
International Forum on Aeroelasticity and Structural Dynamics
IFASD 2017

25-28 June 2017 Como, Italy

POLYNOMIAL NONLINEAR STATE-SPACE MODELLING OF
VORTEX-INDUCED VIBRATIONS: BLACK-BOX VS GREY-BOX

APPROACH
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Abstract: Polynomial nonlinear state-space (PNLSS) models have proven to be very useful in
modelling highly nonlinear systems, encountered over a variety of engineering applications. In
this work, we focus on modelling the kinematics of an oscillating circular cylinder, submerged
in a low Reynolds number flow. Such a set up is typically used to study vortex shedding phe-
nomena and their related forces. The power of the PNLSS model class comes from its large
flexibility in candidate nonlinear basis functions. Flexibility, however, comes at a price. The
number of parameters generally grows large, hampering the identification process and leading
to a loss of insight in the nonlinear functions. The objective of this work is to investigate how
prior knowledge of the nonlinearity can be introduced in the basis functions of these nonlin-
ear models and how this affects the accuracy of the estimated model. In particular, the usage
of polynomial functions in terms of states and the input is compared to nonlinear functions in
terms of the output variable. An improved model was obtained when a deliberate choice of ba-
sis functions was chosen based on prior knowledge of the nonlinearity. In addition, promising
results were obtained from using dedicated nonlinear basis functions in terms of the output on
a system closely related to the vortex shedding system.

1 INTRODUCTION

The mutual interaction between flowing fluids and structures has been an important research
topic for over decades. One particular form is called vortex-induced vibrations (VIV). Such

1



IFASD-2017-53

vibrations are especially known to occur for bluff bodies that are submerged in a fluid flow. In
practice this can be a pipeline on the seabed, riser pipes from oil rigs but also chimneys exposed
to wind, water channels in heat exchangers, bridges or aerofoils at large angle of attack. From an
academic point of view often the shape of a circular cylinder is considered. Vibration is induced
by shear layer instabilities which will lead to an alternating vortex shedding pattern in the wake
of these structures for sufficiently high Reynolds number (Re > 49) [1, 2]. With alternating
vortex shedding, fluctuating pressure is associated. Consequently a fluctuating force is exerted
on the structure. If the structure is flexible it will vibrate, hence vortex-induced vibrations.

Cases have been reported in which high amplitude vibrations have lead to severe damage, accel-
erated fatigue and even total collapse of structures [3]. Such events are usually encountered in
the so-called lock-in range. This is a range where the frequency of oscillation and vortex shed-
ding synchronise to a common frequency, typically in the neighbourhood of the eigenfrequency
of the structure [4]. Lock-in can lead to a build up of energy with as a result high, possibly
harmful amplitudes. Extensive reviews of the amplitude response encountered for, what are
called freely oscillating cylinders, can be found in [5–7].

Given the consequences, there is a need for good predictions. Despite the substantial attention
the topic of VIV has received over the past decades, analytical relations between the observed
oscillations and the generated forces have only been deduced for a limited, and most often
simplified (linearised) number of cases. The true relation remains hidden in the Navier-Stokes
equations which require numerical integration to be solved, or dedicated labs for the solution to
be observed. Both approaches are however unfit for a large number of applications, e.g. during
the design process of a structure, for real-time health monitoring and foremost for control.

To overcome the downsides of time integration (computational fluid dynamics simulations),
which is very computational expensive, people have resorted to low-order modelling. An in-
teresting review of the classes of models which are frequently used for VIV is provided in [8].
Identifying a model relating the oscillation of, say a circular cylinder, to the observed forces
onto the cylinder, is however not an easy task. The relationship is highly nonlinear: a bifur-
cation structure of non homogeneous solutions [9, 10] accompanied by hysteresis have been
observed. Notice also that there exist already a stable oscillation of the lift force, even for
the stationary cylinder case. This is also referred to as an autonomous oscillation. In recent
years, techniques originally developed for modelling of electrical circuits and modal analysis
have found their way to the fluid mechanics community [11, 12]. In [13] a nonlinear model
relating the transverse oscillation of a cylinder, oscillating perpendicular onto the oncoming
flow was related to the generated lift force. The flexible model class of polynomial nonlinear
state-space [14] models was used to identify a model. Although accurate simulation results
were obtained, also the pitfall of using such a flexible model structure had become apparent.
Introducing a large number of degrees of freedom in the nonlinear basis functions (see Sec-
tion 2.2) creates difficulties in obtaining good estimates of the parameters. This is due to the
non convexness of the cost function. On the other hand, interesting results were obtained for
the modelling of nonlinear structural vibrations by constructing dedicated nonlinear basis func-
tions for state-space models [15]. The latter lead to a considerable reduction in the amount of
parameters needed and to regaining insight in the nonlinearity itself.

In this work we seek to compare both the black-box identification approach, as was applied
in [13] and the grey-box approach of [15]. As an intermediate step we will use the FAST-
test [16] to characterise the type of nonlinearity and select the basis functions of the nonlinear
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state-space model accordingly. Whenever any prior knowledge is introduced (as from the FAST-
test) we will categorise the approach as being ‘grey’. The lay-out of the paper is as follows: first
the identification process, both for the fully black-box as for the grey-box approach is discussed.
Next some attention is devoted to how the data were collected using CFD simulations. In what
follows the results obtained from training models, with and without including prior knowledge
in the basis functions, are presented for there estimation and validation and validating to new
(unseen) data. Also the approach of creating dedicated basis functions is illustrated on data of
the Van der Pol equation, an equation with related behaviour to the vortex shedding system.
Finally some conclusions are provided.

2 THE IDENTIFICATION PROCESS

System identification typically is a four-step process. It is data-driven hence data needs to be
collected. We also need to pick a model structure which we deem fit to be able to capture the
observed behaviour. It then comes to matching the model as wel as possible to the data, given a
certain quality criteria defined by the cost function. Finally, the obtained model is tested for its
ability to reproduce data which was not used to fine tune the model (validation step).

Depending on the model structure, the parameter estimation problem differs. Therefore the two
considered types, distinguished only by the choice of nonlinear basis functions, will be treated
separately. The data which is used is identical.

2.1 Collecting data

Common practice when studying the kinematics related to vortex shedding is the use of imposed
(or forced) oscillations [17–19] and to measure the occurring forces. With total control of the
displacement one can explore a wide range of frequencies and amplitudes, contrary to the lim-
ited response behaviour observed when the mass, stiffness and the damping are fixed to certain
values. Therefore, in system identification terminology, we will call the imposed motion in the
y-direction (perpendicular to the incoming flow) the input to the system and the corresponding
forces in the direction of oscillation, the output. To be able to generalise the results the force
coefficient is used instead of the force itself:

c
y

(t) =
F
y

(t)
1/2⇢U2D

, (1)

with F
y

the force measured in the y-direction, ⇢ the density of the fluid, U the unperturbed fluid
velocity and D the diameter of the cylinder.

Using CFD simulations of the flow around cylinders with imposed oscillations, time series of
the fluid variables are obtained. The simulations are performed using the open source CFD
package OpenFOAM [20]. A transient solver called pimpleDyMFoam with a variable time step
was used to solve the Navier-Stokes equations for an incompressible flow in a finite volume
discretisation scheme [21, 22]. All simulations were performed at Re = 100 to ensure laminar,
predominantly 2D [3], vortex formation. At this Re, a fully laminar vortex shedding takes
place. Hence no turbulence model is needed. Since the vortex shedding is only 2 dimensional
at Re = 100, a 2D mesh with the cylinder positioned 10D from the inlet and centred in the y-
direction was used. The computational domain is 40D long (L) and 30D high (H). The top and
bottom of the domain are constrained by a slip boundary condition while on the cylinder surface
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itself, the velocity is set equal to the grid velocity, which follows from the cylinder motion (no-
slip condition). At the inlet, a uniform velocity profile is used. The outlet is conditioned with
a zero velocity gradient. The CFD models are identical to those used in [13]. Validation of the
CFD models can be consulted therein.

An important aspect of nonlinear system identification is the choice of input signal. In this work
we will opt for the class of input signals called random-phase multisines:

y(t) =
1p
N

NX

n=1

A
n

sin (2⇡nf0t+ �
n

) with �
n

⇠ U [0, 2⇡[ (2)

These are periodic signals, built up out of a sum of harmonically related sine waves with a com-
mon base frequency f0 and a set of randomly selected phases, drawn from a uniform distribution
between 0 and 2⇡. The deliberate choice for this specific class of input signals follows from the
advantage that they will also provide us with the means to quantify the amount of nonlinearity
present in the data (see Section 3.1).

To focus on the influence of using the black-box or the grey-box approach, the dataset will be
limited to a single amplitude level, A

n

/D = 0.30. The dataset is in other words not optimal
towards obtaining a model which is valid over a wide range of parameter space but serves as
a proof of concept. The excited frequency range spans from [1/30 : 1/30 : 1.5] ⇥ fSt, with fSt

being the natural vortex shedding frequency of the stationary cylinder. For imposed cylinder
oscillations, the lock-in region is encountered in the neighbourhood of fSt [23].

2.2 Black-box PNLSS identification

The nonlinear state-space structure consists of the classical discrete time state-space equations
[24] extended with nonlinear functions f and g. A linear state-space model is no more than
rewriting a higher order ordinary differential equation (ODE) in a set of first order ODE’s.
Combined with the nonlinear functions we get:

(
x(t+ 1) = Ax(t) + By(t) + f(x(t), y(t))

c
y

(t) = Cx(t) + Dy(t) + g(x(t), y(t)).

(3a)
(3b)

In the black-box approach these nonlinear functions are expressed in terms of the state variables
x(t) and the input which is denoted y(t). The state variables are intermediate variables linking
the input to the output. If a polynomial expansion is used, the nonlinear functions can be
rewritten into a product of a matrix containing coefficients (E and F) and two sets of monomials
(nonlinear basis functions) in ⇣(t) and ⌘(t).

(
x(t+ 1) = Ax(t) + By(t) + E⇣(t)
c
y

(t) = Cx(t) + Dy(t) + F⌘(t),
(4a)
(4b)

These nonlinear monomials are constructed by generating all possible cross products of the
state variables and the input raised to a certain total degree, here denoted p. The total degree
is defined as the sum of the individual exponents and this is a choice which needs to be set or
experimented with. Rigorously we can write the combination of cross products as follows:

⇣
k,l1,...,lnx

(t) = yk(t)
n

xY

i=1

xl

i

i

(t) (5)
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with the total degree being k +
P

n

x

i=1 li 2 {0, 2, 3, ..., p} with [k, l
i

] 2 N and with n
x

being the
number of state variables. Number-wise, if we use monomials of a total degree ranging from
p = 0 up till p = 5 for a system described by n

x

= 5 state variables, we arrive at a number of
456 basis functions (from combinatorials). The dimensions of the nonlinear coefficient matrix
E thus grow to n

x

⇥ 456 = 2280. Of these basis functions, not all will be useful in describing
the data. Yet they will increase the variance on the estimate of the coefficients or even hinder
finding a good estimate, in the unfortunate case.

In order to obtain estimates of all the coefficients, the following steps need to be undertaken:

• First a nonparametric estimate of the best linear approximation (BLA) is constructed.
Calculation of the BLA is explained in Section 3.1.

• Using linear identification techniques, estimates of the coefficients in the linear part (A ,
B, C, D) are derived. The coefficients in E and F are set to zero.

• Finally, nonlinear optimisation is used to optimise all coefficients, including the nonlinear
terms.

For details on the PNLSS model structure and its usage the reader is referred to [14,25] and for
applications in a variety of fields to [26–28] with the specific application for the kinematics of
submerged oscillating cylinders in [13].

2.3 Grey-box PNLSS identification

Whenever prior knowledge is used to make a selection in basis functions we will consider the
approach to be ‘grey’. This prior knowledge can be indicative result on the type of nonlinearity,
i.e. are the nonlinear function mainly odd or even, or it might include constructing a dedicated
nonlinear function from the data. The first approach is based on the what is called the FAST-test
and will be discussed in Section 3.2. In this Section we discuss the approach of constructing
dedicated basis functions. In general, the linear state-space structure is expanded in nonlinear
basis functions in terms of the output and its derivatives. These nonlinear functions can again
be expanded in polynomials, leading to the following structure:

(
x(t+ 1) = Ax(t) + By(t) + Eg(c

y

(t), ċ
y

(t))

c
y

(t) = Cx(t) + Dy(t) + Fg(c
y

(t), ċ
y

(t)).

(6a)
(6b)

In the illustrative example in Section 4.2.2 we will show that using nonlinear functions in terms
of the output can lead to a more intuitive selection of the basis functions.

The identification procedure is a two step approach. First an initial estimate of the matrices
of coefficients A , B, C, D, but also E and F is obtained using nonlinear subspace identifica-
tion [29]. The method relies on the use of measured outputs as nonlinear regressors to construct,
noniteratively a grey-box state-space model. Notice that this approach directly provides a non-
linear estimate, contrary to the black-box approach of Section 2.2.

Depending on the signal-to-noise ratio of the measured outputs, the estimates will be biased. To
remove this bias nonlinear optimisation is used (second step).

3 GAINING INSIGHT INTO THE NONLINEARITY OF THE FLUID SYSTEM

From a modelling point of view, one would like to know to what extent the system at hand
behaves linearly or nonlinearly. Even more insightful would be to not only have a measure

5



IFASD-2017-53

for the degree of nonlinearity, but also to be able to characterise or categorise the nonlinear
behaviour in some sense. In this section these questions will be addressed by examining the
variances obtained from calculation of the best linear approximation (BLA) on one hand [30],
and using what is called the ‘FAST’-approach [16] on the other.

The corner stone of the nonlinear analysis is the property of nonlinear systems to mix power
over different frequency lines. This is in contrast to a linear system which, when it is excited by
e.g. a sine wave (power at a single frequency line in the Fourier transform), will return an output
only at the excited line. As an example we look at the output of a simple cubic nonlinearity when
the input is a single harmonic cosine (x(t) = e

jwt�e

�jwt

2 ):

y(t) =x3(t)

=
1

8
(ejwt � e�jwt)(ejwt � e�jwt)(ejwt � e�jwt).

(7a)

(7b)

From the above product we see that all possible combinations, 3 by 3, of the frequencies ! and
�! will be generated: 2

66666666664

! ! !
! ! �!
! �! !
! �! �!
�! ! !
�! ! �!
�! �! !
�! �! �!

3

77777777775

=

2

66666666664

3!
1!
1!
�1!
1!
�1!
�1!
�3!

3

77777777775

(8)

The spectrum of y(t) is given in fig. 1. The cubic nonlinearity has generated a third harmonic

-4 -3 -2 -1 0 1 2 3 4

ω

|Y
(ω

)|

Figure 1: Frequency spectrum of the output from a cubic nonlinearity given a single harmonic input at !.

contribution. In general we can say that odd nonlinearities will generate odd harmonic contribu-
tions while even nonlinearities will give rise to even harmonics. This property will be exploited
in the FAST-approach.

3.1 Nonlinear distortions on the Best Linear Approximation

Using random phase multisines (Eq. 2) we are able to calculate an estimate of the best linear
approximation (BLA) of the system. The estimate of the BLA is obtained from averaging the
frequency response functions (FRF) calculated from different realisations of the random phase
multisine. Since each excited frequency line is given a random phase, the contributions which
are generated at other frequency lines, due to the nonlinearity, will contribute in a stochastic
way. Therefore, by including multiple realisations in the averaging process, the nonlinear con-
tributions over the different frequency lines will eventually approach a normal distribution (for
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ĜBLA
total std: noise + stochastic NL
std of the noise
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Figure 2: Nonparametric and parametric estimate of the Best Linear Approximation.

the number of excited lines going to infinity but in practice as many as 20 lines works already
quite well [16]). Averaging yields a zero expected value for the nonlinear distortions and what
will remain can be called the best linear approximation. The variance associated with this mean
FRF will be a measure for the nonlinear distortions present at a given frequency line. If the mea-
surements are noisy, we obtain the total variance which is the sum of the nonlinear distortions
and the noise.

In Fig. 2 nonparametric and a parametric estimate, obtained from a model scan using the FDI-
DENT1 toolbox in MATLAB, of the BLA are plotted. A finite impulse response model of
5th order was selected. Details can be found in [13]. A considerable level of total distortions,
reaching as high as the function itself in the region around fSt, indicates a high level of nonlinear
distortions.

3.2 The ‘FAST’-approach

The objective of the FAST-approach is to characterise the type of nonlinearity, i.e. whether even
or odd nonlinearities are present. The approach relies on the usage of a specifically constructed
signal called random odd multisines. A random odd multisine is again a sum of harmonically
related sines with randomly selected phases but compared to the previously used (full) random
phase multisines, 2 constraints are added on the excited frequency lines. For random odd, only
the odd frequency lines are excited, excluding one line for every bin of 4 odd lines. The odd
lines which are excluded are called detection lines and the position of these lines within a bin
of 4 odd lines is chosen randomly.

From the previous sections we know that when analysing the output of a system, the linear con-
tributions will only be present at the excited lines. At the even lines, there can be contributions
following from even nonlinearities only, since no even lines are excited in a random odd multi-
sine. Similarly, at the odd unexcited lines (detection lines), there can only be contributions from

1http://vubirelec.be/knowledge/downloads
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Figure 3: Example of the DFT spectrum of a random odd multisine.
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Figure 4: The different output contributions that can follow from exciting a nonlinear system with a random odd
multisine.

odd nonlinearities. But also at the excited odd lines there can be odd nonlinear contributions,
hence the odd excited lines will contain the sum of the linear and the odd nonlinear contribu-
tions. In Fig. 3 the DFT of a random odd input signal is shown. Fig. 4 shows the different
contributions found in the output, first separately, and then summed together in the case the
random odd input signal would have passed through a nonlinear system containing both odd
and even nonlinearities.

The same approach is applied to characterise the nonlinear distortions of c
y

. Fig. 5 shows the
DFT output spectra at the amplitude level A/D = 0.30, for an imposed cylinder motion of
a random odd multisine. We observe that only odd nonlinear contributions are present in the
output signal. The even contributions are as low as the noise floor. These observations will
guide us during the selection of nonlinear basis functions in Section 4.1.

4 ESTIMATION RESULTS

In this Section we compare how well we are able to tune a PNLSS model to a selection of train-
ing data, given their selection of basis functions. As was discussed in 2.1 we use random-phase
multisine data to train the model. A number of six realisations were applied and transients were
dealt with by including an extra period at the beginning of each realisation and disregarding it
later when optimising the coefficients.
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Figure 5: Characterising the type of nonlinearity using the FAST-approach.
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Figure 6: Input and output of the training dataset. The set includes 6 realisations of a random phase multisine
exciting the frequency band [1/30 : 1/30 : 1.5]⇥ fSt at A/D = 0.30
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4.1 Black-box modelling

In the black-box modelling approach we include all monomials from nonlinear degree 0 up to 5
in ⌘ and ⇣ of Eq. (6). We start from the BLA and run the nonlinear optimisation routine. Errors
are expressed in terms of their relative rms values:

erms =

s
1

N

P
N

t=0(cy(t)� c
ymod(t))2P

N

t=0 cy(t)
2

, (9)

where c
y

corresponds to the true output and c
ymod is the modelled output. The results of the

linear and the final nonlinear model are listed in table 1.

Model erms

BLA 0.43
PNLSS black-box 0.078

Table 1: Estimation results from the black-box modelling approach.

Clearly a considerable improvement can be achieved by estimating a nonlinear model. This
could be expected from the high level nonlinear distortions found from calculation of the BLA.

4.2 Grey-box modelling

In Section 4.2.1 we repeat the procedure of Section 4.1 but now including the results from
the FAST-approach. In Section 4.2.2 the procedure of the output nonlinear basis functions is
illustrated on an example system related to the fluid system previously considered.

4.2.1 Including prior knowledge from FAST

From the FAST-test we learned that the fluid forces were governed by odd nonlinear effects
therefore, during this approach we only consider the nonlinear degrees 0,3,5. The BLA is
identical to the black-box case.

Model erms

BLA 0.43
PNLSS black-box 0.109

Table 2: Estimation results from the grey-box modelling approach.

Compared to the black-box approach the model estimate performs slightly worse. Since the
search space has been reduced it has become harder to accurately tune to the data, i.e. arrive
in a low local minimum of the cost function. We will however see in Section 5.2.1 that the
opposite will be true when assessing the quality of the model on validation data.

4.2.2 Illustration of output nonlinearties

The illustration of the output nonlinear basis functions approach is done on a system which
resembles to a large extent the fluid system previously studied. The system is described by the
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Van der Pol equation: [31]:

c̈
y

+ µ⌦aut(c
2
y

� 1)ċ
y

+ ⌦2
autcy = ẏ. (10)

This system also produces autonomous oscillations and has a synchronisation region depending
on excitation frequency and amplitude, just as in the case of the fluid system. In Eq. (10), ⌦aut
denotes the autonomous angular oscillation frequency, c

y

again represents the output and in this
case the derivative of the displacement, ẏ is used as the input and the Van der Pol coefficient µ
is set to 0.3 [32].

From Eq. (10) we are able to generate random phase multisine data from time integration with
the built in solver ODE45 in MATLAB. Using this data we are able to repeat the fully black-
box approach and easily illustrate the output nonlinear approach. The reason for illustrating the
output nonlinear approach on data of a known equation is that now it can be clearly seen that
the nonlinear contributions stem from a polynomial in terms of the output and its derivative, in
this case c2

y

and ċ
y

. The estimation result on 7 realisation of a random phase multisine at an
amplitude level A = 15 for the right hand side of Eq. (10) reaches as low as the noise floor for
both the black-box as the output nonlinear grey-box approach.

Even though no noise was added, the data still suffer from disturbances originating to time
integration errors. These will pop-up in the noise floor.

5 VALIDATION RESULTS

In this Section both models estimated on data of the fluid system and the models estimated on
data of the Van der Pol equation are validated by simulating the output to a new unseen random
phase multisine realisation.

5.1 Black-box modelling

The validation set used is composed out of an unseen random-phase multisine of the same
frequency content as during training but a lower amplitude level of A/D = 0.285. The error of
the estimated black-box PNLSS model is plotted together with the error of the linear estimate
and the noise floor (Fig. 7).

The error which is obtained corresponds to erms = 0.29.

5.2 Grey-box modelling

5.2.1 Including prior knowledge from FAST

For the grey-box validation the same validation signal is applied. This model was constructed
using the prior knowledge from the FAST-test, hence only the nonlinear degrees 0, 3 and 5 were
used. The results are shown in Fig. 8.

The error which is obtained corresponds to erms = 0.12. The true output along with the error is
once more plotted in the time domain in Fig. 9.

It can be noticed that even though the black-box approach performed better in terms of estima-
tion error, it is clearly off on the validation part. Reasonably good results are obtained when
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Figure 7: Validation of the black-box model to an unseen random-phase multisine of cy from CFD.
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Figure 8: Validation of the grey-box model, only including the nonlinear degrees 0, 3 and 5, to an unseen random-
phase multisine of cy from CFD.
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Figure 9: Validation of the grey-box model, only including the nonlinear degrees 0, 3 and 5, to an unseen random-
phase multisine of cy from CFD in the time domain.

the correct type of basis functions is selected, erms = 0.12, especially taking into account the
erms = 0.109 on the estimation data. Choosing the correct type of nonlinear degrees can thus
lower the possibility of overfitting on the training data.

5.2.2 Illustration of output nonlinearties

On the less complex data, generated from the Van der Pol equation we compare the black-box
approach to the output nonlinear basis functions approach (Fig. 10 and Fig. 11). We notice that
in this case both approaches reach almost to the noise floor with a slightly better result for the
output nonlinearities. This real benefit, however, is made in terms of the amount of coefficients
needed. Since the exact basis functions can be constructed using the output only one is needed
whereas the black-box approach contains all the combinatorial options of products between the
state variables and the input of total degree 3.

6 CONCLUSION

We have shown that for the purpose of modelling fluid forces using a PNLSS model structure,
it is helpful first to characterise the type of nonlinearity using the FAST-test. Doing so, a delib-
erate choice of basis functions can be selected. With respect to a black-box approach of equal
degree, this choice will restrict the search space, possibly leading to an increased error on the
estimation data. On the other hand, an improvement on the validation data was observed when
the correct degrees were selected. Moreover we haven shown that using dedicated basis func-
tions, constructed in terms of the output, one can considerably reduce the amount of coefficients
in the model. These results have been found for a system closely related to the fluid force sys-
tem, namely the Van der Pol equation. Since the Van der Pol equation has been frequently used
to model fluid force behaviour of VIV nature, the nonlinear term present therein can serve as
starting point in the search for a dedicated nonlinear basis function to model the fluid forces
occurring for oscillating cylinders in a fluid flow.
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Figure 10: Validation of the black-box model estimation on the Van der Pol data.
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Figure 11: Validation of the grey-box model, estimated using basis functions in terms of the output, on data of the
Van der Pol equation.
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