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Abstract: In this paper an approach for the identification of the modal properties of a time-
varying system in the Operational Modal Analysis (OMA) framework is presented. The natural
frequencies are estimated using the Hilbert-Huang Transform Method (HHTM) for its capabil-
ities to track the time variations of such modal properties. Then, the Hilbert Transform Method
(HTM) is applied for estimating both the damping ratios and mode shapes, not available from
the previous method. The developed approach has been numerically assessed considering an
aeroelastic system. The accuracy in time-tracking the modal parameters has been investigated
by analyzing the numerically simulated time responses from a panel flutter model subjected to
random operating loading for which the analytical solution is available.

1 INTRODUCTION

Many engineering applications could be described by time-varying systems. In structural dy-
namics, such time variations can be suitably represented as a change in the instantaneous modal
parameters. For aerospace industry, the identification of the modal parameters of the struc-
ture subjected to its actual operating conditions, is of great interest because using such modal
parameter, it is possible to validate and consequently update the numerical model of the struc-
ture. Indeed, considering the actual operating conditions a more accurate representation of the
structural dynamics properties with respect to the real ones is possible. Typical example of the
time-varying systems, in aerospace field, are those characterized by the change of their dynam-
ical properties during the different phases of the flight, like an aircraft undergoing changes of
the dynamic pressure, or a launcher burning the propellant and losing a large amount of mass.
Therefore, an approach capable of estimating such time-varying modal parameters is very ap-
pealing when validating the aero-mechanical design or predicting the effects of given structural
modifications. The natural frequency time-evolutions are currently analyzed by means of the
spectrogram, which is a time-frequency representation of a non-stationary signal, obtained by
a limited time-window Fourier Transform centred in separate time-intervals. This approach,
although very efficient, lacks in estimates of the damping ratios and mode shapes. Recently,
experimental techniques based on the analysis of response-only data recorded from an oper-
ating system, named Operational Modal Analysis (OMA), have been developed. These OMA
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techniques have been introduced relying their basic equations both in time and frequency do-
main. Among the techniques available in literature, it is worth recalling the frequency domain
techniques called Frequency Domain Decomposition (FDD) [1], Hilbert Transform Method
(HTM) [2], and Stochastic Subspace Identification (SSI) [3], whereas, in time domain, the well
known technique is the Balance Realization Method (BR) [4]. The OMA techniques differs
from the one belonging to the so-called Experimental Modal Analysis (EMA) [5], because the
measurement of the input excitation is not required, provided that a stochastic broadband un-
correlated (both in time and space domain) dynamic loading excites the system. In this contest,
OMA methods are very usefull tool to track the eigen-properties of an aeroelastic system as
a function of the flying dynamic pressure or other characteristic flight parameters such as atti-
tude, mass distribution, etc. The objective of this paper is to propose an innovative methodology
for the identification of modal parameters of a time-varying system, which is based on Hilbert
Transform [6]. In detail, the identification of the natural frequencies is performed by using
the Hilbert-Huang Transform Method (HHTM) [7], which is a suitable tool due to its capa-
bility of estimating the instantaneous frequencies of the observed time-varying system. It is
worth pointing out that the HHTM has been used instead of a spectrogram, because it is shown
in literature that the first methodology yields better estimate of instantaneous frequency of an
arbitrary signal than the second one [7]. Then, the HHTM has been used on the filtered sig-
nals. Once an estimate of the instantaneous frequencies is obtained, a procedure to extract the
global time-tracking of the estimated natural frequencies is presented. Thus, using the informa-
tion derivated from the time-tracking of these quantities, it is possible to estimate the damping
ratios and the mode shapes by means of an OMA method, which can be applied only to a time-
invariant system. In particular, considering the maximum variation of the natural frequencies, it
can be found a time-interval in which the time-varying system can be considered time-invariant
and therefore, the whole observation time can be split in such intervals. For this reason, in order
to estimate the damping ratios and the mode shapes the Hilbert Transform Method (HTM) [2]
has been applied. This method has the advantage to use the Hilbert Transform, which provides
the biased FRFs and, in turn, the modal parameters from a residue/poles curve fitting method.

2 THEORETICAL BACKGROUND

In this section, the HHTM and HTM for the estimation of modal parameters of a time-varying
system are briefly introduced.

2.1 Natural frequencies estimated by Hilbert-Huang Transform method

The Hilbert-Huang Transform (HHT), has been proposed by Huang et al., [7]. The core of the
method is the Empirical Mode Decomposition (EMD) procedure, which can be preceded by a
filtering technique1 [8]. EMD process is aimed to decomposing an arbitrary time series into
a finite, often small number of Intrinsic Mode Functions (IMFs). Specifically, the IMFs are
continuous, real-valued functions that satisfy two conditions, i.e. the number of local extrema
and zero crossings must be equal or differ by at least one and the mean value of the two envelope
curves, formed by the extrema (local minima and maxima, respectively), should be zero at any
time. Since the decomposition is based on the local characteristic time scale of the data, HHT
is applicable to nonlinear and non-stationary processes. Let x(t) the measured signal, N the
number of empirical modes, cn(t) the nth intrinsic function and rN(t) the residual term, it is

1In this paper, the passband filter has been used, as explained in section 3.1.
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possible to write:

x(t) =
N∑
n=1

cn(t) + rN(t) (1)

The extraction of the IMFs is performed via the Sifting Process [7]. This procedure, each local
maximum and minimum of the time series are located and two envelope curves connecting all
maxima and minima are constructed using spline interpolation. Then, a mean curve is built from
the envelope curves and subtracted from the original time series. This curve should be close
to an IMF, but it may need some refinement, because it does not satisfy all the requirements
to be a IMF, as explained above. Therefore, such a function is treated as input data and the
previous steps are repeated k times with an appropriate stopping criterion [7]. The last curve
is subtracted from the original time series and a new input is given. Then, the process restarts.
This iterative method can be stopped by any of the following predetermined criteria: either when
the component, cn(t), or the residue, rN(t), becomes costant, or when the residue becomes a
monotonic function from which no more IMFs can be extracted. Further details on Empirical
Mode Decomposition method are present in [7]. Once the intrinsic mode function components
have been obtained, it is possible to apply the Hilbert Transform to each IMF obtaining the
associated analytical signal, xn(t), which is a component of entire analytical signal, Eq.4, and
is defined for a real signal cn(t) as:

xn(t) = cn(t) + jH(cn(t)) = an(t)ejθn(t) (2)

where H(•) indicates the Hilbert Transform operator 2, θn(t) is the instantaneous phase of the
nth intrinsic mode. The instantaneous frequency [7] can be computed for each IMF as:

fn(t) =
1

2π

dθn(t)

dt
(3)

Therefore, the analytical signal, X(t), associated to the real one x(t) could be express as a
combination of analytical signal obtained by applying Hilbert Transform on each IMF:

X(t) =
N∑
n=1

an(t)ejθn(t) (4)

Eq.(4) gives both the amplitude and the instantaneous frequency [9] of each component as
functions of time. When the Hilbert-Huang Transform is applied on the filtered time series, it
is possible to derive the local energy and the instantaneous frequency that give a full energy-
frequency-time distribution of the data from the IMFs. In each frequency band, chosen for the
filtering technique, a resultant IMF is calculated as a mean of the all IMFs in that band and it
may be possible to define a resultant frequency, f̂n(ti), as:

f̂n(ti) =

∑NIMF

i=1 fBn(ti)[a
B
n(ti)]

2∑NIMF

i=1 [aBn(ti)]2
(5)

2The Hilbert Transform of a signal x(t) is defined as the Cauchy principal value of:

x̂(t) = H [x(t)] =
1

π

∫ ∞
−∞

x(τ)

t− τ
dτ
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where, in the considered band, fBn (ti) is the instantaneous frequency of each IMF and the instan-
taneous power [aBn(ti)]

2 is assumed as weighting function. Once the instantaneous frequencies
are estimated by using HHTM, it is possible to represent the time-tracking of these quantities
via a polynomial interpolation of the instantaneous frequency. For the purposes of further in-
vestigations, a weighted polynomial interpolation is used for this purpose, where the weights
are given by the instantaneous power associated to the considered resultant IMF at a specific
time instant.

2.2 Damping ratios and mode shapes estimated by Hilbert Transform method

As already mentioned, the advantage of using the Hilbert Transform is primarily the capability
of estimating the imaginary part of a causal function starting from its real part (and viceversa).
The polar representation of driving point FRF is given by:

Hii(ω) = |Hii|e−jφii(ω) (6)

or, by introducing the natural logarithm, it can be expressed as:

ln [Hii(ω)] = Gii(ω)− jφii(ω) (7)

in which Gii(ω) = ln |Hii(ω)| is the gain function. Considering that the real part of the FRF is
an even function and the imaginary part is an odd function, the gain and the phase are therefore
even and odd, respectively. As a result, the left-hand side of Eq.(7) can be expressed as the sum
of a pair of Hilbert Transform functions:

φii(ω) = −Ĝii(ω) (8)

The gain function is also related to the spectral density function as:

Gyy(ωk) = H(ωk)Gff (ωk)H
H(ωk) (9)

where the input spectral density matrix, defined among Ni inputs, i.e. Gff (ωk) ∈ CNi×Ni , is
assumed to be derived from a white noise excitation. This implies that Gff (ωk) is frequency in-
dependent and Gff (ωk) = Gff and it is a diagonal matrix when the input excitation is uncorre-
lated in the space domain. As a consequence, by applying the natural logarithm and performing
the Hilbert Transform, Eq.(9) becomes:

H [ln (Gyiyi)] = 2H [ln |Hii(ω)|] (10)

in which the input spectral density contribution, Gfifi , is null, as the Hilbert Transform of a
constant is zero.
Combining the previous Eqs.(8) and (10) it is possible to write:

φii(ω) = −1

2
H [ln (Gyiyi)] (11)
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Therefore, the FRF in the ith driving point is available. It is possible to demonstrate that the
off-diagonal terms of the FRF are derivable from the comparison between the commonly used
H1 and H2 estimators, [10]:

H̃ij(ω) =
Gyiyj(ω)

H̃ii(ω)
(12)

Obviously, the estimated functions are biased depending on the unknown input forces, but it is
important to underline that the constant bias of the operational FRF does not affect the modal
parameter estimates, because they are not dependent on the bias level supposed to be costant in
the frequency domain. The modal parameters are evaluated with a least square approximation,
considering the expression of the FRF in pole/residue terms. A stabilization diagram is also
used in the estimating process to improve the accuracy [11].

2.3 A criterion of applicability of OMA techniques to time-varying systems

The OMA hypotheses require a linear time-independent system excited by white noise in order
to identify the considered dynamics in terms of modal damping, natural frequencies and mode
shapes. If the system is characterized by time-dependent dynamic properties, the analysis can
be carried out by splitting the whole observation time into NI sub-intervals Ii, i = 1, ..., NI ,
in which the dynamical features of the system can be considered time-independent. Because
the HHTM has been used in order to estimate the trend of frequencies over time, an accuracy
criterion is defined considering such dynamical property. Therefore, following the criterion
definited in [12] and already used in [13], an estimate of the length of the observation time
window is given by:

∆t ≤

√
1

ḟn
(13)

where ḟn is:
ḟn = maxI

[
ḟn(t)

]
, t ∈ [tI , tI + ∆t] (14)

The Eq.(13) shows the intuitive condition that the faster the rate of variation of fn is, the smaller
the length of the observation interval shall be in order to apply the OMA techniques to the given
signal segment without significantly violating the stationarity assumption.

2.4 The Aeroelastic system

The proposed methodology is assessed considering the response of the structural skin of an
aircraft wing subjected to a random load excitation which simulates the operating conditions.
A ramp variation in time of the airflow velocity, U = bt with b an arbitrary constant, is further
introduced in order to make the system time-varying. The well-known model for “panel flutter”
has been used to represent the system dynamics. This system is modeled as one-dimensional
body subjected to a loading p, a supersonic flow and a spring bed, as shown in Fig.1. The
mathematical model of this problem is proposed in [14]. If the problem is truncated to finite
dimensions (e.g. if the first two modes are considered) and normalized to unitary modal mass,
it is possible to write:(

ẅ1

ẅ2

)
+

[
d1 0
0 d2

](
ẇ1

ẇ2

)
+

([
w2

1 0
0 w2

2

]
+ Λ

[
0 1
1 0

])(
w1

w2

)
=

(
p1
p2

)
(15)
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where dn = 2ωnζn, with ζn the modal damping ratio and ωn the angular modal frequency.
Moreover, pn is the applied load (n = 1,2) and Λ is the aerodynamic term both projected into
the model basis.

Figure 1: The “panel flutter” model.

In detail, the Λ coefficient, following [14], is linked to the airflow velocity by means of:

Λ = akmU = akmbt (16)

in which k = 1 and m = 2, whereas the coefficient akm is given by [14]:

akm =
2m

k2 −m2
· (−m sin(kπ) sin(mπ)− k cos(kπ) cos(mπ) + k) (17)

and for this case, a12 = a21 = 2.667 and a11 = a22 = 0.
It is worth noting that the pure structural model, i.e. without aerodynamics, is at t = 0 when Λ
= 0.

3 NUMERICAL RESULTS

The numerical model of the panel flutter, illustrated in the previous section, has been imple-
mented in order to simulate the responses in terms of acceleration of four points of the structure.
Then, the numerical data were generated by resolving the Eq.(15). The applied load is a random
excitation in order to reproduce the flight conditions with the mean value and standard deviation
equal to 0 and 1, respectively, and the modal parameters which have been used are shown in
Tab.1.

Mode fn, Hz ζn, %
1 10.0 1.0
2 35.0 2.0

Table 1: Modal Parameters used for the simulation.

Moreover, four time-histories, belonging to four different positions on the beam, have been used
in order to have a sufficient number of measurement locations to identify the first two mode
shapes properly. In particular, considering the normalization per unit for length, the chosen
points are: 0.1, 0.3, 0.7 and 0.8. Moreover, in order to find the accelerations of these positions,
the solution obtained in the modal basis have been projected into the inertial reference system
and the corresponding vertical components have been used. The all analyses refer to a stable
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system, characterized by a flight velocity U lower than the flutter speed 3. In Fig.2 the stable
response time-histories, corresponding to the different locations are sketched.

(a) (b)

(c) (d)
Figure 2: Time signals at different locations on the beam: (a) Point at 0.1 - Channel 1, (b) Point at 0.3 - Channel 2,

(c) Point at 0.7 - Channel 3, (d) Point at 0.8 - Channel 4.

The theoretical solution, in terms of frequencies and damping ratios, is obtained resolving the
characteristic polynomial of fourth order associated to system written in Eq.15 [14]. The result-
ing time-tracking of the analytical natural frequencies is shown in Fig.3.

Figure 3: The time-tracking of analytical natural frequencies.

3.1 Estimate of natural frequencies by using HHT

Once the accelerations have been obtained, by resolving the Eq.(15), for each time-history,
the Empirical Modal Decomposition and then the Hilbert-Huang Transform have been carried
out, by using a passband filters. Such tools have been applied on all time signals. Thus, the
natural frequencies have been approximately estimated by means of a spectrogram, in order

3The flutter speed is the speed beyond which the structure has dynamic instability. Thus, a frequency, which is
belonging to the flutter mode, is associated to such velocity.
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to identify the correct frequency bands to filter the time series. Then, two of IMFs have been
recognized as each having the frequency content of one vibration mode. The selection of the
these IMFs has been done by the user by observing that energy content of the original signal
is practically contained in these IMFs. Recalling the Sifting Process, see section 2.1, the IMF
with the content of the first frequency has been identified before the IMF with the content of
the second one. The estimated behaviour of the natural frequencies is illustrated for each time
response in Figs.4, 5, 6 and 7. The polynomial fit of the instantaneous frequencies has been
performed by using the amplitude of the analytical signal, Eq.4, as from section 2.1. Fig.4
to Fig.7 show the results obtained respectively for signal 1 to 4. The black dots represent the
instantaneous natural frequencies, whereas the green solid lines are the second order polynomial
fitting of these quantities.

Figure 4: Time-tracking of natural frequencies using HHT, channel 1.

Figure 5: Time-tracking of natural frequencies using HHT, channel 2.

Figure 6: Time-tracking of natural frequencies using HHT, channel 3.
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Figure 7: Time-tracking of natural frequencies using HHT, channel 4.

From the obtained results, it is possible to note that the behaviour of natural frequencies is well
approximated by a polyfit curve of order 2, for each time-history. Moreover, a comparison with
the analytical results has been carried out in order to demonstrate the accuracy of the estimates
obtained by using the Hilbert-Huang Transform. Thus, by looking at Figs.8 and 9, it is possible
to note that the time-tracking of the estimated natural frequencies are almost the same with
respect to the analytical one.

Figure 8: Time-tracking of natural frequencies: comparison between the first natural frequencies and analytical
one.

Figure 9: Time-tracking of natural frequencies: comparison between the second natural frequencies and analytical
one.

As it is possible to see in Figs.8 and 9, the natural frequency estimates are practically coincident
with the analytical predictions. The corresponding negligible errors are mainly due to numerical
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issues related to the time discretization process. For this reason, a further correlation between
the results of the proposed method and the analytical ones is shown from Fig.10 to Fig.13,
where the eigenfrequency shifts, defined as in Eq.18, are reported as a function of time and for
each of the analyzed channels, respectively.

εk(t) =
fAk (t)− fEk (t)

fAk (t)
(18)

in which k = 1,2.

Figure 10: Natural frequency shift for channel 1.

Figure 11: Natural frequency shift for channel 2.

Figure 12: Natural frequency shift for channel 3.
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Figure 13: Natural frequency shift for channel 4.

From Fig.10 to Fig.13, it seems that the Hilbert-Huang Transform provides good estimates of
the time-tracking of the natural frequencies of the considered aeroelastic system and the errors
of the estimates are negligible. In fact, the natural frequency shifts show the same behaviour for
all channels. In particular, the analytical first natural frequency is underestimated in the first part
of the observation time and it is overestimated in the second part, whereas the second natural
frequency shows an opposite trend. This behaviour is not found in the 4th signal, because it is
slight different from the others regarding the estimate of the first frequency.

3.2 Estimate of damping ratios and mode shapes by using HTM

Damping ratios and mode shapes are finally estimated using the HTM assuming the aeroelastic
system properties as those corresponding at the selected time for which the natural frequency
estimate has been already carried out using HHTM. In such an operating condition, the system
is assumed to be time-invariant and linear behaving. Therefore, the HTM could be applied to
analyze the time histories, which are derived from the sum of IMFs, in the time-interval for
which the time-invariance is valid. Therefore, the criterion, presented in section 2.3, has been
applied in order to split the whole observation time. The maximum values of derivative of time-
tracking of the frequency and the corresponding observation time-window for each channel are
shown in Tab.2.

N. Channel ḟn, 1/s2 ∆t, s
1 0.1067 3.06
2 0.1171 2.92
3 0.1172 2.92
4 0.1179 2.91

Table 2: Parameters used to find the correct observation time-window for HTM.

Therefore, the length of the observation time window is a smaller value than those in Tab.2, so
as to ensure that the system is time-invariant at all sub-intervals for all the analyzed signals. For
this reason, the chosen value for the length of sub-interval is:

∆t = 2.90 s (19)

Then, the whole observation time has been separated into 22 sub-intervals having 512 samples
and for each of them the HTM has been used the estimate both the damping ratios and the mode
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shapes. It is worth underlining that the time-history used for the estimate of modal parameters
is not the original signal, but the sum of IMFs. Specifically, the sum consists of the IMFs which
have been chosen to find the trend of natural frequencies. The trend of damping ratios over
time, obtained from HTM, is shown in Fig.14. It is possible to note that one estimate of the
damping of first mode is not accurate. In fact, in sub-interval I10 = [26.1 s - 29 s], the damping
ratio has been estimated 1.24 %; instead in this sub-interval the analytical value is around 0.87
%. This result is due to the low accuracy of estimating. For this reasons, the polyfit has been
performed without considering this low accurate estimate. As shown in Fig.14, the trend of the
polyfit curve shows good correlation with the analytical one.

Figure 14: Time-tracking of damping ratio.

In order to evaluate the evolution of natural mode shapes, all the identified modes correspond-
ing to the different sub-intervals of analysis have been compared with the reference mode cor-
responding to the one at the initial time-interval I1 = [0 s - 2.9 s], using the Modal Assurance
Criterion (MAC). The results of the comparison for the first and the second mode shapes are
shown in Figs.15 and 16, respectively.

Figure 15: Time-evolution of MAC value for first mode shape with respect to the time-interval 1 one.
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Figure 16: Time-evolution of MAC value for second mode shape with respect to the time-interval 1 one.

It is possible to note that the first mode shape exhibits an evident change than the second one.
This is probably due to the intrinsic properties of the analyzed system because a corresponding
a large variation of the first natural frequency and damping ratio over time. In fact, the first
frequency changes in a range [10.0 Hz - 14.24 Hz] and the damping ratio between [1 % - 0.23
%]. Instead the second frequency and damping ratio change more slowly and respectively in
ranges [35.0 Hz - 33.5 Hz] and [2 % - 2.29 %]. Moreover, the number of the used measurement
points, i.e. four, is the minimum value in order to identify the second mode.

4 CONCLUSION

A method based on the Hilbert Transform is proposed to deal with time-varying system. The
method requires first the use of the HHTM for the time-tracking of the natural frequencies.
Then, the HTM is considered for the estimate of the damping ratios and the mode shapes corre-
sponding to the natural frequencies previously identified. This last phase assumes the system is
well represented by a linear and time-independent model, at least in the time-intervals, in which
the natural frequencies are evaluated. The proposed approach has been validated considering
a structural skin of an aircraft wing, under its actual operative conditions. Indeed, an excellent
correlation with the analytical results has been achieved. Therefore, the developed method is
found to be a promising tool for the system identification using real flight test data.
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