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Abstract: A linearized unsteady solver, referred to as ZONA Unstructured Linearized 
Unsteady Solver (ZULUS), is developed to solve the linearized frequency-domain unsteady 
equation on an unstructured mesh using the steady background flow solution generated by the  
Navier-Stokes (N-S) solver. ZULUS can generate an accurate frequency-domain Generalized 
Aerodynamic Forces (GAF) in the small perturbation sense about a nonlinear steady flow 
condition with a transpiration boundary condition that is applied to the stationary surface 
mesh. The GAF can be directly plugged into the frequency-domain flutter solution techniques 
to generate flutter solutions rapidly.  A linearized static aeroelastic analysis capability is also 
developed in ZULUS to include the static aeroelastic effects in the GAF. The measured flutter 
boundary of a twin-engine transport flutter model in the Transonic Dynamic Tunnel (TDT) of 
NASA Langley is used to validate ZULUS. It is found that the static aeroelastic effects have a 
major impact on the flutter boundary. With the static aeroelastic effects, the ZULUS' 
predicted flutter boundary correlates much better with the TDT measured data than that 
without the static aeroelastic effects. 

1 INTRODUCTION 

During the past several decades, many researchers have applied the Computational Fluid 
Dynamics (CFD) methods to solve the Navier-Stokes (N-S) equations coupled with structural 
equations for the prediction of aeroelastic response using time-accurate schemes. For 
instance, Bartels et al. [1] applied the FUN3D [2] N-S solver to compute the flutter boundary 
of a truss-braced wing and correlated the predicted results with the TDT data. However, these 
time-accurate schemes usually have the following technical issues: 

(1) The computational time for the unsteady aerodynamic cases is at least 2~3 orders higher 
than that of the steady aerodynamics cases. For complex configurations, this long 
computational time is not acceptable for routine industrial aeroelastic analysis. 

(2)  The computational mesh must be deformed according to the structural deformation using 
a moving mesh algorithm. This moving mesh algorithm requires additional 
computational resources, and becomes very complex in dealing with the discontinuous 
displacement in mode shapes such as the control surface modes for which generating a 
computational mesh could be a very tedious effort.  
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(3) Only the flutter mode with the lowest flutter speed can be captured by the time-accurate 
schemes. This is because when this flutter speed is encountered, the time-domain 
response is a divergent motion and the computation cannot proceed to obtain all flutter 
modes with higher flutter speeds.   

Therefore, the frequency-domain unsteady aerodynamic methods still are the preferred 
approach used by the aerospace industry. This is because these methods can generate the 
frequency-domain GAF that can directly lead to the frequency-domain equation of motion of 
the aeroelastic system that reads: 

              2 ( ) ( ) ( )hh hh hh hh hc hg gM i C K q Q i q Q i Q i w       
                    (1) 

Where [Mhh], [Chh], and [Khh] are the structural generalized mass, damping and stiffness 
matrices; respectively. [Qhh(i], [Qhc(i], and {Qhg(i} are the GAFs due to structural 
modes, control surface kinematic modes and sinusoidal gust, respectively, generated by the 
frequency-domain unsteady aerodynamic methods. {ξ}is the generalized modal coordinate 
vector, {δ}is control surface deflection vector, wg is the gust profile, and q∞ is the dynamic 
pressure.  

The left-hand side of equation (1), in fact, represents the flutter equation that can be solved by 
the p-k method [3] or the g-method [4] to calculate the flutter solution of all flutter modes. 
Equation (1) can be solved directly in the frequency domain to generate the time-domain 
aeroelastic responses due to pilot and control system input commands and gust excitation 
using the inverse Fourier transform. Equation (1) also can be first recast in the state space 
equation by applying the Rational Function Approximation (RFA) to the GAF then used for 
flutter suppression or gust loads alleviation control law designs.    

However, the frequency-domain unsteady aerodynamic methods used by the aerospace 
industry such as Doublet Lattice Method [5] and ZAERO [6] solve the linear potential 
equation that is not valid for nonlinear flows. In recent years, many researchers ([7], [8], [9], 
and [10]) have developed linearized Euler or N-S solvers to generate the GAF. These GAF 
also can be directly plugged into equation (1) to compute the aeroelastic responses that are 
valid in the entire Mach number range except in the small disturbance sense.  

In this paper, we present a linearized unsteady solver, referred to as ZONA Unstructured 
Linearized Unsteady Solver (ZULUS), that solves the linearized frequency-domain unsteady 
equation on an unstructured mesh using the steady background flow solution generated by the  
N-S solver. To avoid the moving mesh issues, ZULUS employs the transpiration boundary 
condition that is applied to the stationary surface mesh. ZULUS has been validated with the 
wind tunnel data of various configurations ranging from simple wings like the Benchmark 
Active Controls Technology (BACT) wing [11,12] to complex configurations like the twin-
engine transport flutter model [13].     

2 FORMULATION OF THE LINEARIZED UNSTEADY SOLVER IN ZULUS 

By applying the finite-volume method, the full Navier-Stokes equation can be represented by 
the following equation:  

 / i i vi iQ t H S H S       (2) 
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where the right-hand terms represent the viscous terms and the left-hand terms represent the 
unsteady variation and convection.  The term iS  represents the surface vector from the cell.  

Assuming that the structural oscillation amplitude to be small, then, the total unsteady terms 
can be split into to a steady part and an unsteady small perturbation part 

 ( ), ( ), ( ), 1, 2,3
i i ii i i v v vQ Q Q t H H H t H H H t i          (3) 

Substituting the above equations into the Equation (2) and assuming ( )Q Q t  , ( )i iH H t   and 

( )
i iv vH H t   yield two sets of equations. The first is the steady part shown as follows: 

 i vii iH S H S   (4) 

Equation (4) has the same form as Equation (2) except that the time derivative term is absent.  
Therefore, Equation (4) can be solved efficiently using the pseudo-time marching scheme. 

The second set of equations is the linearized Navier-Stokes equation which reads 

   / * *
i vi

i i

H H
Q t Q S Q S

Q Q

    
          

   (5) 

where iH

Q




is the mean flow convective flux Jacobians and viH

Q




are the mean viscous flux 

Jacobians, referred to herein as the steady background flow. These Jacobians only includes 
the steady variables and are provided by equation (4). Applying Fourier transform, the 
frequency-domain counterpart of equation (5) reads: 

         * *
i vi

i i

H H
i Q i Q i S Q i S

Q Q
   

    
        
   (6) 

Equation (6) is the linearized frequency-domain N-S equation that can generate the 
frequency-domain unsteady aerodynamic forces. However, directly solving equation (6) may 
have the following technical issues: (1) Solving Equation (6) requires the viscous mesh which 
needs to be much more refined than the inviscid mesh; leading to a much longer 
computational time than the linearized Euler solver, and (2) Since deriving the transpiration 
boundary condition for the N-S equation is very difficult and is currently not available, to 
solve Equation (6) requires the moving mesh algorithm. Thus, the technical issues associated 
with the moving mesh algorithm for solving the linearized N-S equation are the same as for 
solving the full unsteady N-S equation. To circumvent the above technical issues, we 
developed a hybrid approach by ignoring the viscous terms in the right-hand side of equation 
(6) which leads the linearized unsteady equation that reads: 

      * 0
i

i

H
i Q i Q i S

Q
  

 
   
   (7) 

Equation (7) is the frequency-domain linearized unsteady equation except that the steady 

background flow in terms of iH

Q




 is externally provided by a steady N-S solver. Because of 
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the lack of the viscous terms like those on the Right-Hand Side (RHS) of Equation (5), 
Equation (7) can be solved using an inviscid mesh so that the long computational time 
required to solve the N-S equation can be avoided. 

The unsteady flow structure is dominated by the steady flow structure in the small 
perturbation sense. Thus, if the steady flow solution is provided by a high fidelity flow solver 
such as the Reynolds-Averaged Navier-Stores (RANS) solver, the accurate unsteady flow 
solution is assured even using a lower fidelity linearized flow solver such as the linearized 
unsteady solver in ZULUS.  

3 TRANSPIRATION BOUNDARY CONDITION 

To solve the linearized unsteady equation, ZULUS employs the transpiration boundary 
condition that can avoid the issues associated with the moving mesh algorithm altogether. The 
transpiration boundary condition is a first order Taylor’s expansion of the exact Euler 
boundary condition on the instantaneous moving surface S(x,y,z,t)=0 about the non-moving 
stationary position of the surface S0(x, y, z) = 0. The transpiration boundary condition of the 
linearized Euler equation reads: 

 
0 0 0

( , , , ) ( , , , ) / ( , , , ) /

( , , ) ( , , , ) ( , , ) ( , , , ) ( , , , ) /

n o os s s

x y

w x y z t u x y z t S x v x y z t S y

u x y z x y z t v x y z x y z t x y z t V  

     

  

  

  
  (8) 

where ( , , , )nw x y z t , ữ(x,y,z,t,) and ṽ(x,y,z,t) are the unsteady perturbation velocity along the 

normal and tangential directions on the stationary surface mesh, ū(x,y,z) and ( , , )v x y z  are the 
steady flow velocities along the tangential direction that are provided by the steady N-S solver 
and ( , , , )x y z t  is the structural mode shape or the control surface kinematic mode whose 
amplitude is assumed to be small and is used as the small parameter involved in the Taylor's 
expansion to derive the transpiration boundary condition.  

Assuming the response to be a simple harmonic motion; i.e. ( , , , ) ( , , , ) i t
n nw x y z t w x y z i e  , 

( , , , ) ( , , , ) i tu x y z t u x y z i e  , ( , , , ) ( , , , ) i tv x y z t v x y z i e  , and ( , , , ) ( , , , ) i tx y z t x y z i e    , 
Equation (8) can be transformed into the frequency domain: 

0 0 0
( , , , ) ( , , , ) / ( , , , ) /

( , , ) ( , , , ) ( , , ) ( , , , ) ( , , , ) /

n o os s s

x y

w x y z i u x y z i S x v x y z i S y

u x y z x y z i v x y z x y z i i x y z i V

  

     

     

  
   (9) 

Because all terms involved in Equation (9) are evaluated on the stationary surface mesh, 

0( , , ) 0S x y z  , no moving mesh is required for the transpiration boundary condition. 

Applying Equation (9) to the linearized unsteady equation yields the frequency-domain 
unsteady pressures and GAF due to structural mode shapes and control surface kinematic 
modes.  

Incorporating the gust excitation into the transpiration boundary condition is very 
straightforward.  The time-domain gust excitation for generating the elementary gust solution 
is a traveling Dirac delta function, δ(t-(x-x0)/V),  where  x0 is the reference point of the gust, V 
the free stream velocity and x is a point on the surface mesh like the one shown in Figure 1.  
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Figure 1: Traveling Dirac Delta Function for Elementry Gust Solution 

The frequency-domain counterpart of the traveling Dirac function, which is usually called the 
sinusoidal gust, can be immediately obtained by Fourier transform:  

0( )/
0( ) ( ( ) / ) i x x Vi ti t x x V e dt e   


 



     (10) 

The induced angle of attack due to the frequency-domain traveling Dirac delta function can be 
directly plugged into the transpiration boundary condition to yield the gust solution such as: 

0

0 0 0

( )/( , , , ) ( , , , ) / ( , , , ) / ( , , ) i x x V
n o os s s

w x y z i u x y z i S x v x y z i S y u x y z e             (11) 

Using equations (9) and (11), ZULUS can generate the GAF due to structural modes, Qhh(iw), 
and control surface kinematic modes, Qhc(iw), as well as due to sinusoidal gust, Qhg(iw), and 
consequently construct equation (1) to generate aeroelastic responses due to pilot and control 
system input commands and gust excitation.  

4 THE LINEARIZED STATIC AEROELASTIC ANALYSIS CAPABILITY IN 
ZULUS 

It is well known that the static aeroelastic effects may have a large impact on the flutter 
boundary, especially in the transonic flow regions. Ideally, a static aeroelastic analysis should 
be performed first by coupling the N-S solver with a structural solver to obtain a steady flow 
solution on an aeroelastically deformed shape. Then, providing this steady flow solution to 
ZULUS as the steady background flow leads to the GAF for flutter analysis with static 
aeroelastic effects. However, such a static aeroelastic analysis by coupling N-S solver with a 
structural solver may require a significant computational effort.  

Using the GAF generated by ZULUS at zero reduced frequency (k), a linearized static 
aeroelastic analysis can be formulated to efficiently solve the static aeroelastic equation in the 
small perturbation sense.  First, let the total aerodynamic forces be split into the aerodynamic 
forces on the rigid aircraft and aeroelastic incremental forces, then a linearized static 
aeroelastic equation can be constructed that reads:   

      
0

[ ] ( )
e

K x q F q F x    (12) 
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where [K] is the structural stiffness matrix, q∞{F0} is the aerodynamic forces on the rigid 
aircraft and q∞{Fe(x)} is the incremental aerodynamic feedback forces due to the structural 
deformation {x}.  

Assuming that the structural deformation can be super-imposed by the structural elastic mode 
shapes [ϕe], and the generalized modal coordinates {ξ} of the elastic modes as follows:  

     e
x    (13) 

and pre-multiplying equation (12) by [ϕe]T yields: 

          
0

[ ] ( )
T T

ee e e e
K q F q F x     (14) 

where [Kee] is the generalized stiffness matrix of the elastic modes 
Next, {Fe(x)} can be super-imposed by the incremental aerodynamic feedback forces due to 
each structural mode, where [fi] = [ f1, f2,…, fh] and the subscript h is the number of modes, 
shown as follows: 

     ( )
e i

F x f   (15) 

[fi] can be obtained by substituting each mode shape into the transpiration boundary condition 
of ZULUS at k=0. In fact, [ϕe]T [fi] =Re[Qee(k = 0)] is the real part of Qee at k=0.  Finally, a 
linearized static aeroelastic equation can be derived: 

          0
Re ( 0)

T

ee ee e
K q Q k q F      (16) 

In equation (16), {F0} can be obtained either by the N-S solver on the unformed mesh and 
[Qee(k = 0)] is provided by ZULUS' linearized unsteady solver.  Inverting the Left-Hand Side 
(LHS) matrix of Equation (16) yields {ξ} that leads to the structural deformation {x}.  It 
should be noticed that this matrix is singular when the dynamic pressure is one of the 
eigenvalues of the LHS matrix. This dynamic pressure is called the static divergence dynamic 
pressure. Thus, a static divergence analysis can be performed by computing the eigenvalues 
of this LHS matrix among which the smallest real positive eigenvalue is the lowest 
divergence dynamic pressure of the structure. Thus, if the input dynamic pressure for the 
static aeroelastic analysis is higher than the divergence dynamic pressure, the structure is 
aeroelastically unstable, and the result of the static aeroelastic analysis is physically 
meaningless. 

After {ξ} is obtained, the total perturbed conservative flow variables can be obtained by 
superimposing the perturbed conservative flow variables of each mode with {ξ}.  Adding the 
superimposed perturbed conservative flow variables to those computed by the N-S solver 
yields the updated steady background flow solution with static aeroelastic effects that are 
provided to ZULUS linearized unsteady solver for computing the GAF. 

The linearized static aeroelastic analysis is very computational efficient since [Qee(k = 0)] can 
be provided by ZULUS with parallelized computation using Message Passing Interface (MPI) 
and solving equation (16) only involves the decomposition of the LHS matrix of equation (16) 
whose size is only the number of modes.  Therefore, the linearized static aeroelastic analysis 
should always be performed first.  Then, the updated steady background flow solution can be 
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rapidly generated to account for the static aeroelastic effects in the ZULUS to generate GAFs 
for flutter analysis. 

5 VALIDATION OF THE ZULUS GUST SOLUTION WITH ZONA6 

All Generation of the generalized aerodynamic forces due to gust (Qhg) by ZULUS is very 
straightforward; simply adding the 0( )/i x x Ve    term in the frequency-domain transpiration 
boundary condition. Using the rational function approximation, the Qhg, Qhc, and Qhh matrices 
along with the structural generalized mass, stiffness and damping matrices can lead to the 
state-space equation that is the frequency-domain counterpart expressed in Equation (1) for 
performing the gust and ASE analysis. To form this state-space equation, we have integrated 
the gust module and the ASE module of ZAERO [14] into ZULUS. The integrated gust 
module and ASE module in ZULUS replace the Qhg ,Qhc and Qhh matrices computed by the 
linear unsteady aerodynamic method such as ZONA6 [15] in ZAERO by those generated by 
ZULUS so that the difference in the gust and ASE solutions between ZAERO and ZULUS is 
purely due to the different unsteady aerodynamic matrices.. 

The test case selected for the gust analysis is the BACT wing at M=0.45 except that its t/c is 
reduced to 3%. Because of the thin airfoil section and the low Mach number, the ZAERO gust 
solution based on the linear unsteady aerodynamic method (ZONA6) is valid and can be used 
to validate the ZULUS gust solution. 

5.1 Validation of ZULUS Discrete Gust Result 

The discrete gust profile is a 1-cosine gust at V=508 fps and dynamic pressure (q)=129 psf 
with a gust velocity=25 fps and gust length=2.66 ft. The acceleration at the accelerometer 
located at the inboard of the wing trailing edge, wing root bending moment and wing root 
torsion are computed by ZULUS and ZAERO and are presented in Figure 2. This 1-cosine 
gust hits the leading edge of the BACT wing at time (t)=0, therefore, prior to t=0, no 
responses of the wing are observed.  Excellent agreement between the ZAERO and ZULUS 
solutions is obtained which validates the discrete gust analysis capability of ZULUS. 
 
 

(a) Sensor Acceleration (b) Wing Root Bending 
 

(c) Wing Root Torsion 
Figure 2: Discrete Gust Responses of BACT Wing due to 1-Cosine Gust Excitation  

at M=0.45 and q=129 psf. 

5.2 Validation of ZULUS Continuous Gust Result  

The Dryden's gust spectrum with Root-Mean-Square (RMS) gust velocity=25 fps is used 
for the continuous gust analysis. Figure 3 depicts the auto-Power Spectrum Density (PSD) 
of acceleration at the accelerometer, the wing root bending moment, and the wing root 

ZULUS 
ZAERO 

ZULUS 
ZAERO

ZULUS
ZAERO 
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torsion; and cross-PSD of the wing root bending moment and torsion computed by 
ZULUS and ZAERO in which excellent agreement between these two codes can be 
observed. It should be noted that the current FAA airworthiness requirement specifies the 
use of both discrete and continuous gust analyses. The continuous gust analysis using the 
linear unsteady aerodynamic methods is a routine practice in the aerospace industry. But 
such an analysis capability is currently not available in any CFD code; making ZULUS a 
unique tool for continuous gust analysis. 

 
(a) Auto-PSD of Sen sor Acceleration 

 
(b) Auto-PSD of Wing Root Bending 

(c) Auto-PSD of Wing Root Torsion (d) Cross-PSD of Wing Bending and 
Torsion  

Figure 3: Continuous Gust Responses of BACT Wing due to Dryden's Gust Spectrum at M=0.45 and q=129 psf. 

6 VALIDATION OF ZULUS PLANT MODEL GENERATION CAPABILITY WITH 
TRANSONIC DYNAMIC TUNNEL (TDT) DATA  

To design an effective control system for flutter suppression and gust load alleviation, it 
requires an accurate plant model that relates the sensor output to the control input. The 
accuracy of the plant model can be characterized by comparing its frequency response to the 
test data in a wide range of frequencies. In order to validate the ZULUS plant model 
generation capability using the integrated ZAERO ASE module, the BACT wing on the Pitch 
and Plunge Apparatus (PAPA) flexible mount system is selected. Two sets of frequency 
responses at the accelerometer located at the inboard trailing edge of the wing were measured 
by the TDT testing; one due to the tailing edge flap input and the other due to the upper 
spoiler input.  Waszak [16] also computed these two frequency responses using the wind 
tunnel measured aerodynamic force and moment stability derivatives due to the pitch and 
plunge modes as well as due to the trailing edge flap and upper spoiler inputs. The ZULUS 
results are obtained by the integrated ZAERO frequency-domain ASE module except using 
ZULUS generated GAF due to the pitch and plunge modes, (Qhh), as well as trailing edge flap 
and upper spoiler oscillation, (Qhc), at various frequencies.  

6.1 Validation of Frequency Response due to Trailing Edge Flap Input 

Shown in Figure 4 are the frequency responses at the accelerometer due to the trailing edge 
flap input measured by the TDT testing, computed by Waszak and ZULUS. The TDT test 
data was measured at a dynamic pressure (q)=125 psf. Note that the natural frequencies of the 
BACT wing on the PAPA flexible mount system are 3.34 Hz for the plunge mode and 5.2 Hz 
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for the pitch mode. However, the TDT test data shows that the frequency of the pitch mode is 
shifted from 5.2 Hz to approximately 4.5 Hz.  Clearly, this frequency shift is due to the 
aeroelastic effects. Both Waszak and ZULUS results capture this frequency shift except that 
the results obtained by Waszak over-predict the magnitude of the peak at 4.5 Hz and ZULUS 
slightly under-predict this peak. At 3.0 Hz, both the Waszak and ZULUS results over-predict 
the magnitude of the peak, but they agree with each other well. The zigzag of the phase angle 
below 2 Hz in the TDT data is probably caused by the wind tunnel noise that is difficult to 
model by analysis. Overall speaking, the ZULUS and Waszak results correlate well with the 
TDT test data. However, Waszak's results were based on the wind tunnel measured 
aerodynamic force and moment derivatives whereas the ZULUS results were obtained by the 
linearized unsteady solver. 

(a) Magnitude (b) Phase Angle  
Figure 4: Frequency Response of BACT Wing for Accelerometer Output 

 to Trailing Edge Flap Input at q=125 psf 

6.2 Validation of Frequency Response due to Upper Spoiler Input 

Figure 5 presents the frequency responses of the BACT wing on the PAPA flexible mount 
system at the accelerometer to the upper spoiler input. Again, the magnitude of the TDT data 
shows two peaks at 3.0 Hz and 4.5 Hz. Both Waszak's and ZULUS results capture these two 
peaks except that ZULUS under-predicts the magnitude at 3.0 Hz and slightly overpredicts 
that at 4.5 Hz. The phase angle of both Waszak's and ZULUS results agree well with that of 
the TDT data except at the frequencies below 2 Hz in which the TDT data was probably 
contaminated by the wind tunnel noise. 

(a) Magnitude 
 

(b) Phase Angle  
Figure 5:” Frequency Response of BACT Wing for Accelerometer Output to Upper Spoiler Input at q=125 psf. 

The accurate flow field prediction of the wing pressures when a spoiler is deployed is 
currently beyond the capabilities of the existing ASE codes. Such a capability is urgently 
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needed by the aerospace industry because spoilers can be used as effective control devices for 
dynamic loads alleviation. For instance, Boeing 787 and Airbus A320 are equipped with a 
maneuver and gust load alleviation control law using the aileron and spoiler to provide the 
control authority that is normally obtained by an enormous amount of wind tunnel testing and 
flight testing to tune the control laws. This test case demonstrates that through the use of 
ZULUS, the amount of wind tunnel testing and flight testing required can be reduced.  

7 DESCRIPTION OF THE TWIN-ENGINE TRANSPORT FLUTTER MODEL IN 
TDT 

This Twin-Engine Transport Flutter Model (TETFM) was tested by the Boeing Company 
(Boeing) in TDT and is shown in Figure 6. Its TDT measured flutter boundaries at angle of 
attack (α)=-2° is shown in Figure 7. 

Figure 6: Twin-Engine Transport Flutter Model in TDT. 
(Figure Taken from Reference 13) 

 

 

 

 

 

 

 

 

Figure 7: TDT Measured Flutter Boundaries of the 
Twin-Engine Transport Flutter Model. (Figure 

Taken from Reference 13) 

During the wind tunnel testing with a Mach number below 0.83, two flutter mechanisms were 
measured; one at 17 Hz called the wing/nacelle mode at lower dynamic pressures and the 
other at 22 Hz called the wing tip mode at higher dynamic pressures.  When the wing/nacelle 
flutter mode was first encountered at lower dynamic pressures, a low-amplitude Limit Cycle 
Oscillation (LCO) was observed in the TDT.  Because of the low oscillation amplitude that 
may not damage the wind tunnel model structure, the test engineers decided to continuously 
increase the dynamic pressure until the wing tip flutter mode was encountered.  Apparently, 
the wing/nacelle mode is a hump flutter mode, and the wing tip mode is an explosive flutter 
mode.  However, at the Mach number higher than 0.83, the LCO amplitude of the 
wing/nacelle mode became significantly large to the extent that the test engineers stopped 
increasing the dynamic pressure to avoid the damage of the flutter model.  Therefore, the 
flutter boundary of the wing tip mode was not able to be measured at Mach numbers higher 
than 0.83. 

8 VALIDATION WITH THE TDT MEASURED FLUTTER BOUNDARY OF THE 
TWIN-ENGINE TRANSPORT FLUTTER MODEL 

The TETFM is an ideal showcase to demonstrate the ZULUS' applicability for rapid 
aeroelastic analysis on complex configuration. Figure 8.(a) shows an unstructured viscous 
mesh for computing the viscous steady viscous flow solution using the RANS solver in 
FUN3D. Then, by coarsening the unstructured viscous mesh, an inviscid mesh shown in 
Figure 8.(b) is generated by computing the unsteady aerodynamic forces by the linearized 
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unsteady solver in ZULUS. The unstructured viscous mesh has 1,929,436 grids, 2,856,538 
tetrahedral cells, 15,769 pyramid cells, 2,826,411 prism cells, 106,316 surface triangular cells 
and 12,620 surface quadrilateral cells and the unstructured inviscid mesh has 43,198 grids, 
212,831 tetrahedral cells, and 36,436 surface triangular cells.  

 

(a) Unstructured Viscous Mesh 

 

(b) Unstructured Inviscid Mesh 

Figure 8: Unstructured Mesh of the Twin-Engine Transport Flutter Model. 

The structural model of the TETFM provided by Boeing has 12 natural modes. Using the 
Spline module in ZULUS, these 12 mode shapes are mapped from the structural grids to the 
unstructured inviscid surface mesh. The first four mapped mode shapes; namely, the first 
wing bending mode, the engine nacelle yaw mode, the engine nacelle pitch mode and the first 
wing torsion mode, are presented in Figure 9. These 12 mapped mode shapes are plugged into 
the transpiration boundary condition of the linearized unsteady solver to generate the Qhh(ik) 
matrix for flutter analysis using the Flutter module in ZULUS. 

 

(a) Mode 1: 7.5 Hz 

 

(b) Mode 2: 14.9 Hz 

 

(c) Mode 3: 19.0 Hz 
 

(d) Mode 4: 23.3 Hz 
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Figure 9: The First Four Interpolated Mode Shapes of the TETFM on the Surface Panel Model. 

8.1 Viscous Steady Background Flow with and without Static Aeroelastic Effects  

Using the unstructured viscous mesh shown in Figure 8.(a), the viscous steady flow solution 
is computed by the RANS solver in FUN3D at angle of attack (α)=-2° and at Mach numbers 
(M)=0.79, 0.83, 0.85, and 0.88. To solve the linearized unsteady equation, ZULUS requires 
the steady background flow on the unstructured inviscid mesh shown in Figure 8.(b). The 
viscous flow solutions at various Mach numbers computed by FUN3D are interpolated from 
the viscous mesh to the inviscid mesh. To validate the interpolated flow solutions, we 
compared the interpolated Mach contours on the inviscid mesh at M=0.88 and along 20%, 
40%, 60% and 80% wing span stations to those computed on the viscous mesh. This 
comparison is presented in Figure 10 which shows that overall these two sets of Mach 
contours practically have the same distribution.  These interpolated viscous flow solutions on 
the inviscid mesh are used as the steady background flows for the linearized unsteady solver 
to generate the unsteady aerodynamic forces. 

Computed on Viscous Mesh Interpolated on Inviscid Mesh  

(a) Along 20% Span Station 

Computed on Viscous Mesh Interpolated on Inviscid Mesh  

(b) Along 40% Span Station 

Computed on Viscous Mesh Interpolated on Inviscid Mesh  

(c) Along 60% Span Station 

Computed on Viscous Mesh Interpolated on Inviscid Mesh  

(d) Along 80% Span Station 

Figure 10: Comparison of Mach Number Contours between those Computed on Viscous Mesh and Interpolated 
on Inviscid Mesh at M=0.88 and 2-=ࢻ°. 

8.2 Convergence History of the Unsteady Aerodynamic Forces 

Based on the interpolated viscous steady background flow, the unsteady aerodynamic forces 
due to 12 modes at six reduced frequencies (k=0.0, 0.1, 0.35, 0.6 1.0 and 1.25) are computed 
by the linearized unsteady solver in ZULUS for each Mach number. The total run time for 
each Mach number is 10 hours using 216 cores for MPI+OpenMP. Figure 11 shows the 
residuals convergence histories versus iteration numbers of the first four elastic modes at 
k=0.1 and M=0.88. The residuals of both real and imaginary parts reduce nearly four orders; 
verifying that the unsteady aerodynamic forces after 3000 iterations are well-converged 
solutions.  
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 (a) First Wing Bending Mode 

 
(b) Engine Nacelle Yaw Mode 

 
 

(c) Engine Nacelle Pitch Mode 
 

(d) First Wing Torsion Mode 

Figure 11: Convergence History of the Unsteady Aerodynamic Forces at k=0.1 and M=0.88. 

8.3 Investigation of Static Aeroelastic Effects on Unsteady Pressure Distributions 

The linearized static aeroelastic analysis in the Trim module of ZULUS is used to 
"flexibilize" the interpolated viscous steady background flow. The dynamic pressures (q∞) 
selected for the linearized static aeroelastic analysis are q∞=1.2 psi at M=0.79,  q∞=1.04 psi at 
M=0.83, q∞=1.04 psi at M=0.85, and q∞=0.92 psi at M=0.88. These dynamic pressures are 
selected based on the flutter dynamic pressures at each Mach number measured in TDT. The 
steady pressure distributions with and without static aeroelastic effects along the 80% wing 
span station at those four Mach numbers are depicted in Figure 12. It can be seen that the 
magnitude of the negative pressure on the wing upper surface is significantly reduced by the 
static aeroelastic effects. Apparently, the static aeroelastic effects may have a major impact on 
the unsteady pressure distributions.  
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(c) M=0.85 
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(d) M=0.88 

Figure 12: Pressure Coefficients with/without static aeroelastic effects along 80% span of the Twin-Engine 
Transport Flutter Model. 

Based on the steady viscous background flow with and without static aeroelastic effects, the 
real and imaginary parts of unsteady pressure distributions along 20%, 40%, 60% and 80% 
wing span stations due to the first wing bending mode at k=0.1 and M=0.88 are solved by the 
linearized unsteady solver in ZULUS and are shown in Figure 13. As expected, these two sets 
of unsteady pressure distribution are significantly different; showing the impact of the static 
aeroelastic effects on unsteady aerodynamics in transonic flows.   
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(b) Along 40% Span Station 
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(d) Along 80% Span Station 

Figure 13: Unsteady Pressure Distributions with and without Static Aeroelastic Effects due to the First Wing 
Bending Mode at k=0.1 and M=0.88. 

8.4 Flutter Boundaries of the TETFM based on Viscous Steady Background Flow with 
and without Static Aeroelastic Effects 

Flutter analyses are performed using the viscous generalized aerodynamic forces (GAF) with 
and without the static aeroelastic effects to solve the flutter equation. Figure 14 presents the 
flutter solutions depicted by the dynamic pressure versus damping (V-G) and dynamic 
pressure versus frequency (V-F) diagrams at M=0.79, 0.83, 0.85, and 0.88. At these four 
Mach numbers, the V-G diagrams show that two damping curves cross the zero-damping line 
which corresponds to two flutter modes. The flutter frequency of the first flutter mode occurs 
approximately at 17 Hz apparently that is the wing nacelle flutter mode observed during the 
TDT testing and the flutter frequency of the second flutter mode occurs approximately at 22 
Hz that corresponds to the wing tip flutter mode mode observed during the TDT testing. The 
damping and frequency curves of the wing nacelle flutter mode computed using the GAF with 
static aeroelastic effects are shown by the solid red circles and those without the static 
aeroelastic effects are shown by the open black circles. The damping and frequency curves of 
the wing tip flutter mode computed using the GAF with static aeroelastic effects are shown by 
the solid blue squares and those without the static aeroelastic effects are shown by the open 
black squares. At the lower Mach numbers, the difference of the damping and frequency 
curves between those with and without static aeroelastic effects is small but this difference 
increases as the Mach number increases; showing the impact of the static aeroelastic effects 
on flutter results at high Mach numbers.  

The horizontal dash line in the V-G diagram represents the 1% structural damping line 
(labeled by ζ=1%). Thus, if one percent of structural damping is assumed, the flutter dynamic 
pressure occurs at the crossing between the damping curves and the1% structural damping 
line. Otherwise, the flutter dynamic pressure occurs at the crossing between the damping 
curves and the zero-damping line. Because the wing nacelle flutter mode is a hump-type 
mode (the damping curve above the zero/one percent damping line in a narrow dynamic 
pressure region), the flutter dynamic pressure of the wing nacelle flutter mode is very 
sensitive to the amount of structural damping considered in the flutter analysis. On contrast, 
the damping curve of the wing tip mode is an explosive mode (the slope of the damping curve 
is large at the crossing), its flutter dynamic pressure is insensitive to the structural damping.     
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(a) M=0.79 
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(c) M=0.85 
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(d) M=0.88 

Figure 14: V-G and V-F Diagrams of the ZULUS Viscous Flutter Solutions for the TETFM with and without 
Static Aeroelastic Effects. 

 



IFASD-2017-39 

17 

Mach number

D
yn

a
m

ic
p

re
ss

u
re

(p
sf

)

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
120

140

160

180

200

220

240

260
TDT Test data
ZULUS Viscous W/O AE (=0%)
ZULUS Viscous With AE (=0%)
ZULUS Viscous W/O AE (=1%)
ZULUS Viscous With AE (=1%)
CFL3D With AE

Wing/Nacelle Mode
(17 Hz)

 

(a) Wing Nacelle Flutter Mode 
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(b) Wing Tip Flutter Mode 

Figure 15: Flutter Boundaries of the Twin-Engine Transport Flutter Model.  

Figure 15 presents the flutter dynamic pressure versus Mach number referred to as the flutter 
boundary which includes six sets of flutter boundaries. The open diamonds are the flutter 
boundaries measured in TDT, and the solid green triangles are the CFL3D computed results 
[17] with static aeroelastic effects,  The rest four sets of flutter boundaries are computed by 
ZULUS with viscous effects. The first set is the flutter boundary without the static aeroelastic 
effects and with zero structural damping (labeled by the open black circles). The second set is 
the flutter boundary with the static aeroelastic effects and with zero structural damping 
(labeled by the solid black circles). The third set is the flutter boundary without the static 
aeroelastic effects and with one percent of structural damping (labeled by the open red 
gradients), and the fourth set is the flutter boundary with the static aeroelastic effects and with 
one percent of structural damping (labeled by the solid red gradients). Among the four sets of 
ZULUS results, the 1% structural damping with the static aeroelastic effects is believed to be 
the most representative model (labeled by the solid red gradients) of the actual TETFM in 
TDT. The flutter boundary of this ZULUS model agrees the best with the TDT measured 
result for both wing nacelle and wing tip flutter modes; showing that for accurate flutter 
prediction all static aeroelastic, flow viscous and structural damping effects must be included 
in the flutter analysis. 

9 CONCLUSIONS 

In this work, an unstructured linearized Euler solver, called ZULUS, is developed that solves 
the frequency-domain linearized unsteady equation based on the steady background flow 
solution provided by the N-S solver. ZULUS can generate the frequency-domain generalized 
aerodynamic forces due to structural modes, control surface kinematic modes and gust 
excitation. These generalized aerodynamic forces can be directly plugged into the 
conventional frequency-domain flutter, aeroservoelastic (ASE) and gust analysis 
methodologies to generate flutter solution, ASE stability analysis, and gust loads prediction. 
In fact, many engineering modules in ZULUS are nearly the same as those in ZAERO except 
that the unsteady aerodynamic forces generator in ZAERO established by solving the 
unsteady potential equation is replaced by the linearized unsteady solver of ZULUS. 
Therefore, ZULUS is the next generation of ZAERO for rapid aeroelastic and aeroservoelastic 
analysis but using much more accurate unsteady aerodynamic forces than those used by 
ZAERO. 

Because of the transpiration boundary, ZULUS can avoid the moving mesh problems 
associated with applying the exact N-S boundary condition that requires additional 
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computational resources and may encounter grid crossover problem due to large oscillating 
amplitude or discontinuous displacement in mode shapes.   

Nowadays, the application of CFD methods for steady aerodynamic analysis is a routine 
practice in the aerospace industry. Therefore, the CFD mesh of a given configuration is 
usually available to the aeroelastic engineers so that aeroelastic analysis using ZULUS can be 
performed without an extensive modeling effort. Because the computational procedure of a 
reduced frequency-mode pair for computing its induced unsteady pressures is independent of 
other pairs, ZULUS can be easily parallelized to drastically reduce the computational time by 
computing the unsteady aerodynamic forces of all frequency-mode pairs concurrently using 
MPI if a large number of cores is available. Therefore, ZULUS can satisfy the computational 
efficiency requirement by the aerospace industry for routine aeroelastic analysis. 
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