA, in the framework of the High Fidelity Aeroelastic Simulation (HIFAS) project. The 

investigations are related to the prediction of 3D LCO on the flexible “Aerostabil” backward-swept 

wing. For this 3D configuration, the DLR has experimentally simulated LCO in the TWG wind tunnel 

in Göttingen and has also numerically predicted it using CFD-CSM coupled simulations. We present 

the results obtained with the elsA code developed at ONERA for these experimental cases. 

The study of the nonlinear behavior of the first harmonic of the generalized aeroelastic forces 

(GAF) as a function of the amplitude shows the existence of a mode for which the aeroelastic 

force goes from stable to unstable. Through dynamic fluid-structure coupling computations on 

this mode, with the fluid modeled by averaged Navier Stokes equations and the Menter k-

omega turbulence model, we find the existence of limit cycle oscillations. A nonlinear 

reduced model of the aeroelastic force is then presented. This model is constructed from the 

results obtained for the first harmonic of the aeroelastic forces computed by forced excitation 

simulating different frequencies and different excitation amplitudes. Comparisons between 

the fluid calculations and the dynamic coupling simulation using the nonlinear reduced model 

aeroelastic forces are presented. The occurrence of LCO is also investigated for the NLR 7301 

two-dimensional airfoil. As for the 3D Aerostabil wing, a nonlinear reduced model for the first 

harmonic of the GAF is built. The fluid-structure simulations performed with this model confirms the 

existence of LCO and the capability of predicting the LCO phenomenon with a single DOF system.  

 

1 INTRODUCTION 

 

In this article, we are interested in Limit Cycle Oscillations (LCO), which are sustained 

periodic oscillations due here to fluid nonlinearities, the structure itself being considered 

linear. LCO have been a chronic problem on various combat aircrafts. We can mention, in 

particular, the work on the F16 [1].  

In the years 2001/2002, the DLR investigated experimentally a flexible wing [2], called 

"Aerostabil", in the TWG wind tunnel in Göttingen. LCO have been obtained in the wind 

tunnel operation domain. Fluid-structure coupling simulations enabling LCO to be found were 

carried out with the TAU code [3]. Various turbulence models were tested and LCO were 
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obtained using the Menter k-ω model. To obtain these LCO numerically, the boundary layers 

of the side walls, floor and ceiling had to be introduced. Given that the TWG wind tunnel has 

adjustable high and low walls, the shape of these walls was also taken into account. The DLR 

showed that LCO could be simulated numerically only with the first mode (first bending).  

In the context of the collaboration with the DLR on the HIFAS project, aeroelastic 

simulations were conducted at ONERA on this LCO problem with the elsA code [4], using 

averaged Navier Stokes equations associated with the Menter k-ω turbulence model. In a first 

section we present the results obtained with the elsA code and in a second section we present 

the construction of a nonlinear reduced model and the simulation of the LCO with this model. 

In a third section we analyze the occurrence of LCO in the case of the NLR 7301 two-

dimensional airfoil. We show that the LCO can be simulated numerically with only one mode. 

 

2 LCO SIMULATION 

 

In order to evaluate the numerical tools used for non-linear aeroelastic simulations and to 

study in close collaboration interesting aeroelastic phenomena, the case of the Aerostabil 

wing has been investigated both by DLR and ONERA.   

Fluid-structure coupling simulations carried out by the DLR with the TAU code enabled to 

predict LCO [3] and to obtain a good agreement between experimental and numerical results 

(Figure 1). A mapping of the shutdown total pressure and Mach number was also performed, 

to reveal the areas in which LCO occurred (Figure 2). 

 

 
Figure 1: Time evolution of the wing tip displacement – Comparison between experimental and numerical 

solutions obtained by the DLR.  

 

 
Figure 2: Stable and unstable areas of the Aerostabil wing in respect of Mach number and shutdown total 

pressure, at an angle of attack of 2.7°. 

 

On ONERA side, computations have been performed with the CFD code elsA [4].  
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The LCO case discussed is defined by the following conditions: a Mach number of 0.865, 

incidence of 2.69°, upstream stagnation total pressure of 64428.8 Pa, and stagnation total 

temperature of 311.5 K. The Mach number is used to set the counter-pressure to be imposed 

downstream, as well as the initial field. 

The Aerostabil wing has a wingspan of 0.610 m, a wing sweep angle of 32 degrees, and a 

chord of 0.2417 m at the root and of 0.0991m at the tip of the wing. The wing CAD is given 

as an IGES file describing the jig shape. The incidence is taken into account by rotating the 

wing about an axis transverse to the wind tunnel. A structured mesh of about 5 million cells 

has been built using the ICEM software and the wing and wind tunnel wall meshes were 

generated by creating O-blocks around these surfaces. The boundary layer mesh is obtained 

by refining it in the direction of the thickness. The mesh produced therefore includes the 

modelling of the boundary layers of the floor, ceiling and vertical walls of the tunnel. The 

shapes of the upper and lower walls (Figure 3) of the TWG wind tunnel are also introduced 

into the mesh.  

 

  

Figure 3: Mesh around the Aerostabil wing (left) and wind tunnel ceiling (ZU) and floor (ZL) shapes (right). 

 

This mesh provides the correct stationary pressure field up to the wing root, as shown by the 

good agreement with the DLR results presented in Figure 4.  

 

   

Figure 4: Stationary pressure distribution from CFD computations: elsA - ONERA code (left hand-side) vs TAU 

- DLR code (right hand-side). 

 

The aeroelastic subsystem of the elsA code enables high-fidelity fluid-structure coupling 

simulations, ranging from non-linear and linearized harmonic forced motion computations, to 

static and dynamic coupling simulations in the time-domain with different structural 

approaches.  

During fluid-structure coupling simulations, the flow and the structure computations are run 

separately, and a coupled solution is obtained by exchanging information at the fluid-structure 

interface. Thus, the fluid-structure coupling methodology consists in different steps:  

elsA code TAU code 
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-  the flow solution is first computed over a given number of time steps, 

-  the aerodynamic loads are then computed at the center of each wall cell interface and 

transformed into an equivalent field on the structural nodes, ensuring a global  

conservation of forces and moments on the two grids, 

-  the mechanical equations are solved using either a reduced flexibility matrix of the 

structure or a modal approach, 

-  the structural displacements are transferred back onto the aerodynamic surface mesh 

using interpolation/fitting techniques, 

-  the aerodynamic mesh is finally deformed and updated. Two mesh deformation 

techniques are available in elsA. One is based on a structural linear analogy, and the 

second one is based on a mixed analytical/transfinite interpolation technique.  

These steps are repeated until convergence of both flow and structural solutions. 

 

In order to take into account the structural flexibility, the DLR has provided us with a modal 

base containing the first 10 flexible modes. Since this base is insufficient to represent the 

static deformations, we introduce the static shape calculated by the DLR (Figure 5). The latter 

was deduced from the numerical result obtained by the DLR, taking into account the true 

structural model. A set of 1000 points distributed over the wing lower and upper surfaces was 

extracted. Smoothing was carried out with the infinite volume method (generalization of the 

infinite plate method). These points were projected on the non-deformed wing. The 

displacement along the z direction corresponds to the static deformation to be introduced and 

static fluid-structure coupling simulations can then be performed.  

 

 

Figure 5: Smoothing of the static deformation calculated by the DLR with the TAU code. 

 

Figure 6 shows the very good agreement between the deformed wing obtained with the elsA 

code and the TAU code for three different sections along the wing span. The comparison of 

the pressure evolution on the three sections shows also a good agreement except for the part 

related to the trailing edge where intermediate shocks are obtained. 

 

Accelerometer 
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Figure 6: Static fluid-structure coupling simulations: comparison between the pressure distributions on three 

sections along the wing span, obtained by the TAU - DLR code, and by the elsA - ONERA code. The deformed 

wing is also shown for each section. 

 

A dynamic calculation is performed taking into account the first bending mode of the wing 

(Figure 7) and using the dual time step method. At each time step, a stationary problem is 

solved at the time (n+1)∆t using a pseudo-unsteady method. The implicit phase takes into 

account the time term in (3 ∆W)/(2 ∆t). This allows a CFL number of 10
10

 to be used 

achieving convergence at each time step of the relative residuals. This property remains true 

as long as the airflows are not too much separated. The time sizing of the calculation has been 

set in order to obtain four seconds of physical time. The LCO frequency being around 50 Hz, 

200 periods are simulated with  64 time steps per period. At each time step, 2 structural 

iterations are performed. With the sizing used to calibrate the structural modes and structural 

matrices, the initial condition is defined by .  

 

 

Figure 7: First bending mode of the Aerostabil wing. 

 

In Figure 8, we show the displacement obtained by the accelerometer as positioned in Figure 

5. The Prony analysis of the displacement calculated at this sensor gives a frequency of 51.34 

Hz and an amplitude of 5 mm. This result is very similar to the experimental data obtained for 

which a displacement of 5 mm and a frequency of 47 Hz were observed.  
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Figure 8: LCO obtained  with the elsA code for the initial condition . 

 

A new dynamic coupling calculation is performed over 1 second with the initial condition 

. This means that, at the start of the simulation, the  amplitude is greater than that 

of the limit cycle. The generalized coordinate decreases to stabilize and to converge toward 

the amplitude of the limit cycle (Figure 9). 

 

 

Figure 9: LCO obtained with the elsA code for the initial condition  

 

In Figure 10, a visualization of the pressure field evolution for the section y = 0.478 m 

(corresponding to the ordinate position of the sensor) shows the presence of two shocks. The 

upstream shock disappears to blend with the second and then reforms. The LCO phenomenon 

is due to this particular behavior. 
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Figure 10: Evolution of the pressure field, calculated with the elsA code on a cycle for the section y = 0.478. 

 

The pressure field shocks observed in Figure 10 can be explained by calculating the 

generalized aerodynamic force (GAF) of the system. The first harmonic of the GAF is 

expressed as: 

 

 







dnp

V

GAF
1

2

2

1

1
     (1) 

 

where  is the first harmonic of the pressure (complex number),  is the normal, and  is the 

first mode. The imaginary part of the GAF density (D) shown in Figure 11 is written as: 

 

 npD )Im(
1

     (2) 

 

The stable zones are defined by D> 0 and unstable areas are defined by D <0. It is mainly the 

area at the end of the wing upper surface that is unstable. 

 

  

  

t = 0 t = T/4 

t = T/2 t = 3T/4 
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Figure 11: Imaginary part of the density D of the GAF obtained with the elsA code. 

 

The results presented in this section show that dynamic fluid-structure coupling simulations 

carried out with the elsA code are able to predict the LCO phenomenon observed 

experimentally on the Aerostabil wing. 

In the next section, a reduced model of the GAF is built and its ability of predicting LCO is 

investigated.  

 

3 REDUCED MODEL 

 

Given that the structure is linear, the occurrence of LCO can only be due to non-linearities 

associated with aerodynamic forces. Aeroelastic phenomena are usually linked to the first 

pressure harmonic and we can show that the first harmonic of the GAF, obtained by 

simulating a harmonic forced movement of the first mode, depends non-linearly on the 

amplitude. The GAF are thus calculated by simulating a harmonic forced excitation of the 

first mode for the 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz, and 80 Hz frequencies 

and for amplitudes of 0.01, 0.05, 0.10, 0.15 and 0.20. Each simulation is carried out over 5 

periods. The evolution of the first harmonic of the GAF is shown Figure 12. The dependence 

of the GAF on the amplitude is low but observable. At a frequency of 50 Hz, corresponding to 

the LCO frequency, the solution is unstable for small amplitudes and it becomes stable for 

larger amplitudes.  

The study of the mechanical system stability for fluid-structure coupling with 1 degree of 

freedom boils down to studying the sign of the imaginary part of the GAF. If it is positive, the 

system is stable; if it is negative, the system is unstable (this result is obtained by writing the 

aerodynamic forces on the left side of the structural dynamics equations). The change in 

stability occurs around the frequency of 50 Hz. For this wing, this sign change criterion gives 

us the means to predict the limit cycles. 

The limit cycle would be explained as follows: for low-amplitudes motion is unstable and 

tends to become amplified. Once it reaches a sufficient enough amplitude it becomes stable 

and tends to undergo a damped motion. 
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Figure 12 : GAF calculated by simulating a harmonic forced excitation of the first mode for the 10Hz, 20Hz, 

30Hz, 40Hz, 50Hz, 60Hz, 70Hz, and 80Hz frequencies and for amplitudes of 0.01, 0.05, 0.10, 0.15 and 0.20. 

 

The methodology for building the reduced model is based on a nonlinear variant of the Roger 

model [5], already presented in 2011 [6]. A state-space representation of the system is written 

and comprises P auxiliary equations, introducing P auxiliary variables 
i

 : 
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where 
i

p  and 
i

  are the conjugated complex poles (
ii

ip   ) selected from the steady half-

plane. The force  is the unsteady force applied to the airfoil and Dij, D0,j, D1,j, D2,j are the real 

matrix coefficients of the model to be determined.  

For a harmonic excitation of the type: )cos()(
0
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frequency 


 Vk  , it can be shown that the first harmonic of the generalized aeroelastic 
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and where the imaginary number  fulfills . 

A random draw of the poles is performed for a given range of reduced frequency.  For each 

draw, the model coefficients are obtained by solving a least square problem. For the 

Aerostabil wing, the GAF nonlinear reduced model is achieved by using 4P , 

2
210


DDDC

NNNN . As shown in Figure 13, the GAF obtained with this reduced 

model are in very good agreement with those calculated with the elsA code.  

  

 
Figure 13: Comparison of the GAF obtained with the reduced model (dashed line) and those calculated with the 

elsA code (symbols).  

 

This GAF nonlinear reduced model built can then be used to simulate fluid-structure 

interaction. The complete fluid-structure reduced model is then composed of the auxiliary 

equations and the GAF modelling equation of the system (3), to which the structural 

equations are added:  

 

  0
2

1 2


 s
ffVqkqm      (7) 

 

where the generalized mass and generalized stiffness of the mode are written as  and .  

This complete system is re-written in matrix form: 

 

  0U,UU,FKUUCUM       (8) 

 

with: 
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This equation is integrated using the Newmark scheme [7] with the constants  and 

 which make it unconditionally stable and without numerical damping: 
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The nonlinear equation is solved by using a fixed-point iteration method. Convergence of the 

method is observed after 11 sub-iterations. 

 

With the amplitude normalization selected for the first mode, the structural model is defined 

by the following constants for the first mode: , 12.6. The dynamic 

coupling is simulated for the initial condition . A LCO is obtained (Figure 14) with 

an amplitude and frequency comparable to those obtained by direct simulation (Figure 8). The 

Prony analysis enables to determine a LCO frequency of 51 Hz. 

A second simulation is performed with a stronger initial condition  and the results 

are shown in Figure 15. As for the direct numerical simulation shown in Figure 9, the 

amplitude decreases and converges towards the LCO amplitude.  

For both initial conditions, the orbits shown in the phase diagrams of Figure 14 and Figure 15 

are highly similar to those computed with the elsA code.  

 

  

Figure 14 – LCO simulation with the nonlinear reduced model for the initial condition . 

 Phase diagram: elsA simulation (blue) vs nonlinear reduced model (red).  
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Figure 15 - LCO simulation with the nonlinear reduced model for the initial condition . 

Phase diagram: elsA simulation (blue) vs nonlinear reduced model (red). 

 

4 LCO FOR NLR 7301 AIRFOIL 

 

A model to simulate the bi-dimensional flow around the NLR 7301 airfoil was developed at 

DLR [8]. The chord of the airfoil is 0.3 meter and the span 1 meter. A mechanical assembly, 

Figure 16, was used to simulate two degrees of freedom for the airfoil. The first is a vertical 

displacement, and the second a rotation about a transverse axis situated in the forward quarter 

of chord. The matrices for  mass , damping  and stiffness   

are defined by the following values:  

 =25.93 kg,  = 0.377 kg m, = 0.091 kg m2,  = 78.23 kg s-1, 

 = 0.202 kg m s-1 rad-1,  = 1.11 106 N m-1,  = 6.70 103 N m rad-1. 

 

 

Figure 16 - Mechanical assembly for the NLR 7301 airfoil. 

 

Aerodynamic limit cycles were observed for batch MP77 at the following aerodynamic 

conditions: upstream Mach number 0.754, stagnation pressure 45000 Pa, total temperature 

309.7 K. The incidence is fixed at 0.5 degrees in order to obtain LCO. 

The mechanical system is diagonalized and two structural modes are obtained, which are 

linear combinations of pumping and pitching. A multiplying coefficient of 0.01745 is applied 

so as to reduce the amplitude of these modes. The generalized masses and eigenfrequencies 

are, respectively, for each of the flexible modes, 0.000401 kg m 
2
 and 0.0000278 kg m 

2
, 

31.81 Hz and 46.11 Hz. 

The fluid calculations are performed using the averaged Navier Stokes equations associated 

with the Menter k-ω turbulence model, on a multigrid structured mesh (with 2 levels of 
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subgrids) containing 24320 cells (Figure 17). For the aerodynamic conditions given above, a 

static coupling calculation is performed. A comparison between the stationary pressure field 

and the experimental result is shown in Figure 17. 

 

     

Figure 17 – Mesh around the supercritical NLR 7301 airfoil (left-hand side) and  MP77 test case: pressure field 

on the airfoil (right-hand side). 

 

Dynamic coupling simulations are performed for two initial conditions (  and 

). The sampling frequency is 6400 Hz and 6400 time steps are calculated, that is, 

a physical time of 1 s. The results in Figure 18 show that, for both initial conditions, LCO is 

obtained.  

 

    

Figure 18 - Dynamic coupling obtained with the elsA code for initial conditions and . 

 

The GAF matrices are calculated for 8 frequencies from 10 Hz to 80 Hz and 5 magnitudes 

0.1, 0.5, 1.0, 1.5, and 2.0. As in the case of the "Aerostabil" wing, the imaginary part of the 

term 1-1 of the GAF goes from stable to unstable for a frequency between 30 and 40 Hz 

(Figure 19), while the imaginary part of the term 2-2 remains stable ( (Figure 20).  
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Figure 19 – Evolution of the term 1-1 of the GAF calculated with the elsA code (symbols); comparison with the 

nonlinear reduced model. 

 

 
Figure 20 - Evolution of the term 2-2 of the GAF calculated with the elsA code. 

 

A nonlinear reduced model for the term 1-1 of the GAF (Figure 19) is then built with the 

following parameters: 7P , 3
C

N  , and 2
210


DDD

NNN . 

The fluid-structure coupling simulation performed with this model yields to the occurrence of 

limit cycles. Figure 21 and Figure 22 show the displacement of the airfoil trailing edge for 

two different initial conditions  and . On the right-hand side of these 

figures, the LCO orbits are compared with those obtained with the elsA code. Despite the 

introduction of a phase shift, the orbits remain highly similar. 
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Figure 21 - LCO simulation obtained with the nonlinear reduced model for the condition . 

Phase diagram: elsA simulation (blue) vs nonlinear reduced model (red). 

 

    

Figure 22 – LCO simulation with the nonlinear reduced model for the condition . 

Phase diagram: elsA simulation (blue) vs nonlinear reduced model (red). 

 

5 CONCLUSIONS 

 

Dynamic fluid-structure coupling computations have been carried out on the Aerostabil wing 

in order to simulate limit cycle oscillations. The simulations are performed using the elsA 

code and enable to predict the LCO phenomenon investigated previously by the DLR, both 

experimentally and numerically. The occurrence of LCO is highly influenced by the mesh 

topology and a particular attention must be paid to the simulation of the boundary layers of 

the wind tunnel walls. Furthermore, the modal approach used in elsA for dynamic coupling 

computations requires a sufficient modal representation of the structure. However, the modal 

basis available was only composed of 10 structural modes and was insufficient to represent 

the static deformations. The dynamic simulations were therefore performed by deducing the 

static deformation to be introduced from the static numerical results obtained by the DLR. 

LCO was thus obtained taking into account the first bending mode of the wing but 

considering the complete structural model.  

The study of the first harmonic of the generalized aeroelastic force due to a harmonic forced 

excitation for different excitation frequencies shows a dependence on the motion amplitude. 

A sign change of the imaginary part of the GAF is observed for frequencies in the vicinity of 

the LCO frequency. This important property may thus be used to check the possible 

occurrence of LCO phenomenon.  
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For the mode used to simulate the LCO, a nonlinear reduced model of the GAF was 

implemented using the first harmonic of the GAF obtained by harmonic forced excitation for 

different amplitudes and different frequencies. The simulation of the fluid-structure coupling 

with this model was used to simulate the LCO, in good agreement with results given by direct 

simulation in the time domain. 

This methodology was finally applied to the two-dimensional flow around the NLR-7301 

airfoil. The fluid-structure simulations performed with this model confirms the existence of LCO and 

the capability of predicting the LCO phenomenon with a single DOF system.  
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