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Abstract: An efficient approximate POD/ROM reconstruction method was proposed that can 
use the existing CFD-based POD/ROMs to rapidly obtain the new aeroelastic responses when 
structural parameters of the transonic aeroelastic system are changed at global level. The 
approximate method is illustrated and verified by the AGARD 445.6 wing model with 
different structural parameter variation. The simulation results show that proposed new 
POD/ROM reconstruction method can accurately capture the new aeroelastic responses and 
flutter boundary corresponding to the changed system with high efficiency. The proposed 
method extend the traditional POD/ROM from fix structural aeroelastic system to those with 
large global structural variations. 
 
1 INTRODUCTION 
 
To obviate the costs involved in solving complex fluid models of large size, researchers have 
developed CFD-based unsteady aerodynamic reduced order models (ROMs)[1-4]. These 
models extract key data of the fluid systems to generate a low dimensional system that retains 
similar accuracy of the full order model while reducing significantly the costs. System 
identification and proper orthogonal decomposition (POD) are among the most popular 
ROMs for nonlinear aeroelastic analysis. For example, Dowell [5] and Lucia [6] demonstrated 
the use of ROMs to investigate transonic limit-cycle oscillation (LCO). Raveh [7] reported on 
ROMs for gust load analysis in the transonic regime, investigating both discrete and 
continuous gust responses. The POD method, in particular, has been successfully applied to 
the aeroelastic analysis of turbine blades [8, 9]，helicopter rotor blade [10], wings [11-13] 
and complete aircraft configurations [14, 15]. More recently, the POD has been exercised for 
transonic aeroelastic analysis [16], active aeroelastic control [17], LCO control [18], gust 
response analysis [19], and transonic flutter suppression with control delay [20].  
 
The largest efforts in the ROM community are addressed at improving the model predictions 
at a fixed flight condition for a frozen aeroelastic model configuration. Changes to either 
flight conditions (Mach number, angle of attack, etc.) or model configuration (mass, 
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geometry, etc.) are neglected for the difficulty of accounting these effects within a single 
ROM. The limited body of work on this topic consists of the following publications available 
in the open literature. Epureanu [21] and Lieu [22-24] used ROMs to predict the transonic 
aeroelastic response with variations of the free stream Mach number and angle of attack. Chen 
[25] proposed a nonlinear POD technique, Chen [26] discussed a support-vector-machine 
based ROM, and Chen [27] presented a linear parameter-varying (LPV) valid for bounded 
changes of the flow conditions. Even fewer studies have shown the ability to capture changes 
in the mass and stiffness distribution of an aircraft structure within a single aeroelastic ROM. 
As the aircraft design process progresses through maturity gates, with the outer shape being 
frozen at the early stages, the structural model undergoes multiple changes to guarantee the 
design target loads are met. Structural modeshapes and associated frequencies are dependent 
upon the mass and stiffness distribution, and this should be carefully included in an 
aeroelastic analysis, Hayes [28]. When a structural modification is made, the structural model 
should be updated and the new modeshapes and frequencies recalculated. In an aeroelastic 
analysis, the influence of changes in the structural model will also propagate to the fluid 
solution, with both mean and unsteady flow components dependent upon the structural model. 
One approach to update the aeroelastic ROM, referred to as the direct approach, is the 
regeneration of the model. For every change of the structural model, this entails calculating: 
a) the new set of modeshapes and frequencies; b) the mean flow solution that guarantees the 
aeroelastic equilibrium; and c) the ROM around the new equilibrium position[29-32].  
 
Rather than reconstructing a new POD/ROMs as the direct method, the innovation of the 
paper is that we proposed an new approximate aeroelastic ROM interpolation method by 
introducing the approximate structural dynamic reanalysis method with structural parameters 
modification to the traditional ROM construction procedure. It is means that we proposed an 
approximate dynamic reanalysis based ROM Interpolation method, thus an new structural 
parameterization POD/ROM, which would be expect to have the great potential to extend the 
application of the traditional aeroelastic ROM to aeroelastic optimization and uncertainty 
analysis in transonic flow. The paper is constructed as follows: Sec.2 give the brief 
introduction of the standard POD/ROM construction procedure for aeroelastic systems; Sec.3 
give a description on the approximate dynamic reanalysis based aeroelastic analysis method 
firstly, and then introduce the proposed incorporation procedure of the structural reanalysis 
algorithm with the POD/ROM construction method for the aeroelastic models with global 
structural parameter variation; In Sec.4 the proposed new ROM interpolation method was 
demonstrated and evaluated by the AGARD 445.6 aeroelastic wing model with global level 
structural parameters variation in transonic flow. Sec. 5 is the conclusion and discussion of 
the proposed method. 
 
 
2 CFD-BASED REDUCED ORDER MODEL FOR AEROELASTIC SYSTEM 
 
2.1 Flow and Structural Solver 
 
A nonlinear aeroelastic system can be represented by the two-field arbitrary Lagrangian-
Eulerian (ALE) method, in which the governing equation of the nonlinear aeroelastic system 
can be written as 

( ) ( )d
dt
⋅

+ =
A w F w 0                                                                  (1) 

+ + =Md Dd Kd f&& &                                                                    (2) 
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Eq. (1) represents a finite volume discretization of the ALE non-dimensional conservative 
form of the Navier–Stokes equations. Here, A is a diagonal matrix containing the cell 
volumes, F is the nonlinear numerical flux function, w is the conservative state vector of the 
fluid subsystem, and d is the vector of structure displacements. Eq. (2) is for a finite element 
discretization of the structural dynamic equations. M, D, and K are the mass, damping, and 
stiffness matrices, respectively. f is the vector of aerodynamic loads at the structural grid 
points, derived from solving Eq. (1). 
 
2.2 CFD/CSD coupling simulation 
 
The CFD solver employs Cartesian grids, using a multi-block structured cell-centered finite 
volume discretisation, and the second-order Van Leer scheme [33] is used for the spatial 
discretization. The dual time-stepping [34] and Lower-Upper Symmetric Gauss-Seidel (LU-
SGS) implicit method [35] are used for time integration. A modal representation of the 
structural model is used. Using generalized (or modal) coordinates u, the structural 
displacement field may be expressed in the form =d Φu , where 1 2[ ,  ,  ...]=Φ φ φ denotes the 
modal matrix. It follows that Eq. (2) may be rewritten as: 

gen⋅ + ⋅ + ⋅ =M u D u K u f&& &                                                             (3) 

where T=M Φ MΦ , T=D Φ DΦ and T=K Φ KΦ are the generalized mass, damping and stiffness 
matrices, respectively. genf is the vector of generalized aerodynamic forces: 

T
gen =f Φ f or for vector element i: i i

gen pq c d∞= ⋅ ⋅∫sf Soφ                                   (4) 

where i
genf is i-th generalized aerodynamic forces, q∞ is the free stream dynamic pressure, pc is  

pressure coefficient.           
                                                 
A time-domain, fully-implicit, loosely-coupled partitioned approach is employed for the 
unsteady fluid-structure interaction (FSI) analysis. The process is illustrated in Fig. 1. A 
converged steady-state flow solution is used to initiate the FSI iteration loop. The transfer of 
the aerodynamic loads from the fluid to the structural field, and the transfer of the structural 
displacements from the structural to the aerodynamic field are performed using the infinite 
plate spline (IPS) method [36]. The radial basis functions (RBFs), combined with the 
transfinite interpolation (TFI) algorithm [37], are then used to warp the fluid volume mesh, 
based on the new deformed surface grid obtained by mapping the structural displacements to 
the fluid surface grid. The iterative process continues until the change in the structural 
displacements is below a given threshold, or the maximum number of iterations is reached. 
The coupled aeroelastic solver has been exercised on several two and three-dimensional 
aeroelastic models. The reader may find more details in [16, 20, 38]. 
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     Figure 1: Flow chart of the fluid-structure coupling algorithm 

 
2.3 POD/ROM Method for Aeroelastic Modeling 
 
The POD method finds common use in providing a compact description of large 
computational models as, for example, in approximating the spatial and temporal 
characteristics of unsteady transonic flows for aeroelastic analysis [39, 40]. First, the unsteady 
flow equations are linearized around a mean flow solution (equilibrium). The linearized flow 
solver is then used to obtain the POD snapshots for the generation of the unsteady 
aerodynamic ROM. Denoting ( , ,Δ Δ Δw u u& )small perturbation around the equilibrium 
( 0 0 0, ,w u u& ),one obtains the linearized flow equations: 

( + )+ + + =0A w Hw E C u Gu 0& &                                                 (5) 

where 

0 0 0( , , )∂
=
∂

FH w u u
w

&      0 0 0( , , )∂
=
∂
FG w u u
u

&                                           

0
∂

=
∂
AE w
u

            0 0 0( , , )∂
=
∂
FC w u u
u

&
&

                                                

The matrix H is the gradient of the numerical flux function with respect to the vector of fluid 
variables. Matrices G and C are the gradients of the flux function with respect to the 
generalized coordinates and their velocities, respectively. Finally, the matrix E indicates the 
gradient of the cell volumes with respect to the generalized coordinates. Note that the matrices 
G, E and C need to be recomputed if the structural parameters are changed. 
 
The linearization of the structural dynamic equation around an equilibrium state can be 
written as follows: 

0 0s+ + =Mu D u K u P w&& &                                                          (6) 

where 

0 0 0( , )
int∂

=
∂
fK u u
u

&       0 0 0( , )
ext

s
∂

= −
∂
fK K w u
u

                                  

0 0 0( , )
int∂

=
∂
fD u u
u

&
&

      0 0 0( , )
ext∂

=
∂
fP w u
w

                                          

For the analysis of the system stability, the terms
ext∂

∂
f
u

and 0D can be neglected [23], which 

leads to the structural dynamic equation such as: 
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0 0+ =Mu K u P w&&                                                                    (7) 

The aeroelastic stability is studied as an eigenvalue problem [41]. Using the linearized flow 
and structural equations derived in Eqs. (5) and (7), the generalized eigenvalue problem is: 

( )i iζ− =N Θ q 0                                                                     (8) 

where iζ indicates the i-th eigenvalue and iq the corresponding eigenvector, and 

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H    (E + C)    G
N -P       0          K

0          I           0
, 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  0   0
Θ 0   M 0

0   0   I
, 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

w
q u

u
& .                                     

A ROM of the unsteady flow is considered in this work, based on the POD technique. The 
POD method aims at reconstructing the behavior of the overall system using an orthogonal 
basis set with much smaller number of degrees of freedom. Denote{ }kx , 1,2,3k m= K , a set of 
data, with kx is the n-dimensional space, and m is the number of snapshots. The POD method 
searches an m-dimensional proper orthogonal subspace, n m×∈Ψ R , to minimize the mapping 
errors fromΨ  

1 1

min
m m

k T k k T k

k k= =

= − = −∑ ∑Φ
G x ΩΩ x x ΨΨ x , H =Ω Ω I                               (9) 

The minimization problem is equivalent to 

( ) ( )2 2

2 2
1 1

, ,
max

k k
m m

k k= =

= =∑ ∑Φ

x Ω x Ψ
H

Ω Ψ
, H =Ω Ω I                                  (10) 

The constraint optimization problem in Eq. (6) is transformed into the following Lagrange 
equation 

( ) ( ) ( )2 2

1

, 1
m

k

k

J λ
=

= − −∑Ω x Ω Ω                                                 (11) 

Solving the partial derivative of the objective function ( )J Φ with respect toΦ gives 

( ) 2 2Hd J
d

λ= −Ω XX Ω Ω
Ω

                                                    (12) 

where 1 2{ , , } n m
m

×= ∈X x x x RL is a matrix containing m snapshots as columns. By setting Eq. (12) 
to zero; thus, the following equation is obtained: 

 ( ) 0T ξ− =XX I Ψ                                                            (13) 

The problem is transformed into solving the eigenvalue problem of the POD kernel, HXX . 
The eigenvalue problem has very large size, as H n n×∈XX R . Because HXX and HXX have the 
same eigenvalues, so we can obtainΨ as following equation [41]: 

1/2

T

−

⎧ =⎪
⎨

=⎪⎩

XX V VΛ
Ψ XVΛ

                                                              (14) 

where 1 2[ , , , ]m=Ψ ψ ψ ψK , 1 2( , )mdiag ξ ξ ξ=Λ L , 1 2 ,..., mξ ξ ξ≥ ≥ ≥ . The value of iξ represents the 
contribution of the i-th snapshot to the original system. To build an aeroelastic ROM, it is 
typically possible to retain the first r-order POD modes 1 2[ , ,..., ]r r=Ψ ψ ψ ψ while retaining most 
of the energy of the original system. By projecting the full-order series 1n×x on the r-order POD 
modes 1 2[ , ,..., ]r r=Ψ ψ ψ ψ , we can reduced the full order system to a reduced r-order system 
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T T
r r r r r
ext

r r

⎧ = +⎪
⎨

=⎪⎩

x Ψ AΨ x Ψ By

f CΨ x

&
                                                      (15) 

where 1
0
−= −A A H , [ ]1

0 +−= −B A E C  G , [ ]T=y u  u& , =C P . Here, A, B, and y can be considered as 
the system inputs, and the extf is the system output. 
 
In summary, above POD process outlined can be used for constructing a fluid ROM for 
prescribed modeshapes. The corresponding aeroelastic responses is obtained by coupling Eq. 
(7) with Eq. (15). 
 
3 ROM INTERPOLATION METHOD BASED APPROXIMATE DYNAMIC 
REANALYSIS  

3.1 Approximate structural dynamic reanalysis method 
In the optimization of structural systems, it is very important to re-compute the eigenvalues of 
the structures when the parameters of the structures are changed. In many cases, one of main 
obstacles is the high computational cost involved in the solution of a large-scale eigenvalue 
problem. To this goal, a number of methods have been proposed to ease the eigenvalue 
reanalysis for the modified structures. Generally, methods are classified into two categories 
[42]. First, direct methods are commonly based on the Sherman-Morrison-Woodbury (SMW) 
formula [43] that is applicable for large but local (or low-rank) modifications. The drawback 
of these methods is that they are limited by the scale of the problem or rank of the 
modification, and are not suitable for global modifications of the structural parameters. Direct 
methods also suffer from high computational costs. As an alternative to direct methods, 
approximate methods [44-46] aim at obtaining the frequencies and modeshapes for the 
modified structures without resolving the eigenproblem. The advantage in doing so is a 
significant reduction of the computational costs, and the applicability is extended for global 
(or high-rank) modifications of the structures. The extended Kirsch combined method [45, 47] 
is an efficient approach for the case of large modifications of the structural parameters. More 
details relevant to this work are given next. 
 
For the structural dynamic equations Eq. (3), consider a structure with stiffness matrix 0K and 
mass matrix 0M . The corresponding frequencies 0

iλ and modeshapes 1 2
0 0 0[ ,  ,  ...]=Φ φ φ are 

calculated by solving the generalized eigenproblem: 

0 0 0 0 0
i i iλ=K Mφ φ                                                                (16)       

which will be referred to as the original problem (indicated by the subscript 0). When the 
structural parameters are changed, the stiffness and mass matrices are perturbed into the 
form 0 + ΔK K and 0 + ΔM M , respectively. The termsΔK and ΔM denote the perturbations in the 
stiffness and mass matrix, respectively. The eigenvalue problem for modified structural 
parameters becomes: 

 i i iλ=K Mφ φ                                                                 (17) 

where iλ is i-th eigenvalue of the modified structure, iφ is i-th eigenvector of the modified 
structure. 
 
The extended Kirsch combined method use the second-order eigenvector terms [48] as the 
basis vectors in the following modeshapes reduced basis: 
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i i i
B= zφ φ                                                                (18) 

where 

1 2,  ,  i i i
B ⎡ ⎤= ⎣ ⎦φ φ φ φ0

i                                                           (19) 

3 1
0 1 2(z ,  z ,  z )i i i i T ×= ∈z R                                                     (20) 

1 0 0 0 0 0 0 0 0 1
1, 0 0

1 1[( ) ( ) ] [( ) ]
2

n
i s T i i s i T i i i

i s
s s i

λ
λ λ= ≠

= Δ − Δ − Δ =
−∑ K M M Zφ φ φ φ φ φ φ φ

                   (21) 

2 0 0 1 1 0 0 1 0 0
1, 0 0

0 1 1 0 1 0 0 0 2

1 [( ) ( ) ( ) ( )]

1 [( ) ( ) ( )]
2

n
i s T i i i s T i i s

i s
s s i

i T i i T i i i i

λ λ
λ λ= ≠

= Δ − Δ − + Δ
−

− Δ + + Δ =

∑ K M M M

M M M Z

φ φ φ φ φ φ φ

φ φ φ φ φ φ φ

                    (22) 

where 1
iφ and 2

iφ are the i-th first-order and second-order eigenvector of the modified structure, 
respectively. The coefficient vector, iz , contains three unknowns (for a second-order 
perturbation). Substituting Eq. (21) and Eq. (22) into Eq. (18), Φ can be written as 

1 1 1
0 0 0 0

1 1 2
0 0 1 1 0

1 1 3
0 0 2 2

... ...
... ...

... ...

Ti i

i i

i i

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 0 0 0 z 0 0
Φ 0 0 0 Z Z 0 0 z 0 Φ Z

0 0 0 0 Z Z 0 0 z

φ φ Ι Ι
φ φ

φ φ

                    (23) 

where 

1 1
0 0

1 2
1 1

1 3
2 2

...
...

...

Ti

i

i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0 z 0 0
Z 0 Z Z 0 0 z 0

0 0 Z Z 0 0 z

Ι Ι
                                          (24) 

Substituting Eq. (18) into the modified analysis equations Eq. (17), and premultiplying 
by ( )i T

Bφ , one obtains: 

0 0( ) ( ) ( ) ( )i T i i i i T i i
B B B Bλ+ Δ = + ΔK K z M M zφ φ φ φ                                    (25) 

Introducing the notation 

0( ) ( )i i T i
R B B= + ΔK K Kφ φ                                                    (26) 

0( ) ( )i i T i
R B B= + ΔM M Mφ φ                                                    (27) 

and substituting Eq. (26) and (27) into Eq. (18), we can obtain a set of ( 3 3× ) matrix equation 
i i i i i
R Rλ=K z M z                                                            (28) 

Thus, the coefficient vector iz is evaluated from Eq. (28). The i-th eigenvector of the modified 
structure is obtained by substituting iz into Eq. (18) and Z is obtained by substituting iz into Eq. 
(24). 
 
Finally, the i-th eigenvalue of the modified structure, i

Kλ , is computed using Rayleigh 
quotient: 
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0

0

( ) ( )
( ) ( )

i T i
i
K i T iλ + Δ
=

+ Δ
K K
M M

φ φ
φ φ

                                                   (29) 

To summarize, the extended Kirsch combined method involves the following operations: 
(1) Solve the eigenvalue problem for the original structure, Eq. (16), and calculate the mass 

and stiffness matrices of the modified structure, 0 + ΔK K and 0 + ΔM M , respectively; 
(2) Compute first and second-order perturbations of the eigenvector of the modified 

structure, Eqs. (21) and (22); 
(3) Form the stiffness and mass matrices ( i

RK and i
RM ) of the reduced system corresponding 

to the i-th eigenvector using Eq. (26) and Eq. (27); 
(4) Use Eq. (28) to calculate the coefficients iz ; 
(5) Substitute z into Eq. (24) to get a constant matrix Z and use Eq. (18) to compute the 

approximate eigenvectorsΦ ; 
(6) Finally, compute the approximate eigenvalue i

Kλ using Rayleigh quotient by Eq. (29). 
 
3.2 Reanalysis algorithm based POD/ROM interpolation method 
 
The modeshapes 0Φ of the original structure is taken as the basic modeshapes for basic 
POD/ROM construction. For modified structure, the physical displacement of the wing can be 
written as 

=d Φu                                                                      (30) 

Substituting Eq. (23) into Eq. (30), the physical displacement of the wing can also be written 
as 

0 ( )=d Φ Zu                                                                  (31) 

and b =u Zu , bu is artificially defined as basic generalized displacements.  
 
A change of the structural parameters affects the matrices H, G, E and C of the linearized 
flow solver, Eq. (9). Substituting the relation b =u Zu , the matrices may be rewritten in terms 
of the vector of basic generalized displacements: 

0 0 0 0 0 01( , , ) ( , , ) b
b

−

∂ ∂
= = =
∂ ∂
F FG w u u w u u ZG
u Z u

& &
                                         

0 01 b
b

−

∂ ∂
= = =
∂ ∂
A AE w w ZE
u Z u

                                                       

0 0 0 0 0 01( , , ) ( , , ) b
b

−

∂ ∂
= = =
∂ ∂
F FC w u u w u u ZC
u Z u

& &
& &

                                        

where bG , bE , bC are the first order terms in a Taylor series expansion of the basis reduced r-
order system aeroelastic. Now, the reduced fluid model of modified structure is written as 

T T
r r r r r b
ext

b r r

⎧ = +⎪
⎨

=⎪⎩

x Ψ AΨ x Ψ ZB y

f ZC Ψ x

&
                                                    (32) 

where 1
0
−= −A A H , [ ]1

0 +b b b b
−= −B A E C   G , [ ]T=y u  u& , b b=C P . 

 
The structural dynamic equations of modified structure are: 
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ext+ =Mu Ku f&&                                                                (33) 

here, 0 0( )T T= ΔM Z Φ M + M Φ Z , 0 0( )T T= ΔK Z Φ K + K Φ Z . In addition, when =ΔK 0 , =ΔM 0 , Z is the 
unit matrix, Eq. (32) and Eq. (33) are equivalent to Eq. (15) and Eq. (7), respectively. 
 
The vector of generalized aerodynamic loads extf corresponding to the new modeshapesΦ of 
the global modification structural model can ben rapidly calculated without the expensive 
time-consuming reconstruction procedure of the new POD basis. 
 
The proposed appropriate structural dynamic reanalysis based POD/ROM interpolation 
method is illustrated in Fig. 2. 

 

 
Figure 2 Flow chart of approximate method 

 
Per Fig. 2, the proposed POD/ROM interpolation algorithm is summarized as followings: 
(1) Establish CFD-based POD/ROMs based on the basis modeshapes; 
(2) Use Extended Kirsch combined method to get Z; 
(3) Per Eq. (25), transform generalized displacements u to the basis generalized 

displacements bu ; 
(4) Input the basis generalized displacements bu into POD/ROMs based on the basis 

modeshapes to obtain the generalized aerodynamic force coefficients ext
bf ; 

(5) Finally, combining reduced fluid model Eq. (32) and the structural dynamic model Eq. 
(33) to compute the generalized aerodynamic force coefficients corresponding to the 
modeshapesΦ . 

 
When the global structural parameters are modified, the generalized aerodynamic force 
corresponding to the modeshapes can be computed quickly by repeating steps 1-5, rather than 
constructing a new set of POD basis. The approximate method can significantly reduce the 
computational cost which would be convenient for the transonic aeroelastic stability analysis 
and optimization with global structural modification. 
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4 NUMERICAL RESULTS AND DISCUSSION 

4.1 POD/ROM solver validation 
Before demonstrating the efficiency and accuracy of the proposed ROM interpolation method 
for transonic aeroelastic problems with global structural parameter variations, the POD/ROM 
solver is validated firstly using the AGARD 445.6 aeroelastic wing model [49]. The AGARD 
445.6 aeroelastic model is with a 45 deg quarter-chord sweep angle, a panel aspect ratio of 
1.6525, and a taper ratio of 0.6576 with a symmetrical NACA65A004 airfoil section. The 
wing material properties were with the density of 381.98 3Kg/m . The elastic modulus in the 
span-wise direction and the chord-wise direction is 3.151 and 0.416 GPa, respectively. The 
shear modulus is 0.4392 GPa. The Poissons ratio of 0.31 [50]. The structural model, shown in 
Fig. 3(a), consists of 231 nodes and 200 elements. The thickness distribution of the wing was 
governed by airfoil shape. 
 
A multi-block structured mesh was employed for the flow solver, consisting of 61 
computational nodes around each airfoil section and 20 nodes along the wing semispan, as 
shown in Fig. 3(b). The spatial convergence of the CFD mesh was analyzed in Zhou [20], 
which reported a good agreement of the results from both the medium and fine grids. The 
total number of grid points on the medium grid, herein used, is 223,146 ( 99 49 46× × ). Fig. 4 
shows the flutter speed predictions computed by the present coupled CFD/CSD solver and the 
proposed POD/ROM solver. For comparison, experimental data from [49] are also included. 
The agreement between the ROM and the large computational aeroelastic solver is good for 
all Mach numbers considered (0.499 to 1.141), including the well-known transonic dip of the 
flutter speed. The accuracy of both methods have been evaluated over the years in a number 
of aeroelastic studies [16, 20, 38]. 
 
 

(a)  (b)  

Figure 3: AGARD 445.6 wing: (a) structural model, and (b) surface CFD mesh 
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Figure 4:  AGARD 445.6 wing flutter boundary; experimental data from [49] 
 

4.2 Accuracy evaluation of the structural dynamic reanalysis model 
For exemplification, the structural model of the AGARD 445.6 wing is divided into four 
spanwise sections, as shown in Fig. 3(a). Each section consists of 50 structural elements of 
identical material properties, but material properties are allowed to vary from one section to 
the other. To obtain global variations of the mass and stiffness distribution, material 
properties are assumed to vary as 

Section 1, (1 3 )1 0E Eε= + ,  (1 3 )1 0ρ ε ρ= +  

Section 2, (1 2 )2 0E Eε= + ,  (1 2 )2 0ρ ε ρ= +  

Section 3, (1 )3 0E Eε= + ,  (1 )3 0ρ ε ρ= +  

Section 4, 4 0E E= ,   4 0ρ ρ=  

where 0E and 0ρ are the Young’s modulus and density, respectively, of baseline structural 
model. It is worth observing that the choice above is used for demonstration purposes and 
shall not be taken here as a limiting case of the present method. On the contrary, material 
properties may be thought to vary independently on every single structural element, as 
commonly practiced in an aeroelastic tailoring study. To assess the accuracy of the ROM in 
analyzing the modal characteristics of the modified structural model, two criteria are 
introduced. The first represents the error of the modal frequencies: 

i i
A E

i
E

f fError
f
−

=                                                                           (34)
 

where i
Ef denotes the exact modal frequencies, which are computed through a direct modal 

analysis, and i
Af denotes the approximate modal frequencies obtain by the Extended Kirsch 

combined method. The second criterion is the Modal Assurance Criterion (MAC), defined as: 
2

MAC( , )
( )( )

T
E A

A E T T
A A E E

=
Φ Φ

Φ Φ
Φ Φ Φ Φ

                                               (35) 

where EΦ represents the exact modeshapes (direct modal analysis), and AΦ represents the 
approximate modeshapes (Extended Kirsch combined method). For a perfect match between 
the exact and approximate modeshape, the MAC is 1. 
 
In the following, three modified cases are considered: 1/12,  1 / 6,  1 / 3ε = . Fig. 5 shows the 
modeshapes and associated frequencies for the original and modified AGARD 445.6 wing. 
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For conciseness, only the case with the largest structural modifications ( 1/ 3ε = ) is reported. 
The first four modeshapes are identified as the first bending, first torsion, second bending, and 
second torsion, respectively. Quantitatively, the errors between approximate and exact 
parameters are summarized in Table 1 for the three values of the modification parameter. For 
all cases, the error of the modal frequencies is well below one percent. For the MAC, values 
near unity indicate a good to excellent agreement between the modeshapes of the approximate 
and exact solutions. The comparison conveys the good predictive capability of the Extended 
Kirsch combined method to provide approximate modeshapes and frequencies, which are 
accurate for fast engineering applications, without resorting to a direct modal analysis for 
each modified structural case. 
 

Parameter Mode Exact /Hz Approximate 
/Hz Error/% MAC 

1/12ε =  

1 10.208 10.207 -0.005 1.0000 
2 41.228 41.232 0.010 0.9999 
3 50.756 50.792 0.071 0.9998 
4 95.962 96.034 0.076 0.9991 

1/ 6ε =  

1 10.854 10.856 0.021 1.0000 
2 42.457 42.470 0.030 0.9998 
3 51.819 51.930 0.220 0.9993 
4 96.633 96.873 0.248 0.9970 

1/ 3ε =  

1 11.933 11.943 0.082 0.9999 
2 44.354 44.398 0.101 0.9994 
3 53.591 53.894 0.565 0.9991 
4 97.712 98.412 0.716 0.9911 

 
Table 1: Error of modal frequencies and MAC for the first four modes. 

 
 
 

(a)  (b)  (c)  

Mode 1 1f =9.460              Mode 1 1f =11.933              Mode 1 1f =11.943 

               
Mode 2 2f =39.707              Mode 2 2f =44.354             Mode 2 2f =44.398 

             
Mode 3 3f =49.510             Mode 3 3f =53.591            Mode 3 3f =53.894 
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Mode 4 4f =95.134             Mode 4 4f =97.712            Mode 4 4f =98.412 

 
Figure 5: First four modeshapes of the AGARD 445.6 wing: (a) modeshapes and frequencies of original structure, (b) exact 
modeshapes and frequencies for large modification ( 1 / 3ε = ), (c) approximate modeshapes and frequencies for large 
modification ( 1 / 3ε = ). 

4.3 Accuracy Evaluation of the POD/ROM interpolation model 
After evaluation the accuracy of the POD/ROM model and the structural dynamic reanalysis 
model of the AGARD 445.6 wing, which are both the key procedures of the proposed new 
ROM interpolation method, the whole interpolation appropriate POD/ROM will be evaluated 
in this section. According to the Eq. (32), the approximate POD/ROM method transform the 
generalized aerodynamic force based on the original modeshapes (as shown in Fig. 5(a)) to 
the aerodynamic responses corresponding to modified modeshapes. 
 
The time histories of the generalized aerodynamic force predicted by the direct POD/ROM 
and the proposed interpolation appropriate POD/ROM are shown in Fig. 6. It should be noted 
that the direct POD/ROM method has to reconstruct a new set of POD/ROMs to keep the 
accuracy. For simplifying the description, only the aeroelastic responses with the largest 
structural parameter modification ( 1/ 3ε = ) at the Mach number of 0.960 and the zero angle of 
(AOA) attack were shown in Fig.6. As it can be seen, the aeroelastic responses predicted by 
both methods agree fairly well. The other cases with the different structural parameter 
variations have the similar conclusions. The well agreements initially indicate that the 
proposed interpolation approximate POD/ROM model can accurately capture the generalized 
unsteady aerodynamic responses corresponding to the global structural parameter variations, 
even for very large structrual modification such as 1/ 3ε = . 
 

   
(a) Generalized force of first bending mode        (b) Generalized force of first torsion mode 
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(c) Generalized force of second bending mode      (d) Generalized force of second torsion mode 
 

Figure 6 :Comparison of time histories of generalized aerodynamic forces obtain by the direct and approximate method for 
the largest modification ( 1/ 3ε = ). 
 
For further demonstrating the effectiveness and accuracy of the proposed method, two typical 
aeroelastic structural time responses (decaying and diverging) for the three different structural 
parameter variation cases under different free stream dynamic pressures are compared as 
shown in Fig. 7. The aeroelastic responses are both obtained by the direct and approximate 
POD/ROM construction method, respectively. It can be seen that in all the three different 
structural modification cases, both the divergent and convergent aeroelastic time responses 
are well consistent. It indicates again that the approximate interpolation POD/ROM method 
has good accuracy for aeroelastic response prediction of the AGARD 445.6 wing in a very 
large range of structural parameter variation without reconstructing new POD basis 
corresponding to the new structural model. 

                  
(a) Generalized displacements of first bending mode 

   
(b) Generalized displacements of first torsion mode 

   
(c) Generalized displacements of second bending mode 
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(d) Generalized displacements of second torsion mode 

 
Figure 7:Comparison of time histories of generalized displacements obtain by the direct and approximate method 
for 1/12ε = at various dynamic pressures: 290V∞ = m/s (left), 320V∞ = m/s (right) (Ma=0.960, AOA=0 deg) 
 
Fig. 9 shows the relationship curve between the system eigenvalue with the largest real part 
(max(Re(λ))) and speed for the three different degrees of structural variations 
( 1/12,  1 / 6,  1 / 3ε = ), which are predicted by the direct POD/ROM and interpolation 
appropriated POD/ROM. As shown in Fig. 10, the eigenvalue curves predicted by the two 
POD/ROMs agreed very well in the all three cases. 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure: 9 Relationship curve between the system eigenvalue with the largest real part and Speed for 1 / 12,  1/6, 1/3ε = . 
 

The flutter speeds for different structural models predicted by the two POD/ROM methods 
are also illustrated in Table 2. The results show that the flutter speed predicted by the 
different ROMs are well consistent with each other. Although the deviation of the two 
methods gradually increased with the increase of the structural parameter changes, the max 
difference is still littler than 2.21% in the largest modification case. All of the above 
comparison results indicate that the approximate interpolation POD/ROM method can capture 
the generalized displacement responses and predict the flutter boundary speed with good 
accuracy corresponding to the great global structural parameter variation, even for the very 
large modification ( 1/ 3ε = ).  
 
 
 

=1/12ε

=1/ 6ε

=1/3ε
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Parameter Flutter speed (m/s) 
Driect method Approximate method Error (%) 

1/12ε =  309.2 310.8 0.518 
1/ 6ε =  327.2 330.7 1.070 
1/ 3ε =  357.7 365.6 2.210 

  

Table 2: Flutter speed obtained by direct and approximate method at Ma=0.960. 

 
4.4 Efficiency Evaluation of the POD/ROM interpolation model 
 

Our objective is to propose an new efficient automatically interpolation POD/ROM model 
which is suitable for the routine aeroelastic design optimization and test operations. So that 
the computational efficiency is much more important performance of the interpolation 
POD/ROM method for the multidisciplinary design optimization and uncertainty analysis. All 
of these simulations are performed on a Windows 7 system PC with Intel® Core(TM) i7-2600 
CPU (3.40 GHz, 8 cores, but only one core used) and 16 GB RAM. The computational cost of 
the direct and approximate interpolation POD/ROM method is listed in Table 3. For the three 
structural modification cases, the direct POD/method have to reconstruct the new POD/ROM 
for three times. However, without the most expensive time-consuming reconstruction 
procedure (one time 16 hours for AGARD 445.6 wing ), the computational cost of the 
interpolation approximate POD/ROMM method is reduced obviously, especially at least 
three-order times compared after the POD/ROM was constructed (e.g., 48h5.25s/18.39s＝
9411.8). 
 
Suppose the application of the direct and approximate POD/ROM method in the aeroelastic 
flutter design optimization where the structure parameters would change 1000 times, and 20 
free stream dynamic pressure values were input for searching the flutter point and the 
aeroelastic responses at each fixed AGARD 445.6 structural model. The computational cost 
for the direct POD/ROM method would be 16h×1000＋1.75s×20×1000＝16009.72 hours 
which is about 667 days. However the computational cost of the interpolation approximate 
POD/ROM method is only 16h×1＋0.76s×1000＋1.75s×20×1000＝26.16h about which is 
only little more than one day. The demonstration case indicated that the proposed 
interpolation POD/ROM method is very computational efficiency with at least for two orders 
of magnitude time reduction than the traditional direct POD/ROM reconstruction method, 
which is very suitable for aeroelastic optimization and uncertainty analysis with large global 
structural parameter variation. 
 

Method Process CPU time 

Direct 

Construct a new set of POD/ROMs 16h 
Time histories responses of the generalized displacement for a 
values of free stream dynamic pressure 1.75s 

Three structural parameter variation ( 1/12ε = ,1/6,1/3) 48h 5.25s   
Structure optimization with 1000 structural parameter change 16097.22h 

Approximate 

Construct the initial set of POD/ROMs for original structure 16h 
Compute Q use Extended Kirsch combined method 0.76s 
Time histories responses of the generalized displacement for a 
values of free stream dynamic pressure based 1.79s 

Three structural parameter variation ( 1/12ε = ,1/6,1/3) 16h 18.39s  
Structure optimization with 1000 structural parameter change 26.16h 

 
Table 3: Computational cost of the direct and approximate POD/ROM method. 
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5  CONCLUSIONS 
 

The feasibility and the accuracy of the approximate interpolation POD/ROM method was 
demonstrated and evaluated by the AGARD 445.6 aeroelastic wing model with a large range 
of global structural parameter changes. The accuracy and efficiency of the key procedures 
were evaluated and compared firstly with the direct numerical simulation, including the 
original basic POD/ROM and the extended Kirsch combined structural reanalysis method. 
And then the accuracy of the proposed interpolation POD/ROMs were evaluated for the 
different aeroelastic time responses compared with the direct POD/ROMs, including the 
general unsteady aerodynamic coefficients and the general modal displacements with three 
different structural parameter modification cases in different free steam velocities. The 
stability eigenvalue curve and the flutter points were also compared for different modified 
aeroelastic models in transonic flows. The good agreements of the numerical results show that 
the proposed approximate POD/ROM interpolation method can capture the transoinc 
aeroelastic characteristics of the aeroelastic system with large range global structural 
parameter variations with good accuracy. The deviation of the interpolation POD/ROM will 
slight slowly grows with the increase of structural parameter variation, however it could keep 
the enough accuracy in a large range of structural parameter variation which can be 
determined previously when the structural stiffness and mass change.  
 
The most advantage of the proposed interpolation POD/ROM is not only keeping the 
accuracy corresponding to the aerelastic system’s structural parameter variation, but also is 
the great reduction of the computational cost. Without the most expensive time-consuming 
new POD basis reconstruction procedure required in the traditional direct POD/ROM method, 
the efficiency of the proposed appropriate POD/ROMs can be improved at least two-order 
magnitude according to the demonstration case. The proposed automatic efficient 
interpolation procedure provides a potential powerful tool for the CFD-based POD/ROM’s 
application in the transonic aeroelastic optimization and uncertainty analysis where the global 
structural parameter variation is ordinary. In the future work, we will apply the proposed 
method to the aeroelastic flutter optimization and also investigate the aeroelastic uncertainty 
analysis based on the CFD-based ROMs, which are very challenge topics in transonic 
nonlinear aeroelasticity. 
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